JPS6122639B2 - - Google Patents

Info

Publication number
JPS6122639B2
JPS6122639B2 JP55035923A JP3592380A JPS6122639B2 JP S6122639 B2 JPS6122639 B2 JP S6122639B2 JP 55035923 A JP55035923 A JP 55035923A JP 3592380 A JP3592380 A JP 3592380A JP S6122639 B2 JPS6122639 B2 JP S6122639B2
Authority
JP
Japan
Prior art keywords
potential
heating elements
heating element
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55035923A
Other languages
Japanese (ja)
Other versions
JPS56130380A (en
Inventor
Takafumi Endo
Tetsunori Sawae
Hiromi Yamashita
Toshio Hida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3592380A priority Critical patent/JPS56130380A/en
Publication of JPS56130380A publication Critical patent/JPS56130380A/en
Publication of JPS6122639B2 publication Critical patent/JPS6122639B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、連続発熱体を有するサーマルヘツ
ドに関し、特にマトリツクスの構成法とその駆動
回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermal head having a continuous heating element, and particularly to a method of configuring a matrix and a driving circuit thereof.

〔従来の技術〕[Conventional technology]

従来のこの種の連続発熱体を有するサーマルヘ
ツドではダイオードマトリツクス部は第1図のよ
うな構成になつていた。図において、1〜36は
発熱素子、37〜54はソース側分離ダイオー
ド、55〜73はシンク側分離ダイオード、74
〜79はソース側リード端子(入力側リード端
子)、80〜87はシンク側リード端子(出力側
リード端子)である。
In a conventional thermal head having a continuous heating element of this type, the diode matrix section has a structure as shown in FIG. In the figure, 1 to 36 are heating elements, 37 to 54 are source side isolation diodes, 55 to 73 are sink side isolation diodes, and 74 are
79 are source side lead terminals (input side lead terminals), and 80 to 87 are sink side lead terminals (output side lead terminals).

次に動作について説明する。 Next, the operation will be explained.

第1図において、各発熱素子1〜36を発熱さ
せる場合には、ソース側リード端子74〜79に
画信号を一時蓄積しておき、これに同期させてシ
ンク側リード端子80〜87を順次ON,OFFさ
せればよい。たとえばソース側リード端子74〜
79の画信号情報のうち、端子74,77,78
がHレベル、端子75,76,79がLレベルで
あるとすると、シンク側リード端子80をONと
することにより発熱素子1,32,33が発熱す
る。次にソース側リード端子74〜79に新たな
画信号を一時蓄積しておき、シンク側リード端子
81をONとする。たとえばソース側リード端子
74〜79の画信号情報のうち、端子75,7
7,79がHレベル、端子74,76,78がL
レベルであるとすると、シンク側リード端子81
をONにすることにより発熱素子3,19,35
が発熱する。
In FIG. 1, when each heating element 1 to 36 generates heat, image signals are temporarily stored in the source side lead terminals 74 to 79, and in synchronization with this, the sink side lead terminals 80 to 87 are sequentially turned on. , just turn it off. For example, source side lead terminal 74~
Of the 79 image signal information, terminals 74, 77, 78
Assuming that the terminals 75, 76, and 79 are at the H level and the terminals 75, 76, and 79 are at the L level, the heating elements 1, 32, and 33 generate heat by turning on the sink side lead terminal 80. Next, a new image signal is temporarily stored in the source side lead terminals 74 to 79, and the sink side lead terminal 81 is turned on. For example, among the image signal information of the source side lead terminals 74 to 79, terminals 75 and 7
7, 79 are at H level, terminals 74, 76, 78 are at L level.
level, the sink side lead terminal 81
By turning on heating elements 3, 19, 35
generates a fever.

このように毎回画信号をソース側入力端子74
〜79に与え、シンク側リード端子80〜87を
順次ON,OFFさせることにより、連続発熱体上
の任意の発熱素子1〜36の昇温制御が行なわれ
る。この時各分離ダイオード37〜73はソー
ス,シンク側各共通リードへの逆電流を阻止する
役割を果たす。
In this way, the image signal is input to the source side input terminal 74 every time.
79 and sequentially turn on and off the sink side lead terminals 80 to 87, the temperature of any of the heating elements 1 to 36 on the continuous heating element is controlled to increase. At this time, the isolation diodes 37 to 73 serve to prevent reverse current from flowing to the common leads on the source and sink sides.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第1図のように従来のこの種の連続発熱体を有
するサーマルヘツドでは、ソース側リード,シン
ク側リードに流れる逆電流を阻止するため、各発
熱素子の対向するリード部には必ず分離ダイオー
ドを設けねばならず、結局発熱素子の個数とほぼ
同数の分離ダイオードが必要となる。また連続発
熱体を有するサーマルヘツドに限らず、通常のも
のでもダイオードの設置数は発熱素子の個数だけ
必要である。
As shown in Figure 1, in a conventional thermal head with a continuous heating element of this type, a separation diode is always installed in the opposing leads of each heating element in order to prevent reverse current flowing to the source side lead and sink side lead. In the end, approximately the same number of isolation diodes as the number of heating elements are required. Further, not only in a thermal head having a continuous heating element but also in a normal type, the number of diodes required to be installed is equal to the number of heating elements.

そしてこのような問題を解決したものとして、
従来、例えば特開昭52―119946号公報に示される
ように、一方の共通リードに高電位を、他方の共
通リードのうち選択すべきものに低電位を、選択
されないものに中間電位を与えるようにしたもの
がある。しかるに上記従来公報記載のサーマルヘ
ツドでは、発熱素子配列の両側に位置する2つの
共通リードに各々高電位、中間電位を与えるよう
にしているので、2つの電源が必要とし、大型
化,構造の複雑化及びコスト高になるという問題
があり、特に絶縁基板上に駆動系を搭載する場合
には大きな問題となる。
And as a solution to this problem,
Conventionally, as shown in Japanese Patent Application Laid-Open No. 52-119946, for example, a high potential is applied to one common lead, a low potential is applied to the selected one of the other common leads, and an intermediate potential is applied to the unselected one. There is something I did. However, in the thermal head described in the above-mentioned conventional publication, a high potential and an intermediate potential are applied to two common leads located on both sides of the heating element array, respectively, so two power supplies are required, resulting in an increase in size and a complicated structure. However, there are problems in that the drive system is mounted on an insulating substrate, which is a big problem especially when the drive system is mounted on an insulating substrate.

この発明は従来の上記のようなものの欠点を除
去するためになされたものであり、大型化,構造
の複雑化およびコスト高を招くことなく、廻り込
み防止用ダイオードの数を低減できるサーマルヘ
ツドを提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional devices as described above, and provides a thermal head that can reduce the number of wraparound prevention diodes without increasing the size, complicating the structure, and increasing costs. is intended to provide.

〔問題点を解決するための手段〕[Means for solving problems]

そこでこの発明は、連続発熱体を有するサーマ
ルヘツドにおいて、入力側共通リードのうち奇数
番目のものと偶数番目のものとを交互に駆動電位
を与えて操作し、その際、非操作時の入力側共通
リードを上記駆動電位を低電位側にレベルシフト
した電位に保持するドライバ回路と、各出力側共
通リードを接地電位又は上記駆動電位のいずれか
の電位に選択的に保持するスイツチ回路とを設け
たものである。
Therefore, the present invention aims to operate a thermal head having a continuous heating element by alternately applying a drive potential to odd-numbered and even-numbered common leads on the input side. A driver circuit that holds the common lead at a potential level-shifted from the drive potential to a lower potential side, and a switch circuit that selectively holds each output side common lead at either the ground potential or the drive potential are provided. It is something that

〔作用〕[Effect]

この発明においては、入力側共通リードは奇数
番目のものと偶数番目のものとが交互に駆動電位
を与えられて操作され、又出力側共通リードは接
地電位又は駆動電位に保持されて、各発熱素子が
選択的に発熱され、その際非操作時の入力側共通
リードは駆動電位をレベルシフトした所定の低電
位に保持され、このように入力側共通リードには
駆動電位又はこれをレベルシフトした低電位を与
えればよいことから、電源は1電源で済む。
In this invention, the odd-numbered and even-numbered input common leads are alternately applied with a driving potential, and the output common leads are held at a ground potential or a driving potential, so that each heat generated When the element is selectively heated, the input side common lead when not in operation is held at a predetermined low potential that is level-shifted from the drive potential, and in this way, the input side common lead is held at a predetermined low potential that is level-shifted from the drive potential. Since it is sufficient to apply a low potential, only one power supply is required.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第2図ないし第6図は本発明の一実施例による
サーマルヘツドを示す。第2図において、1〜3
6は発熱素子、55〜73はシンク側分離ダイオ
ード、74〜79はソース側リード端子、80〜
87はシンク側リード端子である。この回路は第
1図で示した従来の回路とはソース側分離ダイオ
ードを除去した他に変更はない。
2-6 illustrate a thermal head according to one embodiment of the present invention. In Figure 2, 1 to 3
6 is a heating element, 55 to 73 are sink side isolation diodes, 74 to 79 are source side lead terminals, 80 to
87 is a sink side lead terminal. This circuit is unchanged from the conventional circuit shown in FIG. 1 except for the removal of the source side isolation diode.

第3図は第2図で示した回路の一部でソース側
リードへの逆流を考慮し、シンク側は分離ダイオ
ードを挿入するための逆電流の影響を無視したと
きの等価回路である。
FIG. 3 is an equivalent circuit of a part of the circuit shown in FIG. 2, taking into account the reverse current to the source side lead, and ignoring the influence of the reverse current due to the insertion of a separation diode on the sink side.

第4図はソース側リード端子とシンク側リード
端子に印加する電圧の相関関係を示すタイミング
チヤートであり、画信号の入力は2系統に分割さ
れ、ソース側リード端子74,76,78は同期
して同時入力され、ソース側リード端子75,7
7,79は同期して同時入力され、互いに各系統
同時には入力されない。
Figure 4 is a timing chart showing the correlation between the voltages applied to the source side lead terminal and the sink side lead terminal.The input of the image signal is divided into two systems, and the source side lead terminals 74, 76, and 78 are synchronized. are simultaneously input, and the source side lead terminals 75, 7
7 and 79 are synchronously inputted at the same time, and are not inputted to each system at the same time.

第5図は第2図で示した連続発熱体を駆動する
各回路のブロツク図であり、第6図は第5図で示
したブロツク図のドライバ回路105,106の
回路例である。
FIG. 5 is a block diagram of each circuit for driving the continuous heating element shown in FIG. 2, and FIG. 6 is a circuit example of the driver circuits 105 and 106 in the block diagram shown in FIG.

次に動作について説明する。 Next, the operation will be explained.

第2図において、ソース側リード端子76にH
信号,シンク側リード端子80にL信号を送り、
目的の発熱素子17を発熱させたとする。このと
きの発熱素子17の周辺の等価回路を第3図に示
す。発熱素子17には76→80間に電流が流
れ、発熱に充分なエネルギーが生じる。この場合
には端子76→77→32→80の電流廻りがあ
り、端子76,77間の電圧低下が小さく、発熱
素子32を発熱させてしまうためサーマルヘツド
としての機能を失うことになる。
In FIG. 2, H is connected to the source side lead terminal 76.
signal, send an L signal to the sink side lead terminal 80,
Assume that the target heating element 17 is caused to generate heat. An equivalent circuit around the heating element 17 at this time is shown in FIG. A current flows through the heating element 17 between 76 and 80, generating sufficient energy to generate heat. In this case, the current flows through the terminals 76→77→32→80, and the voltage drop between the terminals 76 and 77 is small, causing the heating element 32 to generate heat, thereby losing its function as a thermal head.

このため本実施例では、ソース側リード端子の
うち偶数番号端子と奇数番号端子を交互に操作
し、偶数番号をリード端子を駆動しているときに
は奇数側リード端子はある適当なレベルに保持
し、奇数番号端子を駆動しているときには偶数番
号端子をある適当なレベルに保持することによ
り、目的としない発熱素子の発熱を防ぐようにし
ている。
Therefore, in this embodiment, the even numbered terminals and the odd numbered terminals among the source side lead terminals are operated alternately, and when the even numbered lead terminals are being driven, the odd numbered side lead terminals are held at a certain appropriate level. When the odd-numbered terminals are being driven, the even-numbered terminals are held at a certain appropriate level to prevent unintended heating elements from generating heat.

例えば任意の発熱素子の抵抗値を400Ωとし、
0.5W印加したときに発熱素子が充分発熱すると
し、0.2W以上印加したときには不充分な発熱を
行ない、0.2W以下の印加では発熱しないとす
る。発熱素子が充分発熱するときの発熱素子に流
れる電流はi=√0.5400であり、i=
0.035Aとなる。よつて発熱しないときの電流は
i=√0.2400=0.022Aとなり、発熱させな
い場合には22mA以下の電流におさえる必要があ
る。
For example, if the resistance value of any heating element is 400Ω,
It is assumed that the heating element generates sufficient heat when 0.5W is applied, insufficient heat is generated when 0.2W or more is applied, and no heat is generated when 0.2W or less is applied. The current flowing through the heating element when it generates sufficient heat is i=√0.5400, and i=
It becomes 0.035A. Therefore, the current when no heat is generated is i=√0.2400=0.022A, and when no heat is generated, the current must be kept below 22mA.

そして本実施例では、以上のような駆動方法を
第5図に示すような構成で実現している。また第
4図にはこれらの駆動順序を示すタイミングチヤ
ートを示す。第4図Aは画信号選択スイツチ10
9の出力波形を示しており、図中の80〜87の
番号は各スイツチとの対応関係を明らかにしてい
る。同図B,Cはドライバ回路105,106の
出力波形、同図D,Eはラツチ103,104の
出力波形である。
In this embodiment, the above-described driving method is realized with a configuration as shown in FIG. Further, FIG. 4 shows a timing chart showing the order of these drives. FIG. 4A shows the image signal selection switch 10.
9, and the numbers 80 to 87 in the figure clarify the correspondence with each switch. B and C in the same figure are the output waveforms of the driver circuits 105 and 106, and D and E in the same figure are the output waveforms of the latches 103 and 104.

第5図において、まず周知の方法でシフトレジ
スタ101,102に画信号を(m+n)個蓄積
し、又スイツチ回路を構成する画信号選択スイツ
チ80をONとする。次にシフトレジスタ101
の画信号をラツチ103の出力に与え、該画信号
の状態によりドライバ回路105は駆動される。
第6図にドライバ回路の回路構成の一例を示す。
第6図において、ラツチ出力を1Nに入力するこ
とによりレベルシフト用ツエナダイオードの効果
に従つて、HレベルとMレベルの2値状態を構成
する。よつてラツチ103の出力がHレベルであ
ればドライバ回路105のOUTはほぼVccと同
値となり、Hレベルとなる。又ラツチの出力がL
レベルであれば、ドライバ回路105のOUTは
ほぼツエナ電位を示し、このようにしてドライバ
回路105の出力は画信号入力があるときには電
源電圧Vccに等しくなり、画信号入力がないとき
にはツエナー電位となる。なお本実施例ではツエ
ナー電位を5Vとした。
In FIG. 5, first, (m+n) image signals are stored in shift registers 101 and 102 by a well-known method, and the image signal selection switch 80 constituting the switch circuit is turned on. Next, shift register 101
An image signal is applied to the output of the latch 103, and the driver circuit 105 is driven depending on the state of the image signal.
FIG. 6 shows an example of the circuit configuration of the driver circuit.
In FIG. 6, by inputting the latch output to 1N, a binary state of H level and M level is created according to the effect of the level shifting Zener diode. Therefore, if the output of the latch 103 is at H level, OUT of the driver circuit 105 becomes approximately the same value as Vcc and becomes H level. Also, the output of the latch is L.
level, OUT of the driver circuit 105 shows approximately the Zener potential, and in this way, the output of the driver circuit 105 becomes equal to the power supply voltage Vcc when there is an image signal input, and becomes the Zener potential when there is no image signal input. . In this example, the Zener potential was set to 5V.

次にラツチ出力をリセツト状態にし、シフトレ
ジスタ102に蓄積されている画信号状態をラツ
チ104の出力に与える。ラツチ104の出力状
態によりドライバ回路106は、ドライバ回路1
05と同様に2値状態を生ずる。次いでラツチ1
04の出力をリセツトし、次いで8ch画信号選択
スイツチ80をOFFとする。同様な手段で順次
画信号選択スイツチ81〜87をON,OFFし、
1行分の印字を完了する。
Next, the latch output is reset and the image signal state stored in the shift register 102 is applied to the output of the latch 104. Depending on the output state of latch 104, driver circuit 106
Similar to 05, it produces a binary state. Then latch 1
04 is reset, and then the 8ch image signal selection switch 80 is turned OFF. Using similar means, turn on and off the image signal selection switches 81 to 87,
One line of printing is completed.

ところで第3図に示す等価回路において、発熱
素子17を発熱させた場合を考察すると、ドライ
バ側リード端子76はHレベル、端子77はMレ
ベルとなる。端子78はLレベル、端子79もL
レベルと仮定する。また画信号選択スイツチ10
9は閉じられ、GNDに接続される。このときの
電源電圧としては発熱素子17に0.5W印加する
ため、14Vが適当である。よつて発熱素子17は
充分に発熱する。また端子77はツエナー電位で
あるため、発熱素子32には5V/400Ω=
12.5mAの電流が流れるだけであり、発熱は行な
われない。又他の発熱素子18〜31に関しても
端子76,77端子間の電位差は9Vであり各発
熱素子1個当たりに流れる電流は9V/800Ω=
11.2mA程度で発熱は生じない。
By the way, in the equivalent circuit shown in FIG. 3, when considering the case where the heating element 17 generates heat, the driver side lead terminal 76 becomes H level and the terminal 77 becomes M level. Terminal 78 is at L level, and terminal 79 is also at L level.
Assume level. Also, the image signal selection switch 10
9 is closed and connected to GND. The appropriate power supply voltage at this time is 14V since 0.5W is applied to the heating element 17. Therefore, the heating element 17 generates sufficient heat. Also, since the terminal 77 is at Zener potential, the heating element 32 has 5V/400Ω=
Only a current of 12.5mA flows, and no heat is generated. Regarding other heating elements 18 to 31, the potential difference between terminals 76 and 77 is 9V, and the current flowing through each heating element is 9V/800Ω=
No heat is generated at around 11.2mA.

このようにすることにより、画信号選択スイツ
チ109が増加してもドライバ回路のトランジス
タ(Tr2)とツエナーダイオードの電流容量さえ
考慮すれば充分機能を発揮することができる。
By doing so, even if the number of image signal selection switches 109 is increased, sufficient functionality can be achieved by considering the current capacity of the transistor (Tr 2 ) and Zener diode of the driver circuit.

また上記実施例では、画信号選択スイツチを
8chとしたが、何チヤンネルでも良い。この発明
の他の実施例として、画信号選択スイツチを4ch
にした場合を第7図に示し、その等価回路を第8
図、第9図に示す。第7図中、88〜97はソー
ス側リード端子、111〜114はシンク側リー
ド端子である。
In addition, in the above embodiment, the image signal selection switch is
I set it to 8ch, but any channel is fine. As another embodiment of this invention, the image signal selection switch is set to 4ch.
Figure 7 shows the case where
As shown in Fig. 9. In FIG. 7, 88 to 97 are source side lead terminals, and 111 to 114 are sink side lead terminals.

上記実施例はツエナーダイオードにより、レベ
ルを5Vとしたが、MレベルはHレベル以下、L
レベル以上の適当な電位で良い。
In the above embodiment, the level was set to 5V using a Zener diode, but the M level was lower than the H level, and the L level was lower than the H level.
An appropriate potential above the level is sufficient.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、画信号入力系統を2系統と
したため、従来のものに比べ印字速度は2倍とな
るが、電源が1電源で済むとともに、ソース側の
ダイオードを除去でき、ダイオード総数が発熱素
子数の約半分となるため、コンパクトで安価なサ
ーマルヘツドを構成することができる効果があ
る。
According to this invention, since there are two image signal input systems, the printing speed is twice that of the conventional system, but only one power supply is required, and the diode on the source side can be removed, reducing the total number of diodes that generate heat. Since the number of elements is approximately half, it is possible to construct a compact and inexpensive thermal head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の連続発熱体を有するサーマルヘ
ツドのダイオードマトリツクスの構成図、第2図
はこの発明の一実施例による連続発熱体を有する
サーマルヘツドのダイオードマトリツクスの構成
図、第3図は本発明の一実施例で連続発熱体のソ
ース側ダイオードを除去したときの等価回路図、
第4図は本発明の一実施例で各駆動回路のタイミ
ングチヤート図、第5図は本発明の一実施例での
各駆動回路のブロツク図、第6図は第5図で示し
たドライバ回路の回路構成図、第7図は本発明の
他の実施例を示すマトリツクス構成図、第8図及
び第9図はそれぞれ第7図の等価回路図である。 図中、74〜79はソース側リード端子、80
〜87はシンク側リード端子、101,102は
シフトレジスタ、103,104はラツチ、10
5,106はドライバ回路、107は連続発熱基
板、108はシンク側ダイオードマトリツクス、
109は画信号選択スイツチである。なお図中同
一符号は同一又は相当部分を示す。
FIG. 1 is a block diagram of a diode matrix of a conventional thermal head having a continuous heating element, FIG. 2 is a block diagram of a diode matrix of a thermal head having a continuous heating element according to an embodiment of the present invention, and FIG. is an equivalent circuit diagram when the source side diode of the continuous heating element is removed in one embodiment of the present invention,
FIG. 4 is a timing chart of each drive circuit in one embodiment of the present invention, FIG. 5 is a block diagram of each drive circuit in one embodiment of the present invention, and FIG. 6 is the driver circuit shown in FIG. 5. FIG. 7 is a matrix configuration diagram showing another embodiment of the present invention, and FIGS. 8 and 9 are equivalent circuit diagrams of FIG. 7, respectively. In the figure, 74 to 79 are source side lead terminals, 80
~87 are sink side lead terminals, 101 and 102 are shift registers, 103 and 104 are latches, and 10
5, 106 is a driver circuit, 107 is a continuous heating board, 108 is a sink side diode matrix,
109 is an image signal selection switch. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 相互に隣接して配設されたn個の発熱素子か
らなる発熱素子群と、 該発熱素子群のうち隣接する2個の発熱素子を
1組とし該1組の両発熱素子の入力端を相互に接
続しその各接続点を1つおきにm個ずつ接続した
複数の入力側共通リードと、 隣接する2組の4個の発熱素子のうち各組から
1個ずつ取り出した相互に隣接する2個の発熱素
子の出力端を相互に接続しその各接続点を廻り込
み防止用ダイオードを介して2m個おきに順次接
続した2m個の出力側共通リードと、 上記複数の入力側共通リードのうち奇数番目の
ものと偶数番目のものとを交互に駆動電位を与え
て操作しその際非操作時の入力側共通リードを上
記駆動電位を所定値だけ低電位側にレベルシフト
した電位に保持するドライバ回路と、 上記複数の各出力側共通リードを接地電位又は
上記駆動電位のいずれかの電位に選択的に保持す
るスイツチ回路とを備えたことを特徴とするサー
マルヘツド。
[Scope of Claims] 1. A heating element group consisting of n heating elements arranged adjacent to each other, and a set consisting of two adjacent heating elements of the heating element group, and both of the heating elements in the set. A plurality of input-side common leads in which the input ends of heating elements are connected to each other, and each connection point is connected to m pieces at every other connection point, and one from each set of four heating elements in two adjacent sets. 2m output side common leads, in which the output ends of the two adjacent heating elements taken out are connected to each other, and each connection point is sequentially connected every 2m via a loop prevention diode, and the above-mentioned plurality. The odd-numbered and even-numbered common leads on the input side are operated by applying a driving potential alternately, and the input common lead when not in operation is leveled to the lower potential side by a predetermined value. A thermal head comprising: a driver circuit that holds the output at a shifted potential; and a switch circuit that selectively holds each of the plurality of output common leads at either the ground potential or the drive potential.
JP3592380A 1980-03-18 1980-03-18 Thermal head Granted JPS56130380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3592380A JPS56130380A (en) 1980-03-18 1980-03-18 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3592380A JPS56130380A (en) 1980-03-18 1980-03-18 Thermal head

Publications (2)

Publication Number Publication Date
JPS56130380A JPS56130380A (en) 1981-10-13
JPS6122639B2 true JPS6122639B2 (en) 1986-06-02

Family

ID=12455547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3592380A Granted JPS56130380A (en) 1980-03-18 1980-03-18 Thermal head

Country Status (1)

Country Link
JP (1) JPS56130380A (en)

Also Published As

Publication number Publication date
JPS56130380A (en) 1981-10-13

Similar Documents

Publication Publication Date Title
CN100557718C (en) Shift-register circuit
KR0176986B1 (en) Data driver generating two sets of sampling signals for sequential-sampling mode and simultaneous-sampling mode
US4499459A (en) Drive circuit for display panel having display elements disposed in matrix form
JP5308472B2 (en) Shift register
KR100343485B1 (en) Electro-optical device
KR102199930B1 (en) Gate driver ic and control method thereof
US20030206608A1 (en) Shift register circuit including first shift register having plurality of stages connected in cascade and second shift register having more stages
US11081042B2 (en) Gate driving unit, driving method thereof, gate driving circuit and display device
CN105096874A (en) GOA (Gate Driver On Array) circuit, array substrate and liquid crystal display
CN1728223B (en) Display device driving circuit
GB2134686A (en) Driver circuit for matrix type display device
US5933161A (en) Ink-jet recorder having a driving circuit for driving heat-generating elements
US4454516A (en) Heat-sensitive recording device
JP2012000954A (en) Device
US6765980B2 (en) Shift register
CN108198586B (en) Shift register circuit, driving method thereof, gate driver and display panel
KR950014884B1 (en) Solid-state image sensing device
JP5219958B2 (en) Start pulse generation circuit
JPS6122639B2 (en)
US20020093497A1 (en) Scanning circuit , and imaging apparatus having the same
JP3908797B2 (en) LED display device
KR20210142872A (en) Scan Driver and Display Device including the same
JP2010108567A (en) Shift register circuit
JP3963884B2 (en) Drive voltage supply circuit
US9019513B2 (en) Multi-dimensional data registration integrated circuit for driving array-arrangement devices