JPS61226113A - Production of drawn tube with high dimensional accuracy - Google Patents

Production of drawn tube with high dimensional accuracy

Info

Publication number
JPS61226113A
JPS61226113A JP6513185A JP6513185A JPS61226113A JP S61226113 A JPS61226113 A JP S61226113A JP 6513185 A JP6513185 A JP 6513185A JP 6513185 A JP6513185 A JP 6513185A JP S61226113 A JPS61226113 A JP S61226113A
Authority
JP
Japan
Prior art keywords
die
thickness
dimensional accuracy
wall thickness
drawn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6513185A
Other languages
Japanese (ja)
Inventor
Tadashi Fukunaga
福永 規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6513185A priority Critical patent/JPS61226113A/en
Publication of JPS61226113A publication Critical patent/JPS61226113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To produce the drawn tube of high dimensional accuracy by specifying the taper angle of a die and the radius of curvature of corner part and by specifying thickness processing degrees. CONSTITUTION:A metallic tube 2 is drawn from a die 1 with using of a core metal 4. In this case the approaching part A of the die is tapered at the angle in the range of 8-12.5 deg.. The part between from the terminal point of the tapered part upto the starting point of a bearing B is taken as 60-500mm radius of curvature and the die 1 to make radii coming in touch with the tapered part and its terminal point is used. The drawing is performed so that the thickness working degrees shown in the following equation become in the range of either 5-8% or 14-17%. Equation: Thickness working = (thickness t0 before drawing - thickness t1 after drawing) X 100/(thickness t0 before drawing).

Description

【発明の詳細な説明】 11より1月31 本発明は高寸法精度引抜管の製造方法に関する。[Detailed description of the invention] January 31st from 11th The present invention relates to a method for manufacturing a drawn tube with high dimensional accuracy.

更に詳細には本発明は、芯金を用いて金属管をダイスで
引抜く方法であって、寸法精度の高い引抜管を製造する
方法に関する。
More specifically, the present invention relates to a method of drawing a metal tube with a die using a metal core, and a method of manufacturing a drawn tube with high dimensional accuracy.

従来の技術 高い寸法精度を要求される管の製造は芯金を用いてダイ
スにより引抜くことによって通常行われている。しかる
に近年、メカニカルチューブの分野において、高寸法精
度管の要求が高まっており、このため芯金を用いたダイ
ス引抜加工に於ける寸法挙動の解明が必要とされてきた
BACKGROUND OF THE INVENTION The manufacture of tubes that require high dimensional accuracy is usually carried out by drawing the tubes using a die using a cored metal. However, in recent years, in the field of mechanical tubes, there has been an increasing demand for tubes with high dimensional accuracy, and for this reason, it has become necessary to clarify the dimensional behavior during die drawing using a metal core.

第2図に従来技術による芯金を用いた引抜工程の概略を
示す。この従来技術のダイスの軸方向垂直断面はアプロ
ーチ部が12.5°の角度のテーパをなし、ベアリング
始点が1〜3mmの半径の円弧をなしている。図中、参
照番号1はダイスを示し、管2はマンドレル3の先端に
装着した芯金4により内部より支持されながら引抜かれ
る。
FIG. 2 schematically shows a drawing process using a core bar according to the prior art. In the axial vertical cross-section of this prior art die, the approach section tapers at an angle of 12.5 DEG and the bearing starting point forms an arc with a radius of 1 to 3 mm. In the figure, reference number 1 indicates a die, and the tube 2 is pulled out while being supported from inside by a core bar 4 attached to the tip of a mandrel 3.

しかしながら、このような従来技術の場合には管の引抜
後の寸法変化率が大きく、母管の寸法、引抜加工度によ
り外形寸法の変化も多様である。
However, in the case of such conventional techniques, the rate of dimensional change after drawing of the tube is large, and changes in external dimensions vary depending on the dimensions of the main tube and the degree of drawing.

従って、このようなダイスを用いる従来技術の引抜では
寸法精度の高い引抜管を製造することが困難であった。
Therefore, it has been difficult to manufacture drawn tubes with high dimensional accuracy using conventional drawing methods using such dies.

発明の解決しようとする問題点 本発明の目的は、上記した従来技術の問題を解決し、芯
金を用いたダイス引抜による製管方法°に於いて寸法精
度の高い引抜管を提供することにある。
Problems to be Solved by the Invention The purpose of the present invention is to solve the above-mentioned problems of the prior art and to provide a drawn pipe with high dimensional accuracy in a pipe manufacturing method by die drawing using a metal core. be.

更に詳細には本発明の目的は、ダイス形状を変更し、同
時に、高い寸法精度を与える最適の引抜条件を見出し、
その範囲での引抜きを実行することにより高寸法精度の
引抜管の製造方法を提供することにある。
More specifically, the purpose of the present invention is to change the die shape and at the same time find optimal drawing conditions that provide high dimensional accuracy.
The object of the present invention is to provide a method for manufacturing a drawn tube with high dimensional accuracy by performing drawing within this range.

問題点を解決するための手段 本発明者らは芯金を用いたダイス引抜における寸法挙動
を実験的に観察し且つ理論的解析を行うことによって本
発明を完成したものである。
Means for Solving the Problems The present inventors have completed the present invention by experimentally observing the dimensional behavior during die drawing using a metal core and conducting theoretical analysis.

すなわち、本発明者らは、高寸法精度を得るためにはダ
イス形状を変更し、且つ引抜加工度、すなわち肉厚加工
度を限定することが必要であることを知見したものであ
り、これらの知見に基づき本発明を完成したものである
In other words, the present inventors have discovered that in order to obtain high dimensional accuracy, it is necessary to change the die shape and limit the drawing degree, that is, the degree of wall thickness. The present invention was completed based on this knowledge.

本発明に従うと芯金を用いて金属管をダイスにより引抜
く方法において、ダイスの軸方向断面は、アプローチ部
が8〜12.5″′の範囲の角度でテーパを付けられ、
該テーパ一部分の終点からベアリング始点までの間の部
分が曲率半径60〜500mmで該テーパ部分とその終
点で接する円弧をなすダイスを用い、下記の式で示され
る肉厚加工度が5〜8%および14〜17%のいずれか
の範囲となるように引抜を行うことを特徴とする高寸法
精度引抜管の方法が提供される。
According to the present invention, in the method of drawing a metal tube using a die using a core metal, the axial cross section of the die is tapered at an angle in the range of 8 to 12.5'' at the approach part,
Using a die whose part between the end point of the tapered part and the bearing start point has a radius of curvature of 60 to 500 mm and forms an arc that touches the tapered part at its end point, the wall thickness machining rate shown by the following formula is 5 to 8%. and 14 to 17%.

肉厚加工度= 本発明の方法を詳細に説明する前に、説明を簡明にする
ために、本発明の方法で用いるダイス形状について説明
する。
Thickness processing rate= Before explaining the method of the present invention in detail, in order to simplify the explanation, the die shape used in the method of the present invention will be explained.

第1図は本発明の方法で用いるダイスにより金属管を引
抜つつある状態のダイス軸を通る垂直面による断面概略
図である。
FIG. 1 is a schematic cross-sectional view taken along a vertical plane passing through the axis of the die in a state in which a metal tube is being drawn out by the die used in the method of the present invention.

ダイス1の内面は、材料との接触を開始し、材料の外径
の減少を行うアプローチ部Aと、材料の定型を行うベア
リング部Bと、ダイス表面から材料が離脱するダイス出
側のレリーフ部Cとから構成される。
The inner surface of the die 1 includes an approach part A that starts contact with the material and reduces the outer diameter of the material, a bearing part B that shapes the material, and a relief part on the exit side of the die where the material separates from the die surface. It is composed of C.

本発明に従い、ダイスのアプローチ部Δは角度αのテー
パ部を含み、このテーパ部の終点Fからベアリング始点
Sまでの間のダイス内面の断面は半径Rの円弧で形成さ
れる。この円弧はテーパ部とテーパ部の終点で接し、ダ
イス中心軸と直交し且つベアリング始点Sを通る垂直面
上に中心Oを有する。
According to the invention, the approach portion Δ of the die includes a tapered portion with an angle α, and the cross section of the inner surface of the die between the end point F of this tapered portion and the bearing starting point S is formed by a circular arc with a radius R. This arc touches the tapered portions at their end points, has a center O on a vertical plane that is perpendicular to the die center axis and passes through the bearing starting point S.

第1図に図示の如く、金属管2はダイスのアプローチ部
Aのテーパ部分に当接し、引抜力により外径を減縮され
、更にこの外径の減縮はアプローチ部Aに続く円弧部分
により継続して行われる。
As shown in FIG. 1, the metal tube 2 comes into contact with the tapered part of the approach part A of the die, and its outer diameter is reduced by the pulling force, and this reduction in outer diameter is continued by the circular arc part following the approach part A. will be carried out.

外径を減縮された金属管の表面がダイスのベアリング支
点Sに到達すると、ベアリング部で金属管の外径の定型
が行われ、レリーフ部Cでダイス表面から離脱する。な
お、図中3はマンドレル、4はマンドレル先端に装着さ
れ、ダイスに対して金属管2を内側から支持して減肉加
工するプラグである。
When the surface of the metal tube whose outer diameter has been reduced reaches the bearing fulcrum S of the die, the outer diameter of the metal tube is fixed at the bearing part, and the metal tube is separated from the die surface at the relief part C. In the figure, 3 is a mandrel, and 4 is a plug that is attached to the tip of the mandrel and supports the metal tube 2 from the inside with respect to the die to process the metal tube 2 for thinning.

更に、図中の符号は次のものを示す。Furthermore, the symbols in the figure indicate the following.

d :ダイスベアリング部の内径、 D。=引抜前の金属管の外径、 DI=引抜後の金属管の外径、 to:引抜前の金属管の肉厚、 tl:引抜後の金属管の肉厚、 発明の作用 以下に本発明におけるダイス形状および肉厚加工度の限
定理由を説明する。
d: Inner diameter of die bearing part, D. = Outer diameter of the metal tube before being drawn, DI = Outer diameter of the metal tube after being drawn, to: Thickness of the metal tube before being drawn, tl: Thickness of the metal tube after being drawn. The reasons for limiting the die shape and wall thickness workability will be explained below.

本発明の方法では外径変化率が±0.5%以下となるよ
うにダイス形状および肉厚加工度の範囲を定めた。ここ
で、外径変化率とは次式によって定義される。
In the method of the present invention, the die shape and the range of wall thickness processing are determined so that the outer diameter change rate is ±0.5% or less. Here, the outer diameter change rate is defined by the following equation.

(1)ダイスのテーパ角度αの影響 ダイスのテーパ部分の角度αの外径変化率に及ぼす影響
を調査するため、次の条件を満たす種々のテーパ角αの
ダイスを作製して引抜を行った。
(1) Effect of die taper angle α In order to investigate the effect of the angle α of the tapered part of the die on the rate of change in outer diameter, dies with various taper angles α satisfying the following conditions were manufactured and drawn. .

R=100mm。R=100mm.

D、=90+++mφ、 Do=100+n+nφ、 Δt/1o=o、i5、 ただし、Δt”to  t+ 得られた結果を第3図に示す。第3図に示すようにダイ
スのテーパ角度αによって外径変化率は変動するが、8
〜12.5°の範囲では±0.5%以下の変動に止まる
。従って、本発明に於いてはダイスのテーパ角を8〜1
2.5°の範囲に定めた。
D, = 90+++mφ, Do=100+n+nφ, Δt/1o=o, i5, where Δt”to t+ The obtained results are shown in Figure 3. As shown in Figure 3, the outer diameter changes depending on the taper angle α of the die. Although the rate varies, 8
In the range of ~12.5°, the fluctuation remains within ±0.5%. Therefore, in the present invention, the taper angle of the die is set to 8 to 1.
The range was set at 2.5°.

(2)ダイスのコーナ一部の曲率半径Rの影響法にダイ
スのコーナ一部の曲率半径Rの外径変化率に及ぼす影響
を調査するため、次の条件を満たしながら種々のコーナ
一部の曲率半径Rのダイスを作製して引抜を行った。
(2) How to influence the radius of curvature R of a part of the die corner In order to investigate the effect of the radius of curvature R of a part of the die corner on the rate of change in the outer diameter, various corner parts were tested while satisfying the following conditions. A die with a radius of curvature R was prepared and drawing was performed.

D1=90m+nφ、 Do=lOOmmφ、 α=lO’ Δ t/1o=0.15、 得られた結果を第4図に示す。D1=90m+nφ, Do=lOOmmφ, α=lO' Δt/1o=0.15, The results obtained are shown in FIG.

第4図に示すように、ダイスのコーナ一部の曲率半径R
が小さいときには引抜後の管はダイスベアリング部の内
径dより可成り小さい外径に引抜かれるが、曲率半径が
大きくなるにつれ引抜後の管の外径が大きくなり、ダイ
スベアリング部の内径よりも大となる。曲率半径Rが6
0++oo〜500mmの範囲のときは外径変化率が±
0.5%以下となり、本発明の方法でもこの範囲の曲率
半径Rのコーナ一部を有するダイスとした。
As shown in Figure 4, the radius of curvature R of a part of the corner of the die
When d is small, the tube after being drawn has an outer diameter considerably smaller than the inner diameter d of the die bearing section, but as the radius of curvature increases, the outer diameter of the tube after drawing becomes larger and becomes larger than the inner diameter of the die bearing section. becomes. The radius of curvature R is 6
In the range of 0++oo to 500mm, the outer diameter change rate is ±
0.5% or less, and the method of the present invention also resulted in a die having a corner portion with a radius of curvature R within this range.

(3)引抜の肉厚加工度(Δt / to)の影響更に
、ダイスのテーパ角αが10@、コーナ一部の曲率半径
Rが100mm、ダイスベアリング部の内径dが90m
mのダイスを用いて、外径Doが100mmの金属管を
90+t++nに引抜した。このとき、6芯4の外径を
種々変化させて、肉厚加工度と外径変化率との関係を第
5図に示す。
(3) Influence of drawing thickness (Δt/to) In addition, the taper angle α of the die is 10 @, the radius of curvature R of a part of the corner is 100 mm, and the inner diameter d of the die bearing part is 90 m.
A metal tube having an outer diameter Do of 100 mm was drawn to 90+t++n using a die of 100 mm. At this time, the outer diameter of the six cores 4 was varied, and the relationship between the degree of wall thickness processing and the rate of change in outer diameter is shown in FIG.

第5図に示す結果から明らかなように、外径変化率を±
0.5%以下とするには肉厚加工度を5〜8%および1
4〜17%の範囲としなければならない。
As is clear from the results shown in Figure 5, the outer diameter change rate is ±
To reduce the thickness to 0.5% or less, the wall thickness processing rate should be 5 to 8% and 1
It must be in the range of 4-17%.

実施例 第1図に示す形状で且つ下記の第1表の条件のダイスを
用い、更に第1表に示す肉厚加工度を与える心金を用い
て、金属管の引抜を行った。゛引抜前および引抜後の管
の外径より外径変化率を計算し、第1表に示す。
EXAMPLE A metal tube was drawn using a die having the shape shown in FIG. 1 and under the conditions shown in Table 1 below, and a mandrel giving the wall thickness workability shown in Table 1.゛The rate of change in outer diameter was calculated from the outer diameter of the tube before and after drawing, and is shown in Table 1.

第1表に示す結果より明らかな如く、本発明の範囲では
外径変化率が±0.5%以下であり、寸法精度が極めて
高い。
As is clear from the results shown in Table 1, within the scope of the present invention, the outer diameter change rate is ±0.5% or less, and the dimensional accuracy is extremely high.

一方、ダイス形状および肉厚加工度が本発明の範囲外の
試片Nα4およびNα5では外径変化率が−1,5%ふ
よび−2,0%となり、寸法精度が劣る。
On the other hand, in specimens Nα4 and Nα5 whose die shape and wall thickness workability are outside the range of the present invention, the outer diameter change rate is -1.5% and -2.0%, and the dimensional accuracy is poor.

発明の効果 本発明は芯金を用いる金属管の引抜方法に於いて、ダイ
ス形状を改善し、且つ肉厚加工度を適正な範囲に維持す
ることにより高寸法精度の引抜管の製造に成功したもの
である。
Effects of the Invention The present invention has succeeded in manufacturing drawn pipes with high dimensional accuracy by improving the die shape and maintaining the wall thickness processing rate within an appropriate range in a method for drawing metal pipes using a metal core. It is something.

従来、空引の引抜加工の寸法変化の挙動の検討は多々行
われていたが、芯金を用いる引抜加工の寸法変化の検討
は本発明が始めての例であり、これによりメカニカルチ
ューブ分野に於ける高寸法精度の要求に十分に応えるこ
とができる。
In the past, many studies have been conducted on the behavior of dimensional changes during dry drawing, but this invention is the first to study dimensional changes during drawing using a cored metal, and this is the first example in the field of mechanical tubes. It can fully meet the demands for high dimensional accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法で用いるダイスにより金属管を引
抜つつある状態のダイス軸を通る垂直面による断面概略
図であり、 第2図は、従来技術による芯金を用いた引抜工程で用い
られるダイスの軸方向垂直断面である。 第3図は、ダイスのテーパ部分の角度αの外径変化率に
及ぼす影響を示すグラフである。 第4図は、ダイスのコーナ一部の曲率半径の外径変化率
に及ぼす影響を示すグラフである。 第5図は肉厚加工度と外径変化率との関係を示すグラフ
である。 (主な参照番号) l・・・ダイス、 2・・・管、 3・・・マンドレル、4・・・芯金、 A・・・ダイスのアプローチ部、 B・・・ダイスのベアリング部、 C・・・ダイスのレリーフ部、 特許出願人 住友金属工業株式会社 代理人   弁理士 新居 正彦 第1図
FIG. 1 is a schematic cross-sectional view taken along a vertical plane passing through the die axis in a state in which a metal tube is being drawn by the die used in the method of the present invention, and FIG. This is an axial vertical cross section of the die. FIG. 3 is a graph showing the influence of the angle α of the tapered portion of the die on the rate of change in outer diameter. FIG. 4 is a graph showing the influence of the radius of curvature of a part of the corner of the die on the rate of change in the outer diameter. FIG. 5 is a graph showing the relationship between the degree of wall thickness processing and the rate of change in outer diameter. (Main reference numbers) l...Dice, 2...Pipe, 3...Mandrel, 4...Core metal, A...Die approach part, B...Dice bearing part, C ...Relief part of the die, Patent applicant Sumitomo Metal Industries Co., Ltd. Agent Masahiko Arai, patent attorney Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)芯金を用いて金属管をダイスにより引抜く方法に
おいて、ダイスの軸方向断面は、アプローチ部が8〜1
2.5°の範囲の角度でテーパを付けられ、該テーパ部
分の終点からベアリング始点までの間の部分が曲率半径
60〜500mmで該テーパ部分とその終点で接する円
弧をなすダイスを用い、下記の式で示される肉厚加工度
が5〜8%および14〜17%のいずれかの範囲となる
ように引抜を行うことを特徴とする高寸法精度引抜管の
方法。 ただし、 肉厚加工度=[引抜前の肉厚(t_0)−引抜後の肉厚
(t_1)/引抜前の肉厚(t_0)]×100
(1) In the method of drawing a metal tube using a die using a core metal, the axial cross section of the die has an approach part of 8 to 1
Using a die that is tapered at an angle in the range of 2.5 degrees, the part between the end point of the tapered part and the bearing start point forms an arc with a radius of curvature of 60 to 500 mm and touches the tapered part at the end point, and the following is done. A method for producing a drawn pipe with high dimensional accuracy, characterized in that drawing is performed so that the degree of wall thickness work shown by the formula is in the range of either 5 to 8% or 14 to 17%. However, wall thickness processing rate = [wall thickness before drawing (t_0) - wall thickness after drawing (t_1) / wall thickness before drawing (t_0)] x 100
JP6513185A 1985-03-29 1985-03-29 Production of drawn tube with high dimensional accuracy Pending JPS61226113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6513185A JPS61226113A (en) 1985-03-29 1985-03-29 Production of drawn tube with high dimensional accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6513185A JPS61226113A (en) 1985-03-29 1985-03-29 Production of drawn tube with high dimensional accuracy

Publications (1)

Publication Number Publication Date
JPS61226113A true JPS61226113A (en) 1986-10-08

Family

ID=13278009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6513185A Pending JPS61226113A (en) 1985-03-29 1985-03-29 Production of drawn tube with high dimensional accuracy

Country Status (1)

Country Link
JP (1) JPS61226113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361319A (en) * 2001-06-05 2002-12-17 Sumitomo Metal Ind Ltd Method for manufacturing seamless steel tube excellent in internal smoothness and seamless steel tube
JP2006159224A (en) * 2004-12-03 2006-06-22 Univ Of Electro-Communications Necking method of round metallic tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361319A (en) * 2001-06-05 2002-12-17 Sumitomo Metal Ind Ltd Method for manufacturing seamless steel tube excellent in internal smoothness and seamless steel tube
JP2006159224A (en) * 2004-12-03 2006-06-22 Univ Of Electro-Communications Necking method of round metallic tube

Similar Documents

Publication Publication Date Title
JP4557006B2 (en) Plug, tube expansion method using plug, metal tube manufacturing method, and metal tube
JPWO2006025369A1 (en) Die, manufacturing method of stepped metal tube and stepped metal tube
CN103658225B (en) A kind of non-ferrous metal has seam elbow cooling formation technic
JPS61226113A (en) Production of drawn tube with high dimensional accuracy
CN116748820B (en) Special-shaped seamless pipe and preparation method thereof
JP2016130351A (en) Cylindrical material and manufacturing method for the same
JPH03149180A (en) Manufacture of thin aluminum pipe for copying machine drum
JPH01245914A (en) Manufacture of metallic pipe excellent in out-of-roundness of outer diameter
JP2588156B2 (en) Zirconium alloy cladding tube and its manufacturing method
JPH09103819A (en) Production for tube excellent in shape precision by using drawing and drawing tool
JPS61219416A (en) Drawing method for irregular section pipe and its device
JPH0454531B2 (en)
JPH08243680A (en) Upsetting method for tube
JPS6224828A (en) Mandrel for expanding tube
SU893280A1 (en) Tube production method
JP6616027B1 (en) Manufacturing method of cylindrical rotating parts
JPS6152930A (en) Production of metallic pipe of polygon section having larger diameter pipe part with step
JPH07144236A (en) Production of aluminum thin walled tube
SU863069A1 (en) Horn-like core for producing branch pipes from tube blanks
JPH04311589A (en) Production of pipe with thin diameter
GB758912A (en) A process for the manufacture of tubes of varying thickness, particularly for the production of bends
JPH0788537A (en) Manufacture of reducing steel tube
JPS6027414A (en) Production of blank pipe for bent pipe
JPH1080715A (en) Production of steel tube used as it is cold rolled
JPS58163521A (en) Manufacture of dense hexagonal metallic pipe