JPS61225636A - Flow-through optical cell - Google Patents

Flow-through optical cell

Info

Publication number
JPS61225636A
JPS61225636A JP6779585A JP6779585A JPS61225636A JP S61225636 A JPS61225636 A JP S61225636A JP 6779585 A JP6779585 A JP 6779585A JP 6779585 A JP6779585 A JP 6779585A JP S61225636 A JPS61225636 A JP S61225636A
Authority
JP
Japan
Prior art keywords
sample
sample reservoir
light
optical cell
lens section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6779585A
Other languages
Japanese (ja)
Inventor
Masakazu Hineno
日根野 正和
Masahito Koike
雅人 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6779585A priority Critical patent/JPS61225636A/en
Publication of JPS61225636A publication Critical patent/JPS61225636A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes

Abstract

PURPOSE:To obtain a measuring light beam enough to operate a detector, by providing a lens section at the front window of a sample reservoir into which light is made incident to converge light into the sample reservoir. CONSTITUTION:An inlet/outlet path 3 of a fluid sample 6 is provided on the both end sides of a sample reservoir 1 of a flow-through optical cell C and a lens section 4 is formed at the front window of the sample reservoir 1 while a lens section 5 at the rear window thereof 1. The optical cell C shall be located at the rear of an outlet slit S of a spectroscope with optical axes made to align. Then, a monochromatic light emitted from the outlet slit S of the spectroscope enters the sample reservoir 1 being focused to the center thereof 1 with the lens section 4 of the optical cell C and after absorbed by the sample 6, it made a parallel luminous flux with the lens section 5 to be incident into a photoelectric detector D for photometry. This can increase the quantity of light transmitted through the sample 6 to obtain a measuring light beam sufficient for effective operation of the detector D.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光源から発した光を分光器により波長分散し
、出口スリットより取出した単色光により出口スリット
直後に置かれた試料を照射して試料を透過した光を検出
器によって測光して分析を行う分光光度計等に用いる試
料納入用の光学セルであって、流体試料を順次流入する
型式のフロースルー光学セルに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention wavelength-disperses light emitted from a light source using a spectrometer, and irradiates a sample placed immediately after the exit slit with monochromatic light taken out from an exit slit. The present invention relates to a flow-through optical cell that is used for sample delivery in a spectrophotometer or the like that performs analysis by measuring the light transmitted by a detector using a detector, and is a type of flow-through optical cell in which a fluid sample is sequentially introduced.

本発明は、単色光が光学セルの試料溜を透過する場合、
試料溜に向って光束が大きくなるように、試料溜の前面
窓にレンズ部を設けて試料全透過する光量を大きくした
フロースルー光学セルである。
The present invention provides that when monochromatic light is transmitted through a sample reservoir of an optical cell,
This is a flow-through optical cell in which a lens portion is provided on the front window of the sample reservoir so that the luminous flux increases toward the sample reservoir, increasing the amount of light that completely passes through the sample.

従来技術 従来、フロースルー光学セルでは採取試料の節約等の理
由によってセル容量が小さくなっている。
Prior Art Conventionally, in flow-through optical cells, the cell capacity has been reduced for reasons such as saving on collected samples.

このような小型化した光学セルにおいては、第3図に示
すように、出口スリットSから出射した単色光が通過す
る光学セルC1内の試料溜1aの断面積が小さくなり、
これが一種の絞りとなって測定に有効な充分の光量を検
出器に与えることができなかった。
In such a miniaturized optical cell, as shown in FIG. 3, the cross-sectional area of the sample reservoir 1a in the optical cell C1 through which the monochromatic light emitted from the exit slit S passes becomes smaller.
This became a kind of aperture, and it was not possible to provide the detector with a sufficient amount of light to be effective for measurement.

発明が解決しようとする問題点 本発明は、前記従来のフロースルー光学セルの欠点にか
んがみて工夫されたもので、セル容量が小さいものであ
りながら、試料溜を透過する光束が充分に大きいフロー
スルー光学セルを提供するものである。
Problems to be Solved by the Invention The present invention has been devised in view of the disadvantages of the conventional flow-through optical cell. It provides a through optical cell.

問題点を解決するための手段 本発明では、光が入射する試料溜の窓部に光を収束させ
るためのレンズ部を形成し、スリットより出射した光線
がレンズ部によって試料溜内へ効率よく入って試料を透
過するようにしたフロースルー光学セルをもって問題点
の解決手段とした。
Means for Solving the Problems In the present invention, a lens part for converging light is formed in the window part of the sample reservoir into which the light enters, and the light rays emitted from the slit efficiently enter the sample reservoir by the lens part. The solution to this problem was a flow-through optical cell that allows light to pass through the sample.

作用 分光器の出口スリットから出射した単色光が、光学セル
の窓部のレンズ部に入射すると、単色光はレンズ部によ
って集束して細い光束となって試料溜内へ入って試料を
透過する。したがってこの試料を透過した単色光束は試
料溜の断面積が小さくても、試料溜の壁により阻止され
ることなく大きな光量の状態で検出器へ入射して測定さ
れる。
When the monochromatic light emitted from the exit slit of the action spectrometer enters the lens section of the window section of the optical cell, the monochromatic light is focused by the lens section and becomes a narrow beam of light that enters the sample reservoir and passes through the sample. Therefore, even if the cross-sectional area of the sample reservoir is small, the monochromatic light beam transmitted through the sample is not blocked by the wall of the sample reservoir and enters the detector in a large amount of light for measurement.

実施例 本発明の一実施例を第1図、第2図によって詳述する。Example An embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.

第1図において、Cはフロースルー光学セルで、1は光
軸2と共軸で光軸方向に長く延びた試料溜で、試料溜1
の両端側方には流体試料の出入路3,3が設けられてい
る。4は試料溜1の前面窓に形成したレンズ部で、5は
同試料溜1の後面窓に形成したレンズ部である。レンズ
部は少くとも前面窓にあることを要する。以上光学セル
は分光器Mの出口スリットSの後方に光軸を一致させて
置かれる。第2図で、Lは光源で、この光源りの光線は
光源ミラーmを介して分光器Mの入口スリットS1に入
り、ミラーm1に反射されて回折格子Gによって波長分
散され、出口スリットSより単色光として出射する。こ
の単色光は前記光学セルCのレンズ部4によって略々試
料溜1の中央に集束される状態で試料溜1に入り、試料
6に吸収されて後、レンズ部5によって平行光束となっ
て光電検出器りに入射して測光される。
In Fig. 1, C is a flow-through optical cell, 1 is a sample reservoir that is coaxial with the optical axis 2 and extends long in the optical axis direction;
Fluid sample inlet/outlet passages 3, 3 are provided on both sides of the tube. Reference numeral 4 denotes a lens portion formed on the front window of the sample reservoir 1, and numeral 5 represents a lens portion formed on the rear window of the sample reservoir 1. The lens portion must be located at least on the front window. The optical cell is placed behind the exit slit S of the spectrometer M with its optical axis aligned. In Fig. 2, L is a light source, and the light beam from this light source enters the entrance slit S1 of the spectrometer M via the light source mirror m, is reflected by the mirror m1, is wavelength-dispersed by the diffraction grating G, and exits from the exit slit S. Emitted as monochromatic light. This monochromatic light enters the sample reservoir 1 in a state where it is focused approximately at the center of the sample reservoir 1 by the lens section 4 of the optical cell C, is absorbed by the sample 6, and then becomes a parallel light beam by the lens section 5 and photoelectrically The light enters the detector and is measured.

通常、出ロスリツ)Sから見た試料溜1へ入る有効光束
の立体角STは、試料溜の断面積をScとし、出ロスリ
ツ)Sと試料溜1との間の距離をjとすると、 立体角S T = S c / z である。第3図に示す従来例において、SC−1mm 
 、  !=20mmとすると、5T=0.058tr
となる。しかし、前記実施例の場合、出口スリットSの
像をレンズ部3によって試料溜1の中央に作ると、従来
例と同様のSc=1mm  、/=20 m mという
条件のもとで、立体角STを0・07〜0・20 st
r程度に大きくできることが実験的に分った。
Normally, the solid angle ST of the effective light beam entering the sample reservoir 1 as seen from the output point S is, where Sc is the cross-sectional area of the sample chamber and j is the distance between the output point S and the sample chamber 1. The angle S T = S c /z. In the conventional example shown in Fig. 3, SC-1mm
, ! = 20mm, 5T = 0.058tr
becomes. However, in the case of the above embodiment, when the image of the exit slit S is created at the center of the sample reservoir 1 by the lens section 3, the solid angle is ST from 0.07 to 0.20 st
It has been experimentally found that it can be made as large as r.

なおセルの後端をもレンズ状にするのは、前端側のレン
ズの作用でセルの中央付近に収束した光束はその後は発
散するので、受光素子の受光面積からはみ出すことがな
いように光束を収束させるためである。
The reason why the rear end of the cell is also shaped like a lens is that the light flux that converges near the center of the cell will diverge after that due to the action of the lens on the front end side, so the light flux is made so that it does not go beyond the light-receiving area of the light-receiving element. This is for convergence.

効果 本発明は以上のごときものであって、試料溜の前面窓部
にレンズ部を設けたものであるから、入射する光束がレ
ンズ部によって試料溜内へ絞り込まれ、試料を透過する
光量が大となって、検出器が有効に動作するに充分な測
定光線を得るフロースルー光学セルとして用いることが
できる。
Effects The present invention is as described above, and since the lens section is provided in the front window of the sample reservoir, the incident light beam is focused into the sample reservoir by the lens section, and the amount of light that passes through the sample is increased. Therefore, it can be used as a flow-through optical cell to obtain sufficient measurement light for the detector to operate effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の側断面図、第2図は同上の
ものを用いた分光光度計の縮小簡略側面図、第3図は従
来例の側断面図である。 図中、C・・・70−スルー光学セル、1・・・試料溜
、4・・・レンズ部。 粋押入 套剖↓  舷   匙  春 第15A
FIG. 1 is a side sectional view of an embodiment of the present invention, FIG. 2 is a reduced simplified side view of a spectrophotometer using the same, and FIG. 3 is a side sectional view of a conventional example. In the figure, C... 70-Through optical cell, 1... Sample reservoir, 4... Lens section. Iki Closet Encyclopedia ↓ Spoon Spring No. 15A

Claims (1)

【特許請求の範囲】[Claims] 光が入射する試料溜の前面窓部に試料溜内へ光を収束さ
せるレンズ部を設けたことを特徴とするフロースルー光
学セル。
A flow-through optical cell characterized in that a front window portion of a sample reservoir into which light enters is provided with a lens portion for converging light into the sample reservoir.
JP6779585A 1985-03-29 1985-03-29 Flow-through optical cell Pending JPS61225636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6779585A JPS61225636A (en) 1985-03-29 1985-03-29 Flow-through optical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6779585A JPS61225636A (en) 1985-03-29 1985-03-29 Flow-through optical cell

Publications (1)

Publication Number Publication Date
JPS61225636A true JPS61225636A (en) 1986-10-07

Family

ID=13355241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6779585A Pending JPS61225636A (en) 1985-03-29 1985-03-29 Flow-through optical cell

Country Status (1)

Country Link
JP (1) JPS61225636A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419169U (en) * 1987-07-27 1989-01-31
US5173742A (en) * 1991-08-28 1992-12-22 The Perkin-Elmer Corporation Double beam detector system for liquid chromatography
WO2011092208A1 (en) * 2010-01-27 2011-08-04 University Of Antwerp Reaction chamber for studying a solid-gas interaction
JP2015232507A (en) * 2014-06-10 2015-12-24 横河電機株式会社 Window for measurement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419169U (en) * 1987-07-27 1989-01-31
JPH0512757Y2 (en) * 1987-07-27 1993-04-02
US5173742A (en) * 1991-08-28 1992-12-22 The Perkin-Elmer Corporation Double beam detector system for liquid chromatography
WO2011092208A1 (en) * 2010-01-27 2011-08-04 University Of Antwerp Reaction chamber for studying a solid-gas interaction
JP2015232507A (en) * 2014-06-10 2015-12-24 横河電機株式会社 Window for measurement

Similar Documents

Publication Publication Date Title
US5153679A (en) Apparatus and process for measuring light absorbance or fluorescence in liquid samples
JPH0131130B2 (en)
EP0615617A1 (en) Capillary flowcell for multiple wavelength detection
EP0422448B1 (en) Apparatus for measuring light absorbance or fluorescence in liquid samples
JP2936947B2 (en) Spectrofluorometer
JPS61225636A (en) Flow-through optical cell
JP2006234549A (en) Absorption analyzer and absorption photometry
JPS62103529A (en) Composite pipe
JPH01132932A (en) Signal beam detecting optical system of flow type particle analyser
JPS63198832A (en) Array type spectrophotometric detector
JPS595854B2 (en) Exhaust chromatography flow cell
JPH01109245A (en) Fluorescent photometer
JPS58178227A (en) Multiple wavelength spectroscope device
GB2169075A (en) Optical arrangement for photometrical analysis measuring devices
JPS63198867A (en) Array type spectrophotometric detector
JPH06180254A (en) Spectrophotometer
JPS58190731A (en) Paschen-runge type spectroscope
JPS6333658B2 (en)
JPH0232232A (en) Cell for absorptiometer
JPS606752Y2 (en) spectrophotometer
JPS6078334A (en) Fluorophotometer
JPH06148069A (en) Infrared gas analyzer
JPH0781951B2 (en) Fluorometer
JP3018380U (en) Photoelectric photometer
JPH023461B2 (en)