JPS61224014A - Forced feeding water supply device - Google Patents

Forced feeding water supply device

Info

Publication number
JPS61224014A
JPS61224014A JP6537385A JP6537385A JPS61224014A JP S61224014 A JPS61224014 A JP S61224014A JP 6537385 A JP6537385 A JP 6537385A JP 6537385 A JP6537385 A JP 6537385A JP S61224014 A JPS61224014 A JP S61224014A
Authority
JP
Japan
Prior art keywords
pressure
pressure drop
pump
speed operation
variable speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6537385A
Other languages
Japanese (ja)
Other versions
JPH06100936B2 (en
Inventor
Wataru Mikota
三小田 渡
Yoshinori Sobue
祖父紅 吉記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6537385A priority Critical patent/JPH06100936B2/en
Publication of JPS61224014A publication Critical patent/JPS61224014A/en
Publication of JPH06100936B2 publication Critical patent/JPH06100936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2066Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To simplify constitution and quicken clearing up of the cause and restoration when pressure drop occurred, by operating a pump once by commercial power source driving and discriminating the cause of pressure drop from the change of pressure at this time. CONSTITUTION:When pressure drop occurred during operation of a pump 2, a constant speed switching device operates to open a switch 7 for variable speed operation and close a switch 8 for constant speed operation and drives an electric motor 1 by commercial power source, that is operates and controls a pump 2 at maximum speed. After the time of constant speed operation, process pressure PP and pressure drop warming pressure PL are compared by a comparator, and if PP>PL, restored to variable speed operation. When PP<PL after switching to constant speed operation, a pressure drop warning is outputted from a pressure drop warning device, and the pump 2 is stopped. When pressure drop occurred again within a set time after returning to variable speed operation by a returning device, a pressure drop warning is outputted and the pump 2 is topped as it is the second time.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ポンプを変速運転し圧送給水する圧送給水
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pressurized water supply device that operates a pump at variable speed to supply water under pressure.

[従来の技術」 ・第3図は従来装置を示すもので、ポンプ回りの主配管
およびポンプを回転数制御して圧力制御を行う制御系統
を構成するものである。図において、(1)はポンプを
駆動する可変速運転が可能な電動機、(2)は電動a(
1)の駆動力を受けて回転するポンプ、(3)はポンプ
(2)で加圧された水を目的地まで配水する配管であり
、配管中の圧力をプロセス圧力と称する。(4)は配管
(3)中のプロセス圧力を4−20 [mA]等の電気
信号に変換する圧力伝送器、(5)は圧力伝送器(0の
信号と設定した圧力信号とを比較後、比例制御、積分制
御、微分制御の全て、またはいくつかを組合わせた自動
制御を行い、その結果を操作量として出力する圧力調節
計、(8)は可変速電動機(1)に所要の動力(電源)
を供給する可変速制御装置で、可変電圧可変周波数イン
バータや一次電圧制御電動機用制御機器等でなる。
[Prior Art] - Fig. 3 shows a conventional device, which constitutes a control system that controls the main piping around the pump and the rotation speed of the pump to control the pressure. In the figure, (1) is an electric motor capable of variable speed operation that drives the pump, and (2) is an electric motor (a) that drives the pump.
The pump (1) rotates in response to the driving force, and the pipe (3) distributes the water pressurized by the pump (2) to the destination, and the pressure in the pipe is called process pressure. (4) is a pressure transmitter that converts the process pressure in piping (3) into an electrical signal such as 4-20 [mA], and (5) is a pressure transmitter (after comparing the 0 signal and the set pressure signal). , a pressure regulator that performs automatic control using all or a combination of proportional control, integral control, and differential control, and outputs the result as a manipulated variable; (8) is the power required for the variable speed electric motor (1); (power supply)
This is a variable speed control device that supplies variable voltage and variable frequency inverters, primary voltage control motor control equipment, etc.

しかして、(7)は可変速制御装置(6)の出力を開閉
する変速運転用開閉器、(8)可変速制御装置(6)を
停止、バイパスして電動a(1)を駆動するための定速
運転用開閉器、(9)は開閉器(7)や(8)の開閉を
指令する制御器、(10)は開閉器(7)や(8)から
電動機(1)へ電力を供給する配線、(11)は圧力伝
送器(4)の出力信号、(12)は圧力低下警報の設定
圧力PLであり、出力信号(11)と同一レベルの電気
信号、(13)は信号(11)と(12)を比較する比
較器、(14)は信号(11)が信号(12)により小
さい場合に設定時限後警報を発し、ポンプを停止する等
の制御を行う警報回路、(15)は本装置の電源である
Therefore, (7) is a switch for variable speed operation that opens and closes the output of the variable speed control device (6), and (8) is a switch for stopping and bypassing the variable speed control device (6) to drive the electric motor a (1). Switch for constant speed operation, (9) is a controller that commands the opening and closing of switches (7) and (8), and (10) is a controller that supplies power from switches (7) and (8) to motor (1). Supply wiring, (11) is the output signal of the pressure transmitter (4), (12) is the set pressure PL of the pressure drop alarm, and is an electrical signal at the same level as the output signal (11), (13) is the signal ( (14) is a comparator that compares signal (11) and (12); (14) is an alarm circuit that issues an alarm after a set time limit and performs controls such as stopping the pump when signal (11) is smaller than signal (12); (15) ) is the power supply for this device.

上記構成において、吐出圧カ一定制御では、使用流量が
変化しても圧力伝送器(4)を取り付けた配管(3)部
の圧力が一定になるようにポンプ(2)の回転速度を調
整する。
In the above configuration, the constant discharge pressure control adjusts the rotational speed of the pump (2) so that the pressure in the piping (3) section to which the pressure transmitter (4) is attached remains constant even if the flow rate changes. .

今、設定圧力と圧力伝送器(4)で検知した圧力が同一
であり、ポンプ(2)はある回転速度で運転していたと
する。
Now, suppose that the set pressure and the pressure detected by the pressure transmitter (4) are the same, and the pump (2) is operating at a certain rotation speed.

その後、使用流量が増加すると、圧力伝送器(4)の受
圧圧力が低下するのでこの圧力に比例する電気信号(1
1)も低下し、圧力調節計(5)では比例制御(P)、
積分制御(I)、微分制御(D)等を行った後、出力信
号を今までより大きくして操作量として可変速制御装置
(6)へ送る。
After that, when the used flow rate increases, the pressure received by the pressure transmitter (4) decreases, so an electric signal (1
1) also decreases, and the pressure controller (5) performs proportional control (P),
After performing integral control (I), differential control (D), etc., the output signal is made larger than before and sent to the variable speed control device (6) as a manipulated variable.

しかして、可変速制御装置(6)が可変電圧可変周波数
インバータ(以下、インバータと略する)で構成されて
いるらば、上記圧力調節計(5)の出力信号に見合った
周波数を出力するので、この場合は周波数と電圧が増加
し、開閉器(7)、配線(10)を経由して電動機(1
)へ給電する。該電動機(1)は誘導電動機であるので
、周波数に比例した回転となり、そこで、周波数が増加
すれば電動機(1)の回転速度は増加し、その出力がポ
ンプ(2)へ伝達されてポンプ(2)の回転速度が上昇
し、圧力が上昇する。
Therefore, if the variable speed control device (6) is composed of a variable voltage variable frequency inverter (hereinafter referred to as an inverter), it will output a frequency commensurate with the output signal of the pressure regulator (5). In this case, the frequency and voltage increase, and the electric motor (1) passes through the switch (7) and wiring (10).
). Since the electric motor (1) is an induction motor, its rotation is proportional to the frequency. Therefore, as the frequency increases, the rotational speed of the electric motor (1) increases, and its output is transmitted to the pump (2). 2) The rotational speed increases and the pressure increases.

そして、圧力が上昇すれば、同じく配管(3)→圧力伝
送器(4)の経路で圧力が電気信号として伝達されて圧
力調節計(5)で操作量の制御を行い、圧力が一定にな
る。
Then, when the pressure rises, the pressure is transmitted as an electrical signal along the same path from piping (3) to pressure transmitter (4), and the manipulated variable is controlled by the pressure regulator (5), so that the pressure remains constant. .

また、使用流量が減少して圧力が上昇した場合も同様の
閉ループ、圧力伝送器(4)→圧力調節計(5)→可変
速制御装置(6)→開閉器(7)→電動機(1)→ポン
プ(2)→圧力伝送器(4)の経路において、圧力調節
計(5)が減速信号となり、可変速制御装置(6)の出
力周波数と電圧が低下するのでポンプ(2)の回転速度
が低下し、そして圧力が一定になるように制御する。
In addition, when the flow rate decreases and the pressure increases, the same closed loop will be used: pressure transmitter (4) → pressure regulator (5) → variable speed controller (6) → switch (7) → electric motor (1) → In the path of pump (2) → pressure transmitter (4), the pressure regulator (5) becomes a deceleration signal, and the output frequency and voltage of the variable speed control device (6) decrease, so the rotation speed of the pump (2) is controlled so that the pressure decreases and the pressure remains constant.

次に、上記の如く圧カ一定制御を第4図に示すフローチ
ャートと、第5図に示す使用流量−全揚程曲線(なお、
第5図はポンプ(2)が遠心力を利用したうず巻ポンプ
における使用流量−全揚程曲線であり、この内(16)
は100[%1回転、(17)。
Next, the flowchart shown in FIG. 4 for constant pressure control as described above, and the flow rate-total head curve shown in FIG.
Figure 5 shows the flow rate vs. total head curve for a centrifugal pump in which pump (2) uses centrifugal force.
is 100 [% 1 revolution, (17).

(18)はポンプの回転速度を低下した場合の流量−全
揚程曲線、(18)は圧カ一定制御における設定圧力P
Sを示す、)を参照して説明すると、このような圧カ一
定制御を行うことにより(第4図の(Sl、S2)、第
5図において、使用流量がQlの場合、Qlと設定圧力
Ps(19)との交点A、を通る曲線(17)となる回
転速度でポンプ(2)は運転し、このとき、使用流量が
Q2まで増加しても、何らかの原因でポンプ(2)の回
転速度が増加しなかったとするならば、プロセス圧力P
pは圧力低下警報圧力pL以下となり(第4図のS3)
、この圧力Pp<Ptを比較器(13)内で検知しく第
4図のS4)、検知時間t1後警報回路(14)より圧
力低下警報を行う(第4図の85)。
(18) is the flow rate-total head curve when the rotation speed of the pump is reduced, and (18) is the set pressure P in constant pressure control.
To explain this with reference to S), by performing such constant pressure control ((Sl, S2) in Fig. 4, in Fig. 5, when the flow rate used is Ql, Ql and the set pressure The pump (2) operates at a rotation speed that is a curve (17) passing through the intersection point A with Ps (19), and at this time, even if the flow rate increases to Q2, the rotation of the pump (2) may change due to some reason. If the speed had not increased, the process pressure P
p becomes less than the pressure drop alarm pressure pL (S3 in Figure 4)
, this pressure Pp<Pt is detected in the comparator (13) (S4 in FIG. 4), and after the detection time t1, the alarm circuit (14) issues a pressure drop alarm (85 in FIG. 4).

また、使用流量が03まで異常に増加した場合はポンプ
(2)が100r%1回転してもプロセス圧力PPを圧
力低下警報設定圧力pt (12)まで上げることはで
きず、同様に圧力低下を警報する警報回路(14)が動
作し、圧力低下警報となる。
In addition, if the flow rate used abnormally increases to 03, the process pressure PP cannot be raised to the pressure drop alarm setting pressure pt (12) even if the pump (2) rotates once at 100r%, and the pressure drop is also prevented. The alarm circuit (14) is activated and a pressure drop alarm is issued.

[発明が解決しようとする問題点] 従来の圧送給水装置において、圧力低下警報は以上のよ
うに圧力低下の判別装置がないので、圧力低下の原因究
明に時間を要したり、軽微な故障でも圧力低下警報を発
し、ポンプを停止させるので断水するといった問題点が
あった。
[Problems to be solved by the invention] In the conventional pressure-feeding water supply system, there is no pressure drop alarm as described above, and there is no pressure drop discrimination device, so it takes time to investigate the cause of the pressure drop, and even a minor malfunction can be ignored. There was a problem in that the system would issue a pressure drop alarm and stop the pump, resulting in a water outage.

この発明では圧力低下の原因を数項目に判別するととも
に、電気接点の接触不良等軽微な故障では電磁リレーを
再投入することにより接触不良の原因を取り除いて運転
を続行することにより、断水の機会を減少させることを
目的とする。
In this invention, the cause of pressure drop is determined from several items, and in the case of a minor failure such as a poor contact of an electric contact, the electromagnetic relay is turned on again to remove the cause of the poor contact and continue operation, thereby reducing the chance of water outage. The purpose is to reduce

[問題点を解決するための手段] この発明に係る圧送給水装置は、圧力低下が生じた場合
、−担ポンプを商用電源駆動、すなわち最高速度で運転
し、このときの圧力の変化状態により圧力低下の原因を
判別するようにしたものである。
[Means for Solving the Problems] In the pressurized water supply system according to the present invention, when a pressure drop occurs, the -bearing pump is driven by the commercial power supply, that is, operated at the maximum speed, and the pressure is increased depending on the state of pressure change at this time. This is to determine the cause of the decline.

[作用] 圧力低下判別手段は新規の機器を必要とせず、従来使用
しているマイコンにプログラムを追加することにより簡
単に構成することができるとともに、圧力低下の原因を
大別するようにして原因究明と復旧を早めることができ
る。
[Function] The pressure drop determination means does not require new equipment and can be easily configured by adding a program to a conventional microcontroller. Investigation and recovery can be expedited.

[実施例] 以下この発明の一実施例を図に基づき説明すると、第1
図において、(1)〜(13)は従来と同一構成のもの
を示し、(20)は圧力低下判別回路で、該判別回路(
20)は、第2図のフローチャートに示す構成でなる。
[Example] An example of the present invention will be described below based on the figures.
In the figure, (1) to (13) show the same configuration as the conventional one, and (20) is a pressure drop discrimination circuit;
20) has the configuration shown in the flowchart of FIG.

すなわち、 (21)は圧力低下の回数を検出する回数
カウント回路、(22)は圧力低下後定速運転に切り換
える切換手段、 (23)は定速運転で運転する時間t
2で通常1〜10分程度、(24)は定速運転後再度プ
ロセス圧力Ppと圧力低下警報の設定圧力PL (12
)とを比較する第2の比較手段、(25)は軽微な故障
の場合変速運転に復帰する復帰手段、(26)は第1の
圧力低下警報(A)を出力する第1の圧力低下警報手段
、 (2?)は第2の圧力低下警報(B)を出力する第
2の圧力低下警報手段、なお、(13)は第1図に示す
第1の比較手段を示す。
In other words, (21) is a number counting circuit that detects the number of times the pressure has decreased, (22) is a switching means that switches to constant speed operation after the pressure has decreased, and (23) is the time t for constant speed operation.
2 usually takes about 1 to 10 minutes, and (24) returns the process pressure Pp and pressure drop alarm set pressure PL (12) after constant speed operation.
), (25) is a return means that returns to variable speed operation in case of a minor failure, and (26) is a first pressure drop alarm that outputs the first pressure drop alarm (A). (2?) is a second pressure drop alarm means for outputting a second pressure drop alarm (B), and (13) is the first comparison means shown in FIG.

上記構成において、圧力低下が生じた場合、検知時間t
l後、定速運転切換手段(22)が動作して変速運転用
開閉器(7)を「開」にするとともに定速運転用開閉器
(8)を「閉」にして電動機(1)を商用電源で駆動、
すなわちポンプ(2)を最高速度で運転制御する。
In the above configuration, when a pressure drop occurs, the detection time t
1, the constant speed operation switching means (22) operates to open the variable speed operation switch (7) and close the constant speed operation switch (8) to switch off the motor (1). Powered by commercial power,
That is, the operation of the pump (2) is controlled at the maximum speed.

ここで、圧力低下を生じたときのポンプ使用流量が第5
図に示すQ2であり、ポンプの使用流量−全揚程曲線が
(17)であったならば圧力はA2からA3に上昇する
Here, the flow rate used by the pump when the pressure decreases is the fifth
If Q2 is shown in the figure and the flow rate vs. total head curve of the pump is (17), the pressure will rise from A2 to A3.

但し、蛇口の開度が一定ならば圧力の上昇により蛇口を
通過する流量は増加するので実際の圧力はA4となる。
However, if the opening degree of the faucet is constant, the flow rate passing through the faucet will increase due to the increase in pressure, so the actual pressure will be A4.

定速運転時間t2後比較手段(24)で再度PpとPL
を比較し、PP>PLならば、変速運転復帰手段(25
)により変速運転に復帰させ、正常運転となり、断水は
しないことになる。この場合は圧力低下の警報表示は行
なわない。定速運転を行うことにより圧力が設定圧力P
L(12)以上になる原因としては、可変速制御装置(
6)の運転指令接点の接触不良で電動a(1)およびポ
ンプ(2)の回転速度が上昇しなかった場合等のことが
あげられる。
After the constant speed operation time t2, the comparing means (24) again compares Pp and PL.
If PP>PL, the means for returning to variable speed operation (25
) to return to variable speed operation, normal operation will occur, and there will be no water outage. In this case, a pressure drop alarm will not be displayed. By performing constant speed operation, the pressure becomes the set pressure P.
The cause of L(12) or higher is the variable speed control device (
An example of this is when the rotational speeds of the electric motor a (1) and the pump (2) do not increase due to poor contact of the operation command contact point 6).

次に、定速運転に切り換えても第2の比較子“段(24
)の結果PP<PLの場合は第1の圧力低下警報手段(
28)から圧力低下警報(A)を出力することとなり、
ポンプ(2)を停止する。
Next, even if you switch to constant speed operation, the second comparator stage (24
), if PP<PL, the first pressure drop alarm means (
28) will output a pressure drop alarm (A),
Stop pump (2).

この原因は次のようになる。The reason for this is as follows.

[11圧力伝送器(4)やその出力信号(11)の配線
の断線。
[11 Disconnection of the pressure transmitter (4) or its output signal (11) wiring.

【21使用流驕がQ3またはそれ以上となり、ポンプ(
2)の供給流量以上の水を使った過大流量。
[21 Use arrogance becomes Q3 or higher, pump (
2) Excessive flow rate using water exceeding the supply flow rate.

また、復帰手段(25)により変速運転に復帰後設定時
間3〜30分程度以内に再度圧力低下を生じた場合、圧
力低下回数カウント回路(21)が動作し、回数が2回
目なので、第2の圧力低下警報手段(27)により、r
E力低下二報(B)を出力することなり警報を発し、ポ
ンプ(2)を停止する。
In addition, if the pressure decreases again within the set time of about 3 to 30 minutes after returning to variable speed operation by the return means (25), the pressure decrease count circuit (21) operates, and since this is the second time, the pressure decrease count circuit (21) operates. The pressure drop alarm means (27) of r
If E-force drop 2 alarm (B) is output, an alarm will be issued and the pump (2) will be stopped.

この原因としては次のようになる。The reason for this is as follows.

[11圧力調節計(5)が故障。[11 Pressure regulator (5) is malfunctioning.

[21可変速制御装置(6)が故障。[21 Variable speed control device (6) is out of order.

なお、接点の接触不良の場合、再度、変速運転の動作を
行う際、接触不良を生じた電磁リレーも動作を行うこと
で、接点がこすり合い接触不良が解消されることになる
In the case of poor contact between the contacts, when the variable speed operation is performed again, the electromagnetic relay that has caused the poor contact also operates, causing the contacts to rub together and eliminate the poor contact.

なお、上記実施例においては、圧力制御では吐出圧カ一
定制御の場合で説明したが、多段階吐出圧カー疋制御、
末端圧カ一定制御等圧力の制御方杖はいずれでもよい。
In the above embodiment, the pressure control was explained using constant discharge pressure control, but multi-stage discharge pressure control,
Any control method for constant terminal pressure control may be used.

また、圧力低下の判別はマイコンプログラムで説明した
が、゛市磁リレーとアナログ回路の組合せでもよい。
Furthermore, although the determination of pressure drop has been explained using a microcomputer program, a combination of a municipal relay and an analog circuit may also be used.

[発明の効果] 以上のように、この発明によれば、 [11従来の装置に対してマイコンプログラムの追加の
みであり、ハードウェアの増加はないので安価。
[Effects of the Invention] As described above, according to the present invention, [11] Only a microcomputer program is added to the conventional device, and there is no increase in hardware, so it is inexpensive.

[21圧力低下の原因が大別できるので、原因究明と復
旧が早くなる。
[21 The cause of the pressure drop can be broadly classified, making investigation and restoration faster.

[3]接点の接触不良等の原因によるものは、自己修復
ができ、無用のポンプ停止や断水が少なくなり、給水の
連続性が向上する。
[3] Problems caused by poor contact can be self-repaired, reducing unnecessary pump stoppages and water outages, and improving continuity of water supply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の全体構成を示す構成図、第2図は第
1図の部分詳細構成を示すフローチャート、第3図は従
来の全体構成を示す構成図、第4図は第2図に対応する
従来のフローチャート、第5図はポンプの特性曲線と各
圧力を示す曲線図である。 図において、 (2)はポンプ、   (3)は配管、(7)は変速用
開閉器、(8)は定速用開閉器、(8)は制御器、  
 (13)は第1の比較手段、(15〕は電源、   
 (20)は圧力低下判別回路、(22)は切換手段、
  (24)は第2の比較手段、(25)は復帰手段、 (26)は第1の圧力低下警報手段、 (27)は第2の圧力低下警報手段である。 なお1図中同一群号は同−又は相当部分を示すものとす
る。
Fig. 1 is a block diagram showing the overall structure of the present invention, Fig. 2 is a flowchart showing the partial detailed structure of Fig. 1, Fig. 3 is a block diagram showing the conventional overall structure, and Fig. 4 is similar to Fig. 2. The corresponding conventional flowchart, FIG. 5, is a curve diagram showing the pump characteristic curve and each pressure. In the figure, (2) is the pump, (3) is the piping, (7) is the speed change switch, (8) is the constant speed switch, (8) is the controller,
(13) is the first comparison means, (15] is the power supply,
(20) is a pressure drop discrimination circuit, (22) is a switching means,
(24) is a second comparison means, (25) is a return means, (26) is a first pressure drop alarm means, and (27) is a second pressure drop alarm means. Note that the same group numbers in each figure indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] ポンプを変速運転制御して配管中のプロセス圧力を圧力
制御する圧送給水装置において、設定圧力との比較に基
づいて配管中の圧力低下を検知する第1の比較手段、該
圧力低下回数が1回目の場合、上記変速運転駆動から商
用電源駆動による定速駆動に上記ポンプの運転制御を切
換える切換手段、定速駆動後のプロセス圧力と設定圧力
とを比較する第2の比較手段、該プロセス圧力が設定圧
力より高い時は変速運転に復帰させる復帰手段、該プロ
セス圧力が設定圧力より低い時は第1の警報を出力する
第1の圧力低下警報手段、上記圧力低下回数が2回目以
降の場合は第2の警報を出力する第2の圧力低下警報手
段を備えたことを特徴とする圧送給水装置。
In a pressurized water supply system that controls the process pressure in piping by controlling the variable speed operation of a pump, a first comparison means detects a pressure drop in the piping based on comparison with a set pressure, and the number of times the pressure drop is the first. In the case of , a switching means for switching the operation control of the pump from the variable speed driving to the constant speed driving by commercial power supply driving, a second comparison means for comparing the process pressure after the constant speed driving and the set pressure, and the process pressure is A return means for returning to variable speed operation when the process pressure is higher than the set pressure, a first pressure drop alarm means for outputting a first alarm when the process pressure is lower than the set pressure, and when the number of pressure drops is the second or later. A pressurized water supply device comprising a second pressure drop alarm means for outputting a second alarm.
JP6537385A 1985-03-29 1985-03-29 Pressure water supply device Expired - Lifetime JPH06100936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6537385A JPH06100936B2 (en) 1985-03-29 1985-03-29 Pressure water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6537385A JPH06100936B2 (en) 1985-03-29 1985-03-29 Pressure water supply device

Publications (2)

Publication Number Publication Date
JPS61224014A true JPS61224014A (en) 1986-10-04
JPH06100936B2 JPH06100936B2 (en) 1994-12-12

Family

ID=13285095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6537385A Expired - Lifetime JPH06100936B2 (en) 1985-03-29 1985-03-29 Pressure water supply device

Country Status (1)

Country Link
JP (1) JPH06100936B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570927B2 (en) 2014-01-14 2020-02-25 Mitsubishi Heavy Industries Compressor Corporation Boosting system, and boosting method of gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570927B2 (en) 2014-01-14 2020-02-25 Mitsubishi Heavy Industries Compressor Corporation Boosting system, and boosting method of gas

Also Published As

Publication number Publication date
JPH06100936B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
EP2824245A2 (en) Water supply apparatus
US5644293A (en) Ground fault detection with location identification
US5631796A (en) Electric vehicle control system
CN110044035A (en) Fault-tolerant circuit and control method for variable-frequency air conditioner controller
US4432030A (en) Short circuit protection system
JPS61224014A (en) Forced feeding water supply device
JP3299373B2 (en) Water supply control device
JP3464095B2 (en) Variable speed water supply
JPH035673A (en) Freezing cycle device
JP2708826B2 (en) Water supply control device
JP2702952B2 (en) Water supply device using variable speed pump
CN114689308A (en) Check valve failure detection device and check valve failure detection method
JP3304182B2 (en) Water supply control device
JP2841956B2 (en) Water cut-off prevention circuit of inverter control water supply system
CN112491010B (en) Oil pump motor real-time monitoring circuit and monitoring method thereof
JP2652579B2 (en) Automatic water supply pump control device
JP3044822B2 (en) Power factor control device
JP3304183B2 (en) Water supply control device
CN115188628A (en) Relay control method and device, terminal equipment and medium
JPH04291634A (en) Fault detecting circuit for microcomputer
JPS6222543Y2 (en)
KR100219266B1 (en) Velocity control type water-supply pressuring apparatus of a pump
JPS61145666A (en) External interface separating circuit
JPS6342156B2 (en)
JPH0595622A (en) Negative-phase protection power control