JP3044822B2 - Power factor control device - Google Patents

Power factor control device

Info

Publication number
JP3044822B2
JP3044822B2 JP3117748A JP11774891A JP3044822B2 JP 3044822 B2 JP3044822 B2 JP 3044822B2 JP 3117748 A JP3117748 A JP 3117748A JP 11774891 A JP11774891 A JP 11774891A JP 3044822 B2 JP3044822 B2 JP 3044822B2
Authority
JP
Japan
Prior art keywords
circuit
reactive power
output
voltage
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3117748A
Other languages
Japanese (ja)
Other versions
JPH04344908A (en
Inventor
靖夫 高崎
守 藤ノ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3117748A priority Critical patent/JP3044822B2/en
Publication of JPH04344908A publication Critical patent/JPH04344908A/en
Application granted granted Critical
Publication of JP3044822B2 publication Critical patent/JP3044822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は電力系統における無効
電力を検出し、この無効電力が所定の設定値以上の大き
さの遅れ無効電力となったとき進相コンデンサを前記電
力系統に投入し、前記無効電力が所定の設定値以上の進
み無効電力または所定の設定値以下の遅れ無効電力とな
ったとき進相コンデンサを遮断することにより、負荷力
率の改善を図る力率制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects reactive power in a power system and, when the reactive power becomes delayed reactive power having a magnitude equal to or larger than a predetermined set value, inputs a phase advance capacitor to the power system. The present invention relates to a power factor control device for improving a load power factor by cutting off a phase advance capacitor when the reactive power becomes a leading reactive power equal to or more than a predetermined set value or a delayed reactive power equal to or less than a predetermined setting value.

【0002】[0002]

【従来の技術】この種の従来の力率制御装置のブロック
図を図2に示す。図2において、1は電力系統の三相交
流 (R相、S相、T相) における一相、この場合にはR
相に流れる電流が変流器CTを介して入力され、他の二
相、この場合にはS,T相間の電圧が変成器PTを介し
て入力され、この電流を電圧に基づいて無効電力をその
無効電力の値に比例した直流電圧に変換して出力電圧V
OU T として出力する無効電力電圧変換回路、2は設定さ
れた進相コンデンサを投入する必要のある遅れ無効電力
の判定レベル、設定された進相コンデンサを遮断する必
要のある進み無効電力の判定レベルや遅延時間などの動
作条件を設定する動作条件設定回路、3は動作条件設定
回路2で設定された進相コンデンサの投入,遮断の判定
レベルと無効電力電圧変換回路1の出力電圧VOUT とを
比較して電力系統の無効電力が進相コンデンサを投入ま
たは遮断するレベルに達しているか否かを判別する投入
・遮断判別回路、4は例えば負荷として電動機が用いら
れる場合に電動機の始動電流のような短時間の負荷変動
に対しては進相コンデンサの投入, 遮断が繰り返される
ことを防止するため、動作条件設定回路2で設定された
遅延時間の間無効電力が継続して進相コンデンサの投入
の判定レベルを遅れ側に超えないと出力を発しないよう
にした遅延時間回路、5は遅延時間回路4の出力に基づ
いて進相コンデンサのオンオフを制御するオンオフ制御
回路、6はオンオフ制御回路5の出力信号により進相コ
ンデンサを投入, 遮断させる接点信号C1〜C4を出力する
不図示のリレーを有する出力回路である。
2. Description of the Related Art FIG. 2 shows a block diagram of a conventional power factor control apparatus of this kind. In FIG. 2, reference numeral 1 denotes one phase in a three-phase alternating current (R-phase, S-phase, T-phase) of a power system, and in this case, R
The current flowing in the phase is input via a current transformer CT, the voltage between the other two phases, in this case the S and T phases, is input via a transformer PT, and this current is converted into a reactive power based on the voltage. The output voltage V is converted into a DC voltage proportional to the value of the reactive power.
Reactive power voltage conversion circuit for outputting as OU T, 2 is set phase advance determination levels lagging reactive power that must be put capacitor, determining the level of leading reactive power is required to block the phase advance capacitor that is set Condition setting circuit for setting operating conditions such as delay time and delay time, the reference numeral 3 designates the decision level of turning on / off the phase advance capacitor set by the operating condition setting circuit 2 and the output voltage V OUT of the reactive power voltage conversion circuit 1. An on / off determining circuit for determining whether or not the reactive power of the power system has reached a level at which the phase-advancing capacitor is turned on / off, is used as a starting current of the motor when the motor is used as a load, for example. In order to prevent repetition of turning on and off the phase-advancing capacitor for a short-time load change, the reactive power is set during the delay time set by the operating condition setting circuit 2. A delay time circuit which does not generate an output unless the determination level of the input of the phase-advancing capacitor is continuously exceeded on the delay side; and 5, an on-off control for controlling on / off of the phase-advancing capacitor based on an output of the delay time circuit 4 Reference numeral 6 denotes an output circuit having a relay (not shown) that outputs contact signals C1 to C4 for turning on and off the phase advance capacitor in accordance with the output signal of the on / off control circuit 5.

【0003】図2に示す力率制御装置は、投入・遮断判
別回路3において無効電力電圧変換回路1の出力電圧V
OUT が進相コンデンサの投入の判定レベルを超えたと判
別されると、その判別出力は遅延時間回路4で一定時間
(例えば10分間) 遅延された後、オンオフ制御回路5
へ入力される。これによりオンオフ制御回路5は所定の
順序に従って出力回路6を駆動してオンの接点信号C1〜
C4を出力して進相コンデンサを投入する。前記投入・遮
断判別回路3において無効電力電圧変換回路1の出力電
圧VOUTが進相コンデンサの遮断の判別レベルを超えた
と判別されると、その出力は遅延時間回路4を介して一
定時間の経過後オンオフ制御回路5が動作し、出力回路
6を駆動してオフの接点信号C1〜C4を出力して進相コン
デンサを遮断する。
The power factor control device shown in FIG. 2 uses an output voltage V
When it is determined that OUT has exceeded the determination level of the input of the phase advance capacitor, the determination output is output by the delay time circuit 4 for a predetermined time.
(For example, 10 minutes) After the delay, the on / off control circuit 5
Is input to As a result, the on / off control circuit 5 drives the output circuit 6 in a predetermined order to turn on the contact signals C1 to C1.
Output C4 and turn on the phase advance capacitor. When it is determined in the ON / OFF determination circuit 3 that the output voltage V OUT of the reactive power voltage conversion circuit 1 exceeds the determination level of the cutoff of the phase-advancing capacitor, the output is passed through the delay time circuit 4 for a predetermined time. Thereafter, the on / off control circuit 5 operates, drives the output circuit 6, outputs the off contact signals C1 to C4, and shuts off the phase advance capacitor.

【0004】[0004]

【発明が解決しようとする課題】図2に示すように無効
電力電圧変換回路1の1番端子と2番端子に変流器CT
の二次側端子kと端子lが接続され、無効電力電圧変換
回路1の3番端子と4番端子に変成器PTの二次側の端
子uと端子vが接続ささていると、三相交流のR相に流
れる電流IR とS相とT相の相電圧VSTのベクトル関係
は図3に示す実線で表わされるようになる。図3におい
て、IR1は力率100%の場合の電流を示す。
As shown in FIG. 2, a current transformer CT is connected to the first and second terminals of the reactive power voltage conversion circuit 1.
Are connected to the secondary terminal k and the terminal l of the transformer PT, and the secondary terminal u and the terminal v of the transformer PT are connected to the third and fourth terminals of the reactive power voltage conversion circuit 1, respectively. The vector relationship between the current I R flowing in the AC R phase and the phase voltages V ST of the S phase and the T phase is represented by a solid line shown in FIG. In FIG. 3, I R1 indicates a current at a power factor of 100%.

【0005】この場合に無効電力の検出原理は単相電力
計の原理を用いて次のように表わされる。すなわち、遅
れ力率時の無効電力をq1 とすると、この無効電力q1
は次式(1) となる。
In this case, the principle of detecting the reactive power is expressed as follows using the principle of a single-phase wattmeter. That is, when the reactive power at a lagging power factor and q 1, the reactive power q 1
Is given by the following equation (1).

【0006】[0006]

【数1】 (Equation 1)

【0007】三相交流における力率角は相電圧VR に対
する角度であるからθ1 である。従って、検出される遅
れ無効電力Q1 は三相換算して次式(2) となる。
[0007] The power factor angle in the three-phase alternating current is theta 1 since the angle with respect to the phase voltage V R. Therefore, the detected delayed reactive power Q 1 is converted into a three-phase value and becomes the following equation (2).

【0008】[0008]

【数2】 (Equation 2)

【0009】前述した遅れ無効電力と同様に進み力率時
における進み無効電力Q2 も次式(3) により検出され
る。
Similarly to the above-mentioned delayed reactive power, the leading reactive power Q 2 at the time of the leading power factor is also detected by the following equation (3).

【0010】[0010]

【数3】 (Equation 3)

【0011】従って、無効電力電圧変換回路1の出力電
圧VOUT は、前述した式(2)(3)で表わされる無効電力の
値に比例した直流電圧として、図4の実線で示すような
特性となる。今、図2において仮に変成器PTの二次側
の端子u, vと無効電力電圧変換回路1の3番端子と4
番端子との接続が点線で示すように逆極性となると、無
効電力電圧変換回路1には図3に点線で示すような電圧
STが入力される。このとき、無効電力Q1 , Q2 は電
圧VSTとR相の電流IR1またはIR2との関係となること
から、遅れ無効電力Q1 は次式(4) のようになる。
Accordingly, the output voltage V OUT of the reactive power voltage conversion circuit 1 is a DC voltage proportional to the value of the reactive power represented by the above-mentioned equations (2) and (3), and has a characteristic shown by a solid line in FIG. Becomes Now, in FIG. 2, the terminals u and v on the secondary side of the transformer PT and the terminals 3 and 4 of the
When the connection with the No. 1 terminal becomes the reverse polarity as shown by the dotted line, the voltage V ST as shown by the dotted line in FIG. At this time, since the reactive powers Q 1 and Q 2 have a relationship between the voltage V ST and the R-phase current I R1 or I R2 , the delayed reactive power Q 1 is represented by the following equation (4).

【0012】[0012]

【数4】 (Equation 4)

【0013】また、進み無効電力Q2 は次式(5) のよう
になる。
The leading reactive power Q 2 is given by the following equation (5).

【0014】[0014]

【数5】 (Equation 5)

【0015】すなわち、変成器PTの二次側の端子u,
vと無効電力電圧変換回路1の3番端子と4番端子との
接続が逆極性となると、無効電力電圧変換回路1の出力
電圧VOUT の極性の正・負により遅れ・進みを判別して
いたものが反対の関係となる。この場合の無効電力電圧
変換回路1の出力電圧VOUT の特性は図4に点線で示す
ようになる。これと同様なことが変流器CTの二次側端
子k, lと無効電力電圧変換回路1の1番端子と2番端
子との接続が逆になった場合にも言える。
That is, the terminals u and u on the secondary side of the transformer PT
When the connection between v and the third and fourth terminals of the reactive power voltage conversion circuit 1 has the opposite polarity, the delay / advance is determined based on whether the polarity of the output voltage V OUT of the reactive power voltage conversion circuit 1 is positive or negative. Are the opposite. In this case, the characteristic of the output voltage V OUT of the reactive power voltage conversion circuit 1 is as shown by a dotted line in FIG. The same applies to the case where the connections between the secondary terminals k and l of the current transformer CT and the first and second terminals of the reactive power voltage conversion circuit 1 are reversed.

【0016】前述したように図2に示す従来装置におい
ては、変流器CTまたは変成器PTのいずれかの二次側
端子と無効電力電圧変換回路1の配線を誤って逆極性に
接続したとき、遅れ・進み無効電力の検出が逆になって
しまう。このような誤配線は施設時に見過ごされること
が多く、また相順が逆相のまま受電したりすると、実際
に力率制御装置が運転状態に入ってしまって負荷を駆動
するまで誤接続が分からないという欠点がある。そし
て、誤配線の配線替えのためには一旦停電状態にしなけ
ればならないという欠点を有する。
As described above, in the conventional apparatus shown in FIG. 2, when the secondary terminal of either the current transformer CT or the transformer PT and the wiring of the reactive power voltage conversion circuit 1 are erroneously connected to opposite polarities. Thus, the detection of the lag / lead reactive power is reversed. Such erroneous wiring is often overlooked at the facility, and if power is received with the phase sequence reversed, the erroneous connection will not be recognized until the power factor control device actually enters the operating state and drives the load. There is a disadvantage that there is no. In addition, there is a drawback that a power outage must be made once for rewiring of erroneous wiring.

【0017】そこで、本発明の第1の目的は前述した従
来装置の欠点を除去し、無効電力電圧変換回路への電流
または電圧の入力極性が逆となる誤配線を容易に検出す
ることができるとともにその誤配線を報知することが可
能な力率制御装置を提供することにある。また、本発明
の第2の目的は、無効電力電圧変換回路への電流または
電圧の入力極性が逆となる誤配線によっても配線替えを
必要とせず安定した動作を可能とすることのできる力率
制御装置を提供することにある。
Therefore, a first object of the present invention is to eliminate the above-mentioned disadvantages of the conventional device and to easily detect an erroneous wiring in which the input polarity of the current or voltage to the reactive power voltage conversion circuit is reversed. Another object of the present invention is to provide a power factor control device capable of notifying the erroneous wiring. Further, a second object of the present invention is to provide a power factor capable of performing a stable operation without requiring a wiring change even in the case of erroneous wiring in which the input polarity of a current or a voltage to a reactive power voltage conversion circuit is reversed. It is to provide a control device.

【0018】[0018]

【課題を解決するための手段】前述した第1の目的を達
成するために本発明の第1の発明は、電力系統の無効電
力を検出し、この検出結果に基づいて進相コンデンサを
投入または遮断して前記電力系統の力率改善を行う力率
制御装置において、前記電力系統の電流と電圧との変成
出力から無効電力を検出し、この無効電力に比例した電
圧に変換する無効電力電圧変換回路と、この無効電力電
圧変換回路の出力電圧の符号または大きさより前記無効
電力電圧変換回路に入力した電流または電圧の位相が進
み位相であることを判定する進み出力判定回路と、この
進み出力判定回路の進み出力判定信号と前記進相コンデ
ンサの投入,遮断用の出力信号が全て遮断用の出力信号
であることの論理積条件に基づいて誤配線の警報を出力
する誤入力判定警報回路とを備え、前記無効電力電圧変
換回路への電流入力と電圧入力のいずれかが逆極性の場
合に前記誤入力判定警報回路より警報を報知することを
特徴とする。
In order to achieve the above-mentioned first object, a first invention of the present invention detects a reactive power of a power system and, based on a result of the detection, inputs a phase advance capacitor or In a power factor control device for shutting down and improving the power factor of the power system, a reactive power voltage conversion for detecting a reactive power from a transformed output of a current and a voltage of the power system and converting the reactive power to a voltage proportional to the reactive power. Circuit and this reactive power
An output judging circuit advances determines that the phase of the code or entered in the reactive power voltage conversion circuit than the magnitude current or voltage of the output voltage of the pressure transducer circuit is phase lead, advances the output decision signal of the proceeds output decision circuit And an erroneous input determination alarm circuit that outputs an alarm for erroneous wiring based on a logical product condition that all output signals for turning on and off the phase advance capacitor are output signals for shutting off, and the reactive power voltage Strange
If either the current input or the voltage input to the
In this case, an alarm is notified from the erroneous input determination alarm circuit .

【0019】また、前述した第2の目的を達成するため
に本発明の第2の発明は、電力系統の無効電力を検出
し、この検出結果に基づいて進相コンデンサを投入また
は遮断して前記電力系統の力率改善を行う力率制御装置
において、前記電力系統の電流と電圧との変成出力から
無効電力を検出し、この無効電力に比例した電圧に変換
する無効電力電圧変換回路の出力電圧の符号または大き
さより前記無効電力電圧変換回路に入力した電流または
電圧の位相が進み位相であることを判定する進み出力判
定回路と、この進み出力判定回路の進み出力判定信号と
前記進相コンデンサの投入, 遮断用の出力信号が全て遮
断用の出力信号であることの論理積条件に基づいて誤配
線の警報を出力する誤入力判定警報回路および前記誤入
力判定警報回路の出力に基づいて切換手段の操作により
電力系統の電流または電圧の極性を反転させる位相反転
指示回路を備えたことを特徴とする。
Further, in order to achieve the above-mentioned second object, a second invention of the present invention detects reactive power of a power system, and turns on or off a phase-advancing capacitor based on the detection result. In a power factor control device for improving a power factor of a power system, an output voltage of a reactive power voltage conversion circuit that detects a reactive power from a transformed output of a current and a voltage of the power system and converts the reactive power into a voltage proportional to the reactive power. A leading output determination circuit that determines that the phase of the current or voltage input to the reactive power voltage conversion circuit is a leading phase based on the sign or magnitude of the leading output determination circuit; a leading output determination signal of the leading output determination circuit; An erroneous input determination alarm circuit that outputs an erroneous wiring alarm based on a logical AND condition that all of the input and output signals for disconnection are output signals for interruption and the output of the erroneous input determination alarm circuit Characterized by comprising a phase inversion instruction circuit for inverting the polarity of the current or voltage of the power system by operating the switching means based on.

【0020】[0020]

【作用】無効電力電圧変換回路に電流または電圧が逆極
性で入力されると、無効電力電圧変換回路は電力系統の
負荷力率が遅れ力率であるにもかかわらず進み力率とし
て進み無効電力に比例した出力電圧を出力する。この出
力電圧に基づいて進み出力判定回路は進み力率として判
定し、誤入力判定警報回路に逆極性入力判定信号を供給
する。誤入力判定警報回路では進み出力判定回路からの
逆極性入力判定信号と、進相コンデンサの投入, 遮断用
の出力信号が全て遮断用の出力信号であること、すなわ
ち進相用コンデンサが投入されて進み力率にないことを
検出すると逆極性入力があることを判定して警報を発す
る。この警報に基づいて位相反転指示回路の切換手段を
操作することにより電力系統の電流入力または電圧入力
を極性を反転し、そして進み出力判定回路をリセットす
る。
When a current or a voltage is input to the reactive power voltage conversion circuit with the opposite polarity, the reactive power voltage conversion circuit leads the reactive power as a leading power factor even though the load power factor of the power system is a lagging power factor. Outputs an output voltage proportional to. Based on the output voltage, the advance output determination circuit determines the advance power factor, and supplies the reverse input determination signal to the erroneous input determination alarm circuit. In the erroneous input judgment alarm circuit, the reverse polarity input judgment signal from the advance output judgment circuit and the output signal for turning on / off the phase advance capacitor are all output signals for shutting off, that is, the phase advance capacitor is turned on. When it is detected that the power factor is not at the leading power factor, it is determined that there is a reverse polarity input and an alarm is issued. By operating the switching means of the phase inversion instruction circuit based on this alarm, the polarity of the current input or voltage input of the power system is inverted, and the advance output determination circuit is reset.

【0021】[0021]

【実施例】図1は本発明の一実施例を示す力率制御装置
のブロック図である。図1において図2に示すものと同
一または対応するものには同一符号を付している。図1
において図2の従来装置と相違する点は、進み出力判定
回路7と誤入力判定警報回路8と位相反転指示回路9で
ある。進み出力判定回路7は無効電力電圧変換回路1の
出力電圧VOUT に基づいて進み無効電力であるか否かを
判定し、進み無効電力の場合に逆極性入力判定信号S2
を誤入力判定警報回路8のアンド回路83の一方の入力に
供給する。誤入力判定警報回路8は、出力回路6からの
接点信号C1〜C4が投入信号である場合はハイレベルで接
点信号C1〜C4が遮断信号である場合にローレベルとなる
信号a1〜a4をそれぞれの入力とするアンド回路82, アン
ド回路83と警報回路81とを有し、出力回路6の接点信号
にC1〜C4がすべて遮断信号の場合にアンド回路82から出
力されるハイレベルの信号S1 と前記逆極性入力判定信
号S2 とによりアンド回路83が導通して警報回路81から
警報を発する。位相反転回路9は切換スイッチ91を有
し、この切換スイッチ91を操作して閉成することにより
投入・遮断判別回路3に入力する無効電力電圧変換回路
1の出力電圧VOUT の極性を反転して判別する指示信号
3 を出力すると共に進み出力判定回路7にリセット信
号S4 を出力する。
FIG. 1 is a block diagram of a power factor control device showing one embodiment of the present invention. 1 that are the same as or correspond to those shown in FIG. 2 are denoted by the same reference numerals. FIG.
2 is different from the conventional device of FIG. 2 in a lead output determination circuit 7, an erroneous input determination alarm circuit 8, and a phase inversion instruction circuit 9. Proceeds output determining circuit 7 determines whether or not the leading reactive power based on the output voltage V OUT of the reactive power voltage conversion circuit 1, the reverse polarity input determination signal when the leading reactive power S 2
Is supplied to one input of an AND circuit 83 of the erroneous input determination alarm circuit 8. The erroneous input determination alarm circuit 8 outputs signals a1 to a4 which are high when the contact signals C1 to C4 from the output circuit 6 are closing signals and are low when the contact signals C1 to C4 are shutoff signals, respectively. And a high-level signal S 1 output from the AND circuit 82 when the contact signals of the output circuit 6 are all cut-off signals. issuing an alarm from the alarm circuit 81 conducts the aND circuit 83 by said opposite polarity input determination signal S 2 and. The phase inversion circuit 9 has a changeover switch 91. By operating the changeover switch 91 to close it, the polarity of the output voltage VOUT of the reactive power voltage conversion circuit 1 input to the make / break decision circuit 3 is inverted. outputs the reset signal S 4 to the output judging circuit 7 proceeds to output an instruction signal S 3 to determine Te.

【0022】図1に示す力率制御装置において、今変成
器PTの二次側の端子u, vと無効電力電圧変換回路1
の端子番号3, 4との接続が点線で示すように逆に誤配
線されたとすると、電力系統の負荷力率が遅れ力率であ
っても無効電力電圧変換回路1の出力電圧VOUT は図4
に点線で示すように負の電圧となる。この無効電力電圧
変換回路1の出力電圧VOUTが負の電圧であると進み出
力判定回路7は進み無効電力として判定して逆極性入力
判定信号S2 を出力する。電力系統の負荷に電力が供給
された当初、すなわち図1に示す力率制御装置に通電が
開始された当初において出力回路6からの接点信号C1〜
C4は全て遮断信号であることにより出力回路6からアン
ド回路82に入力する信号a1〜a4が全てローレベルとな
り、アンド回路82がハイレベルの信号S1 がアンド回路
83の一方の入力に印加される。このアンド回路83の他方
の入力には進み出力判定回路7から逆極性入力判定回路
2が入力されていることによりこのアンド回路83は導
通して警報回路81を動作させる。警報回路81はブザー音
やLEDなどの発光素子による発光表示により逆極性に
接続されていることを報知する。
In the power factor control apparatus shown in FIG. 1, terminals u and v on the secondary side of transformer PT and reactive power voltage conversion circuit 1
If the connection to terminals Nos. 3 and 4 is incorrectly wired as shown by the dotted lines, the output voltage V OUT of the reactive power voltage conversion circuit 1 will be as shown in FIG. 4
, The voltage becomes negative as shown by the dotted line. The reactive power voltage conversion circuit 1 of the output voltage V OUT is advanced to be the negative voltage output determining circuit 7 proceeds to output a reverse polarity input determination signal S 2 determines as reactive power. When power is supplied to the load of the power system, that is, when the power factor control device shown in FIG.
C4 is a signal a1~a4 input from the output circuit 6 to the AND circuit 82 becomes all low level by that all-off signal, the AND circuit 82 is high level signal S 1 is an AND circuit
83 is applied to one input. The other of the AND circuit 83 by the reverse polarity input judging circuit S 2 is inputted from the output judging circuit 7 proceeds to the input of the AND circuit 83 operates the alarm circuit 81 conductive. The alarm circuit 81 notifies that the connection is made in the opposite polarity by a buzzer sound or a light emission display by a light emitting element such as an LED.

【0023】前記警報回路81の報知出力に基づいて位相
反転指示回路9の切換スイッチ91を操作して閉成すると
位相反転指示回路9が動作して信号S3 を投入・遮断判
別回路3に出力する。この投入・遮断判別回路3は信号
3 が入力されると無効電力電圧変換回路1の出力電圧
OUT を反転回路を介して反転して入力するように動作
し、これによって逆極性に接続された極性が正常に戻
る。前記位相反転指示回路9は信号S3 を出力すると同
時にリセット信号S4 を進み出力判定回路7に出力して
進み出力判定回路7をリセットする。
The output to the phase inversion when closed by operating the changeover switch 91 of the instructing circuit 9 a phase inversion command circuit 9 is turned-cutoff discrimination circuit 3 is a signal S 3 operates on the basis of the notification output of the alarm circuit 81 I do. The turned-cutoff discrimination circuit 3 operates to input and inverted by an inverting circuit output voltage V OUT of the reactive power voltage conversion circuit 1 when the signal S 3 is inputted, is thereby connected to the opposite polarity Polarity returns to normal. The phase inversion instructing circuit 9 outputs the signal S 3 and simultaneously outputs the reset signal S 4 to the output determination circuit 7 to reset the advance output determination circuit 7.

【0024】前述では無効電力電圧変換回路1に入力す
る変成器PTの二次側の端子u, vが誤配線された場合
について説明したが、変流器CTの二次側の端子k, l
が誤配線されて無効電力電圧変換回路1への電流入力が
逆極性となった場合も同様である。なお、変流器CTお
よび変成器PTの両方ともに逆極性の場合には、図3に
点線で示すIR1, IR2, VSTのベクトル関係から明らか
なように位相関係は正しく接続された場合と同一となり
正常に動作する。
In the above description, the case where the terminals u and v on the secondary side of the transformer PT input to the reactive power voltage conversion circuit 1 are erroneously wired, but the terminals k and l on the secondary side of the current transformer CT are described.
Is incorrectly wired, and the current input to the reactive power voltage conversion circuit 1 has the opposite polarity. Note that when both the current transformer CT and the transformer PT have opposite polarities, the phase relation is correctly connected as is apparent from the vector relations of I R1 , I R2 , and V ST indicated by dotted lines in FIG. And it operates normally.

【0025】[0025]

【発明の効果】以上に説明したとおり本発明によれば、
進相コンデンサを投入しないときの電力系統の力率は一
般的に遅れ力率であることから、無効電力電圧変換回路
の出力電圧に基づいて進み無効電力を検出する進み出力
判定回路と、前記進相コンデンサの投入, 遮断用の出力
信号が全て遮断用の出力信号であるにもかかわらず、進
み出力判定回路から逆極性入力判定信号が入力される場
合には警報を発する誤入力判定警報回路とを設けたこと
により、無効電力電圧変換回路への電流または電圧入力
が逆極性となる誤配線を報知することができる。また、
前記誤入力判定警報回路からの報知に基づいて切換手段
を操作することにより電力系統の電流または電圧の極性
を反転させる位相反転指示回路を設けたことにより、通
電状態を停止して誤配線の接続替えをする必要がなく通
電状態のままで安定した動作を行う力率制御装置を得る
ことができるという効果を有する。
As described above, according to the present invention,
Since the power factor of the power system when the phase-advancing capacitor is not turned on is generally a lagging power factor, an advanced output determination circuit for detecting advanced reactive power based on the output voltage of the reactive power voltage conversion circuit; An erroneous input judgment alarm circuit that issues an alarm when the reverse polarity input judgment signal is input from the advance output judgment circuit even though the output signals for turning on and off the phase capacitor are all output signals for shutting off Is provided, it is possible to report an erroneous wiring in which the current or voltage input to the reactive power voltage conversion circuit has the opposite polarity. Also,
By providing a phase inversion instruction circuit for inverting the polarity of the current or voltage of the power system by operating the switching means based on the notification from the erroneous input determination alarm circuit, the energized state is stopped and the erroneous wiring is connected. There is an effect that it is possible to obtain a power factor control device that does not need to be replaced and performs a stable operation in the energized state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示す力率制御装置のブロ
ック図
FIG. 1 is a block diagram of a power factor control device showing one embodiment of the present invention.

【図2】従来例を示す力率制御装置のブロック図FIG. 2 is a block diagram of a power factor control device showing a conventional example.

【図3】力率制御装置の動作説明用の電流・電圧入力の
ベクトル図
FIG. 3 is a vector diagram of current / voltage input for explaining the operation of the power factor control device.

【図4】力率制御装置の動作説明用の無効電力電圧変換
特性図
FIG. 4 is a diagram illustrating a reactive power voltage conversion characteristic for explaining the operation of the power factor control device.

【符号の説明】[Explanation of symbols]

1 無効電力電圧変換回路 2 動作条件設定回路 3 投入・遮断判別回路 4 遅延時間回路 5 オンオフ制御回路 6 出力回路 7 進み出力判定回路 8 誤入力判定警報回路 9 位相反転指示回路 91 切換スイッチ CT 変流器 PT 変成器 DESCRIPTION OF SYMBOLS 1 Reactive power voltage conversion circuit 2 Operating condition setting circuit 3 Closing / shutdown determination circuit 4 Delay time circuit 5 On / off control circuit 6 Output circuit 7 Advance output determination circuit 8 False input determination alarm circuit 9 Phase inversion instruction circuit 91 Changeover switch CT Current flow Vessel PT transformer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−55621(JP,A) 特開 平1−136527(JP,A) 特開 平1−286727(JP,A) 特開 平2−17827(JP,A) (58)調査した分野(Int.Cl.7,DB名) G05F 1/70 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-55621 (JP, A) JP-A-1-136527 (JP, A) JP-A-1-286727 (JP, A) JP-A-2- 17827 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G05F 1/70

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電力系統の無効電力を検出し、この検出結
果に基づいて進相コンデンサを投入または遮断して前記
電力系統の力率改善を行う力率制御装置において、前記
電力系統の電流と電圧との変成出力から無効電力を検出
し、この無効電力に比例した電圧に変換する無効電力電
圧変換回路と、この無効電力電圧変換回路の出力電圧の
符号または大きさより前記無効電力電圧変換回路に入力
した電流または電圧の位相が進み位相であることを判定
する進み出力判定回路と、この進み出力判定回路の進み
出力判定信号と前記進相コンデンサの投入,遮断用の出
力信号が全て遮断用の出力信号であることの論理積条件
に基づいて誤配線の警報を出力する誤入力判定警報回路
とを備え、前記無効電力電圧変換回路への電流入力と電
圧入力のいずれかが逆極性の場合に前記誤入力判定警報
回路より警報を報知することを特徴とする力率制御装
置。
1. A power factor control device for detecting reactive power of a power system and for turning on or off a phase-advancing capacitor based on the detection result to improve a power factor of the power system. A reactive power voltage conversion circuit that detects reactive power from a transformed output with a voltage and converts the reactive power into a voltage proportional to the reactive power, and the reactive power voltage conversion circuit based on the sign or magnitude of the output voltage of the reactive power voltage conversion circuit. A leading output determining circuit for determining that the phase of the input current or voltage is the leading phase; a leading output determining signal of the leading output determining circuit and an output signal for turning on / off the phase-advancing capacitor are all used for blocking. An erroneous input judgment alarm circuit that outputs an alarm of erroneous wiring based on the AND condition of the output signal
And a current input and power supply to the reactive power / voltage conversion circuit.
If any of the pressure inputs have reverse polarity, the erroneous input judgment alarm
A power factor control device that issues a warning from a circuit .
【請求項2】電力系統の無効電力を検出し、この検出結
果に基づいて進相コンデンサを投入または遮断して前記
電力系統の力率改善を行う力率制御装置において、前記
電力系統の電流と電圧との変成出力から無効電力を検出
し、この無効電力に比例した電圧に変換する無効電力電
圧変換回路の出力電圧の符号または大きさより前記無効
電力電圧変換回路に入力した電流または電圧の位相が進
み位相であることを判定する進み出力判定回路と、この
進み出力判定回路の進み出力判定信号と前記進相コンデ
ンサの投入, 遮断用の出力信号が全て遮断用の出力信号
であることの論理積条件に基づいて誤配線の警報を出力
する誤入力判定警報回路および前記誤入力判定警報回路
の出力に基づいて切換手段の操作により電力系統の電流
または電圧の極性を反転させる位相反転指示回路を備え
たことを特徴とする力率制御装置。
2. A power factor control device for detecting a reactive power of a power system and for turning on or off a phase-advancing capacitor based on the detection result to improve a power factor of the power system. The phase of the current or voltage input to the reactive power voltage conversion circuit is determined based on the sign or magnitude of the output voltage of the reactive power voltage conversion circuit that detects the reactive power from the transformed output with the voltage and converts the reactive power into a voltage proportional to the reactive power. A leading output determination circuit for determining that the phase is a leading phase, and a logical product of a leading output determination signal of the leading output determination circuit and an output signal for turning on / off the phase advance capacitor being all an output signal for blocking. An erroneous input determination alarm circuit that outputs an alarm of erroneous wiring based on a condition, and a polarity of current or voltage of a power system by operating a switching unit based on an output of the erroneous input determination alarm circuit. Power factor control apparatus characterized by comprising a phase inversion instruction circuit for inverting.
【請求項3】請求項2に記載の力率制御装置において、
位相反転指示回路は無効電力電圧変換回路の出力電圧の
符号を反転する指示信号を出力することを特徴とする力
率制御装置。
3. The power factor control device according to claim 2,
A power factor control device, wherein the phase inversion instruction circuit outputs an instruction signal for inverting the sign of the output voltage of the reactive power voltage conversion circuit.
JP3117748A 1991-05-23 1991-05-23 Power factor control device Expired - Lifetime JP3044822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3117748A JP3044822B2 (en) 1991-05-23 1991-05-23 Power factor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3117748A JP3044822B2 (en) 1991-05-23 1991-05-23 Power factor control device

Publications (2)

Publication Number Publication Date
JPH04344908A JPH04344908A (en) 1992-12-01
JP3044822B2 true JP3044822B2 (en) 2000-05-22

Family

ID=14719340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3117748A Expired - Lifetime JP3044822B2 (en) 1991-05-23 1991-05-23 Power factor control device

Country Status (1)

Country Link
JP (1) JP3044822B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115955234B (en) * 2023-03-09 2023-05-16 三峡智控科技有限公司 Majority decision circuit energy consumption optimizing device and optimizing method

Also Published As

Publication number Publication date
JPH04344908A (en) 1992-12-01

Similar Documents

Publication Publication Date Title
EP0571657B1 (en) Inverter apparatus and inverter controlling method having fault protection
US20020130556A1 (en) Method for apparatus for transfer control and undervoltage detection in an automatic transfer switch
TW405294B (en) Power conversion device
JPH06274249A (en) Uninterruptible power supply system for backup
US4812943A (en) Current fault protection system
US7095598B2 (en) Fault detection apparatus and method
JP3044822B2 (en) Power factor control device
JPH07239359A (en) Inverter apparatus and driving method therefor
CA2489909C (en) Ac power backfeed protection based on phase shift
KR900702632A (en) Current limiting method of voltage inverter
JPH06161577A (en) Power factor controller
KR980012760A (en) Emergency line protection device
JP3853223B2 (en) Power saving device
KR102249379B1 (en) Leakage alarm relay using detection of voltage variation of electric line for motor and its relay system
JPH0681012U (en) Power factor controller
KR102242985B1 (en) The Negative-phase Relay method and Negative-phase Relay
JPH0756612B2 (en) Load tap switching device
JP2618227B2 (en) Control device for air conditioner
JPH09308083A (en) Phase interruption detection circuit
JP2005010066A (en) Three-phase open-phase detecting circuit, and air-conditioner using the same
KR20190034895A (en) Protective Apparatus and Method for Zero Harmonic Filter
JPH09107681A (en) Dc uniterruptible power supply apparatus
KR101825891B1 (en) Distributions Board Built in Zero Harmonic Reduction Apparatus equipped with Protective Functions of Phase Comparison
KR101832108B1 (en) Distributions Board Built in Zero Harmonic Reduction Apparatus equipped with Protective Functions of Electric Power Comparison
JPS6310650B2 (en)