JPS61223828A - Method for driving optical switching element - Google Patents

Method for driving optical switching element

Info

Publication number
JPS61223828A
JPS61223828A JP6364585A JP6364585A JPS61223828A JP S61223828 A JPS61223828 A JP S61223828A JP 6364585 A JP6364585 A JP 6364585A JP 6364585 A JP6364585 A JP 6364585A JP S61223828 A JPS61223828 A JP S61223828A
Authority
JP
Japan
Prior art keywords
voltage
optical switch
liquid crystal
voltage waveform
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6364585A
Other languages
Japanese (ja)
Inventor
Takao Umeda
梅田 高雄
Tetsuya Nagata
徹也 永田
Tatsuo Ikawa
伊川 辰夫
Yasuro Hori
康郎 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6364585A priority Critical patent/JPS61223828A/en
Publication of JPS61223828A publication Critical patent/JPS61223828A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent decline of optical switching performance and deterioration of element in the driving method of an optical switching element using a ferrodielectric substance, by using AC waveforms as much as possible in the driving waveform of the element. CONSTITUTION:Optical switching sections correspond to the intersecting points of signal electrodes S1-Sn and a common electrode C. When the optical switch of this invention is opened (selected condition), a voltage 2VO is applied across the common electrode C for a period TD only and no voltage is applied during another period TA. When the optical switch is closed (nonselected condition), no voltage is applied during a whole period TS. when such waveforms are impressed, the voltage VF which is applied across the common electrode C and signal electrode S1, namely, across a ferrodielectric substance becomes V51-VC and the time during which a DC voltage is applied can be shortened and an AC voltage can be applied during the remaining period. Accordingly, decline of the optical switching characteristic and DC deterioration of the liquid crystal material resulting from the charge up caused by continuous application of a DC voltage can be prevented.

Description

【発明の詳細な説明】 (発明の利用分野〕 本発明は光スイッチ素子の駆動法に係り、特に、強誘電
性液晶を用いたプリンタ用光スイッチアレイやディスプ
レイなどに好適な光スイッチ素子の駆動法に関する。
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to a method for driving an optical switch element, and in particular to a method for driving an optical switch element suitable for use in optical switch arrays for printers, displays, etc. using ferroelectric liquid crystals. Regarding the law.

〔発明の背景〕[Background of the invention]

強誘電性物質を用いた光スイッチ素子には透明セラミッ
クス(PLZT)を用いた光スイッチ素子がよく知られ
ている(特開昭57−93316号公報)。
As an optical switch element using a ferroelectric substance, an optical switch element using transparent ceramics (PLZT) is well known (Japanese Unexamined Patent Publication No. 57-93316).

一方、最近では強誘電性物質としてのカイラルスメクチ
ック液晶を用いた光スイッチ素子が注目をあびており、
以下、このスイッチ素子について述べる。まず、カイラ
ルスメクチック液晶を明らかにするために、表1に強誘
電性を示すカイラルスメクチックC液晶SmC″(DO
BAMBC,OOBAMBCC)とカイラル・スメクチ
ックH液晶SmH“(HOBACPC)の化学構造と相
転移温度を示す。
On the other hand, recently, optical switching devices using chiral smectic liquid crystals as ferroelectric materials have been attracting attention.
This switch element will be described below. First, in order to clarify the chiral smectic liquid crystal, Table 1 shows the chiral smectic C liquid crystal SmC'' (DO
The chemical structures and phase transition temperatures of BAMBC, OOBAMBCC) and chiral smectic H liquid crystal SmH'' (HOBACPC) are shown.

次に、第4図にこれらのカイラルスメクチック液晶分子
(以下、特にことわらない限り、液晶分子と略記する)
の電界応答性を示す。第4図に示すように、液晶分子2
は電界が印加されない状態(E=O)では、ラセン軸1
のまわりに″ねじれた構造”を持っている。このように
、液晶分子に対して液晶の物性(自発分極、ツイスト粘
度)で決る臨界電界E0以上の電界Eをラセン軸1に対
して直角方向に印加すると、液晶分子2は自発分極3の
方向を電界Eの方向にそろえるように配列するため、第
4図(a)、(c)に示すように、ラセン軸1に対して
角度θ(液晶分子2のねじれ角を示し、以下、チルト角
という)で一様に配向する。このような液晶分子2の直
流電界応答性を利用することによって光を透過したり、
遮断することが可能な光スイッチ素子を得ることが出来
る。
Next, Figure 4 shows these chiral smectic liquid crystal molecules (hereinafter abbreviated as liquid crystal molecules unless otherwise specified).
shows electric field response. As shown in Figure 4, liquid crystal molecules 2
is the helical axis 1 when no electric field is applied (E=O)
It has a "twisted structure" around it. In this way, when an electric field E greater than or equal to the critical electric field E0 determined by the physical properties of the liquid crystal (spontaneous polarization, twist viscosity) is applied to the liquid crystal molecules in a direction perpendicular to the helical axis 1, the liquid crystal molecules 2 move in the direction of spontaneous polarization 3. In order to align the liquid crystal molecules 2 in the direction of the electric field E, as shown in FIGS. ) to ensure uniform orientation. By utilizing the DC electric field responsiveness of such liquid crystal molecules 2, light can be transmitted,
An optical switch element that can be cut off can be obtained.

次に、第5図に液晶分子2の複屈折性を利用して光の透
過および遮断を行う複屈折タイプの光スイッチ素子の構
成およびその動作原理を示す。第5図(a)に示すよう
に、複屈折タイプでは液晶層4を一対の透明電極6a、
6bを表面に形成したガラス基板5a、5bで平行に挾
持し、基板5a、5bの両側に二枚の偏光板7a、7b
を互いに偏光軸が直交するように配置する。このとき、
第5図(b)に示すように、偏光板7aの偏光軸7ax
をラセン軸1に対して角度θになるようにしておくと、
負の直流電界IEI<IE(+1  を印加した時には
、第5図(d)に示すように、液晶分子2の配列方向が
偏光板7aの偏光軸7axと一致するため、光源8から
光スイッチ素子に入射した光9は透過せず、遮断される
。逆に、正の直流電界(E>Eo)を印加した時には第
5図(c)に示すように、液晶分子2の配列方向は偏光
軸7axに対してずれるため、複屈折効果により光が透
過する。このように、直流電界Eの極性を反転すること
により、光スイッチ動作を行うことができ、その応答性
は数十μs〜数十肥と極めて速い。
Next, FIG. 5 shows the structure and operating principle of a birefringence type optical switch element that transmits and blocks light by utilizing the birefringence of liquid crystal molecules 2. As shown in FIG. 5(a), in the birefringent type, the liquid crystal layer 4 is connected to a pair of transparent electrodes 6a,
6b are sandwiched in parallel between glass substrates 5a and 5b formed on their surfaces, and two polarizing plates 7a and 7b are placed on both sides of the substrates 5a and 5b.
are arranged so that their polarization axes are perpendicular to each other. At this time,
As shown in FIG. 5(b), the polarization axis 7ax of the polarizing plate 7a
If we set it at an angle θ with respect to the helical axis 1, we get
When a negative DC electric field IEI<IE (+1) is applied, as shown in FIG. 5(d), the alignment direction of the liquid crystal molecules 2 coincides with the polarization axis 7ax of the polarizing plate 7a, so that the light source 8 is connected to the optical switch element. The incident light 9 is not transmitted and is blocked.On the contrary, when a positive DC electric field (E>Eo) is applied, the alignment direction of the liquid crystal molecules 2 is aligned with the polarization axis, as shown in FIG. 5(c). 7ax, light is transmitted due to the birefringence effect.In this way, by reversing the polarity of the DC electric field E, an optical switch operation can be performed, and the response time is from several tens of microseconds to several tens of microseconds. Fertilizer and extremely fast.

また、液晶を用いれば、液晶層4の厚みを数μmと薄く
できるため、10〜20V程度の低電圧で駆動すること
ができる。これに対して、透明セラミックス(PLZT
)の場合は、数百V必要であり、−ケタ低い駆動電圧で
よいという利点をもつ。一方、第6図に液晶層内に二色
性色素を混入して光透過量を制御するゲストホストタイ
プの光スイッチ素子の構成およびその動作原理を示す。
Furthermore, if liquid crystal is used, the thickness of the liquid crystal layer 4 can be reduced to several micrometers, so that it can be driven at a low voltage of about 10 to 20V. On the other hand, transparent ceramics (PLZT
) requires several hundred V, which has the advantage of requiring an order of magnitude lower driving voltage. On the other hand, FIG. 6 shows the structure and operating principle of a guest-host type optical switch element in which a dichroic dye is mixed into the liquid crystal layer to control the amount of light transmission.

ゲストホストタイプの素子では液晶層内に二色性色素、
例えば、黒の色素を混入しておく、この場合には、偏光
板は一枚で良い。偏光板7aの偏光軸7axを第6図(
b)に示すように配置する。第6図(d)に示すように
、負の直流電圧(IEI<IEcI)  を印加すると
、二色性色素分子10は液晶分子2と同じ配列状態とな
るため二色性色素分子10の吸収軸(分子の長軸)は偏
光板の偏光軸7axと一致し、液晶層4内に入射された
光9が吸収されるので、透過しない。逆に、正の電圧(
E>E、)  を印加すると、二色性色素分子1゜の配
列方向は偏光軸7axからずれるため、光は吸収される
ことなく、光スイッチ素子を透過する。
In guest-host type devices, dichroic dyes and
For example, if a black pigment is mixed in, only one polarizing plate is required. The polarization axis 7ax of the polarizing plate 7a is shown in FIG.
Arrange as shown in b). As shown in FIG. 6(d), when a negative DC voltage (IEI<IEcI) is applied, the dichroic dye molecules 10 are aligned in the same state as the liquid crystal molecules 2, so the absorption axis of the dichroic dye molecules 10 is (Long axis of the molecule) coincides with the polarization axis 7ax of the polarizing plate, and the light 9 incident on the liquid crystal layer 4 is absorbed and is not transmitted. Conversely, positive voltage (
When E>E) is applied, the direction in which the dichroic dye molecules are arranged by 1° is shifted from the polarization axis 7ax, so that the light is transmitted through the optical switch element without being absorbed.

このように、ゲストホストタイプの光スイッチ素子も複
屈折タイプの光スイッチ素子(第5図)と同様、直流電
界Eの極性を反転することによって光をスイッチングす
ることが8来る。この方式の素子も複屈折タイプの素子
と同様、低電圧で高速応答する。
In this way, the guest-host type optical switch element can also switch light by reversing the polarity of the DC electric field E, similar to the birefringence type optical switch element (FIG. 5). Like birefringent type elements, this type of element also responds quickly at low voltage.

強誘電性液晶を用いた光スイッチ素子の従来の駆動方法
は第3図ないし第5図で説明した強誘電性液晶分子の直
流電界応答より第7図に示すような正あるいは負の直流
電圧を選択時間、あるいは。
The conventional driving method for optical switching devices using ferroelectric liquid crystals is to apply a positive or negative DC voltage as shown in Figure 7 based on the DC electric field response of ferroelectric liquid crystal molecules explained in Figures 3 to 5. Select time or.

非選択時間の間、常に印加する方法であった。The method was to always apply it during the non-selection time.

(特開昭59−138786号公報)この方法では、光
スイッチ素子として次の問題がある。
(Japanese Unexamined Patent Publication No. 59-138786) This method has the following problems as an optical switch element.

(1)直流電圧を常に印加する必要があり、液晶材料の
劣化やチャージアップによるスイッチ特性の低下などが
問題となる。
(1) It is necessary to constantly apply a DC voltage, which poses problems such as deterioration of the liquid crystal material and deterioration of switching characteristics due to charge-up.

(2)従来の駆動法では光スイッチ特性としては光透過
・光遮断の二段階で、光透過量を変えることが出来ない
(2) In the conventional driving method, the optical switch characteristic has two stages of light transmission and light blocking, and the amount of light transmission cannot be changed.

(3)  (1)で示したように、直流電圧を常に印加
するため、複数個の光スイッチからなる光スイッチアレ
イを駆動する方法は、スターティック駆動となり、光ス
イッチと同じだけのドライバーが必要となる。
(3) As shown in (1), since DC voltage is always applied, the method for driving an optical switch array consisting of multiple optical switches is static drive, which requires the same number of drivers as optical switches. becomes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は強誘電性物質を用いた光スイッチ素子の
駆動法において、駆動波形の交流化をはかることによっ
て、光スイッチ性能の低下や素子の劣化を防ぎ、光透過
量を自在に変えられる素子駆動法を提供することにある
6 〔発明の概要〕 強誘電性液晶分子は自発分極を持つため、ネマチック液
晶分子に比べて電界に対する応答性はきわめて速く、印
加電圧や自発分極の大きさに依存するが、印加電圧が2
0Vの時には、0.5〜1肥の速度で電圧に応答する。
The purpose of the present invention is to prevent deterioration of optical switch performance and element deterioration and to freely change the amount of light transmission by changing the drive waveform to alternating current in a method for driving an optical switch element using a ferroelectric substance. [Summary of the Invention] Since ferroelectric liquid crystal molecules have spontaneous polarization, their response to an electric field is extremely fast compared to nematic liquid crystal molecules, and their response to applied voltage and the magnitude of spontaneous polarization is extremely fast. It depends, but if the applied voltage is 2
At 0V, it responds to voltage at a rate of 0.5 to 1 fertilization.

これを周波数になおすと、IKHzから2KHzの電圧
パルスに応答することになる。逆に言えば、さらに、電
圧の周波数を上げてゆけば、ある周波数以上では電圧変
化に追従できなくなるのではないかと考えた。
If this is converted into a frequency, it will respond to voltage pulses of IKHz to 2KHz. Conversely, I thought that if the frequency of the voltage was further increased, it would become impossible to follow voltage changes above a certain frequency.

第8図はこの実験結果を示す図である。(a)(c)図
は選択電圧波形、(b)(d)図は非選択電圧波形であ
る。光スイッチ素子を一定周期T8で選択(スイッチ開
−光透過)、非選択(スイッチ閉−光遮断)動作をさせ
る場合、まず。
FIG. 8 is a diagram showing the results of this experiment. The figures (a) and (c) show the selection voltage waveforms, and the figures (b) and (d) show the non-selection voltage waveforms. When the optical switch element is operated to select (switch open - light transmission) and non-select (switch closed - light cut off) at a constant period T8, first.

TI、の期間にスイッチの開閉状態を決める直流電圧(
選択時の場合には+vo(v)を非選択時の場合には−
V、  (v) )を印加後、交流電圧を引き続いて期
間T1の間、印加する。交流電圧波形の周期をT、とじ
、この周波数fK (1/T、)を高くしてゆく。(a
)(b)図はflが比較的小さい場合の電圧波形と光透
過特性であり、液晶分子が電圧変化にいくらか追従でき
るため、光透過量は交流電圧の極性変化に応じて変化す
る。これに対して、flが非常に高くなると、(c)(
d)に示すように、光透過量は直流電圧印加によって決
まった状態をそのまま維持することがわかった。
The DC voltage (
+vo(v) when selected, - when not selected
After applying V, (v)), an alternating current voltage is subsequently applied for a period T1. The period of the AC voltage waveform is set to T, and this frequency fK (1/T,) is increased. (a
)(b) shows the voltage waveform and light transmission characteristics when fl is relatively small.Since the liquid crystal molecules can somewhat follow voltage changes, the amount of light transmission changes in accordance with changes in the polarity of the AC voltage. On the other hand, when fl becomes very high, (c) (
As shown in d), it was found that the amount of light transmission was maintained in a fixed state by applying a DC voltage.

このような現象が生じる原因は液晶分子が電圧変化に追
従できなくなることが考えられる。
The reason why such a phenomenon occurs is considered to be that liquid crystal molecules are unable to follow voltage changes.

そこで、第1表に示した強誘電性液晶DABAMBC(
76℃から95℃の温度範囲でカイラルスメクチックC
相を示す)を用いて、第5図(a)に示す構成の素子を
製作し、第8図に示すような電圧波形を素子に印加して
光透過量を測定した。なお、液晶層の厚みは5μmであ
る。第8図(a)、(c)に示すような選択電圧波形を
印加した時の光透過量変化において、直流電圧印加時の
光透過量をB6゜交流電圧印加時の最小光透過量をB工
として、光透過量保持率をBx/B、で定義した。第9
図は保持率と交流電圧波形の周波数の関係を示したもの
である。
Therefore, the ferroelectric liquid crystal DABAMBC (shown in Table 1)
Chiral smectic C in the temperature range from 76℃ to 95℃
A device having the configuration shown in FIG. 5(a) was manufactured using the following phase (indicating phase), and the amount of light transmitted was measured by applying a voltage waveform as shown in FIG. 8 to the device. Note that the thickness of the liquid crystal layer is 5 μm. Regarding the changes in the amount of light transmission when applying the selection voltage waveforms as shown in Figure 8 (a) and (c), the amount of light transmission when DC voltage is applied is B6°, and the minimum amount of light transmission when AC voltage is applied is B6. As a technical measure, the light transmission amount retention rate was defined as Bx/B. 9th
The figure shows the relationship between the retention rate and the frequency of the AC voltage waveform.

周波数f1を大きくしてゆくと、保持率は大きくなり、
液晶温度が80℃の場合には、!、が11KHz以上で
保持率100%、90℃の場合には、!、が15KHz
以上になると保持率が100%となる。温度が高くなる
とfII を大きくする必要があるのは、液晶の粘度が
低下して分子が動きやすくなるためである。
As the frequency f1 increases, the retention rate increases,
When the liquid crystal temperature is 80℃,! , when the retention rate is 100% at 11KHz or higher and the temperature is 90℃, ! , is 15KHz
When it becomes more than that, the retention rate becomes 100%. The reason why it is necessary to increase fII as the temperature rises is because the viscosity of the liquid crystal decreases and molecules move more easily.

同様に第8図(b)(d)図に示すような非選択電圧波
形を印加した時にも、同じような傾向が見られ、80℃
の場合、flを11KHz以上。
Similarly, when applying non-selective voltage waveforms as shown in Figures 8(b) and 8(d), a similar tendency was observed;
In this case, set fl to 11KHz or higher.

90℃の場合には15KHz以上にすると、光透過量の
増加はなくなり、B、の値が保持されることがわかった
In the case of 90° C., it was found that when the frequency is set to 15 KHz or more, the amount of light transmission does not increase and the value of B is maintained.

第8図(c)(d)と第7図を比較してわかるように、
電圧波形が異なるにもかかわらず、光透過量はほとんど
同じになる。第8図(c)(d)の場合にはTAの期間
には交流波形が加わるので、液晶層のチャージアップと
いう現象は生じないし、直流電圧の印加時間Toは短く
なるため、材料の直流劣化も生じにくくなる。
As can be seen by comparing Figures 8(c) and 7(d) with Figure 7,
Although the voltage waveforms are different, the amount of light transmission is almost the same. In the case of Fig. 8(c) and (d), since the AC waveform is added during the TA period, the phenomenon of charge-up of the liquid crystal layer does not occur, and the DC voltage application time To is short, so the DC voltage deterioration of the material It also becomes less likely to occur.

〔発明の実施例〕[Embodiments of the invention]

第1図は光スイッチアレイに本発明を適用した実施例で
ある。(a)は電極配置を示したもので、5xtsz+
・・・Sl・・・S、は信号電極、Cは共通電極であり
、その交点に対応するのが光スイッチ部である。・ (
b)は共通電極Cに印加する電圧波形Voと信号電極S
、に印加する電圧波形V□である。T、は光スイッチの
開閉時間であり、光スイッチを開く(選択状態)の場合
には、期間T、の時間だけ電圧2V、を印加し、T、の
期間は零Vとする。また、光スイッチを閉じる(非選択
状態)場合には、T6の全期間零Vとする。このような
電圧波形を印加した時、共通電極Cと信号電極S、の間
、すなわち1強誘電性物質に印加される電圧V、はV□
−vcとなり、その電圧波形は選択時には第8図(C)
、非選択時には8図(d)のような波形となり1本発明
の駆動法が可能となる。
FIG. 1 shows an embodiment in which the present invention is applied to an optical switch array. (a) shows the electrode arrangement, 5xtsz+
...Sl...S are signal electrodes, C is a common electrode, and the optical switch section corresponds to the intersection thereof.・(
b) shows the voltage waveform Vo applied to the common electrode C and the signal electrode S.
, is a voltage waveform V□ applied to . T is the opening/closing time of the optical switch; when the optical switch is open (selected state), a voltage of 2 V is applied for the period T, and 0 V is applied for the period T. Further, when the optical switch is closed (non-selected state), the voltage is set to zero V for the entire period of T6. When such a voltage waveform is applied, the voltage V applied between the common electrode C and the signal electrode S, that is, to one ferroelectric substance, is V□
-vc, and the voltage waveform is as shown in Figure 8 (C) when selected.
, when not selected, the waveform becomes as shown in FIG. 8(d), enabling the driving method of the present invention.

光プリンタ用光スイッチアレイに本発明を適用した。用
い、だ液晶材料はDOBAMBCであり、液晶層の温度
が80℃になるように温度制御を行った。
The present invention was applied to an optical switch array for an optical printer. The liquid crystal material used was DOBAMBC, and the temperature was controlled so that the temperature of the liquid crystal layer was 80°C.

解像度10ドツト/nmで、印写速度80mm/秒のプ
リントを可能とするには一ラインの処理時間T、は1.
25m5となる。そこで、T1を0 、5 ms 。
To enable printing at a printing speed of 80 mm/sec with a resolution of 10 dots/nm, the processing time T for one line is 1.
It will be 25m5. Therefore, T1 was set to 0.5 ms.

T1を0.75m5とし、vl を30V、V、を20
Vとした。また、Tあの期間に印加する交流電圧の周波
数を12KHzとした。これにより、あたかも直流電圧
を常時印加した時と同じ光透過特性が得られ、スイッチ
開時とスイッチ閉時の光透過量の比、すなわち、コント
ラスト比Ba/ Boを20〜30にすることが出来た
T1 is 0.75m5, vl is 30V, V is 20
It was set to V. Further, the frequency of the AC voltage applied during the period T was set to 12 KHz. As a result, the same light transmission characteristics as when a DC voltage is constantly applied can be obtained, and the ratio of the amount of light transmission when the switch is open and when the switch is closed, that is, the contrast ratio Ba/Bo can be set to 20 to 30. Ta.

また、光スイッチの開閉スピードは、各ライン処理時間
T1の最初のTDの期間に印加する直流電圧によって決
まるため、交流電圧印加による影響は現われない。スイ
ッチング速度を速くするには直流電圧値v0 を大きく
すれば良い。第2図は駆動電圧v0 と応答時間の関係
を示したものでv6 が20vの場合には0.5ms 
となる。          。
Further, since the opening/closing speed of the optical switch is determined by the DC voltage applied during the first TD period of each line processing time T1, there is no influence from the application of the AC voltage. In order to increase the switching speed, the DC voltage value v0 may be increased. Figure 2 shows the relationship between drive voltage v0 and response time. When v6 is 20V, it is 0.5ms.
becomes. .

T、の期間は、電圧v0印加によって液晶分子が完全に
ラセンがほどけてチルド角θで一様配向するまでの時間
、すなわち応答時間分だけは確保することが好ましい。
It is preferable to ensure that the period T is enough for the liquid crystal molecules to completely unhelix and be uniformly aligned at the chilled angle θ by applying the voltage v0, that is, for the response time.

第1図ではスターティック・ドライブの場合を示す。−
ライン処理時間T8のうち、信号電極S、に電圧を印加
する期間はT、たけであるので、残りTAの期間は別の
ラインを駆動することが可能となる。すなおち、時分割
駆動も可能となる。
FIG. 1 shows the case of static drive. −
Of the line processing time T8, the period during which the voltage is applied to the signal electrode S is only T, so that it is possible to drive another line during the remaining period TA. In other words, time-division driving is also possible.

第3図は別の実施例を示す図である。光プリンタのプリ
ント階調制御を行うには、光スイッチの光透過量を連続
的に変える必要がある。第3図は、これを実現するため
の駆動法である。
FIG. 3 is a diagram showing another embodiment. To control the print gradation of an optical printer, it is necessary to continuously change the amount of light transmitted through the optical switch. FIG. 3 shows a driving method for realizing this.

共通電極Cに印加する電圧V。は第1図(b)に示すよ
うな波形であるが、交流電圧波形の周波数は比較的低周
波にしておく。そして、信号電極S、に印加する電圧波
形V□では、第1図では期間T、の印加電圧は零Vであ
ったが、第3図では直流電圧を印加し、この直流電圧値
を変えることにより、T1の期間に液晶層に印加される
交流電圧に直流バイアスをかける。この直流バイアス値
が大きくなるに従って、光透過量が増加する。第3図に
おいて、直流電圧値がOv→v2→v3と大きくなるに
従って、光透過量は5A4S、→Soと増加する。
Voltage V applied to common electrode C. has a waveform as shown in FIG. 1(b), but the frequency of the AC voltage waveform is set to a relatively low frequency. In the voltage waveform V□ applied to the signal electrode S, the applied voltage during the period T in FIG. 1 was zero V, but in FIG. 3, a DC voltage is applied and this DC voltage value is changed. Accordingly, a DC bias is applied to the AC voltage applied to the liquid crystal layer during the period T1. As this DC bias value increases, the amount of light transmission increases. In FIG. 3, as the DC voltage value increases from Ov→v2→v3, the amount of light transmission increases from 5A4S to →So.

第3図では光透過量の調節をバイアス電圧値をかえるこ
とにより行ったが、TAの期間に液晶層に印加する交流
電圧の周波数を変える(周波数変調)ことによっても行
なうことが出来る。このことは第9図に示した光透過量
の保持率特性から自明である。
In FIG. 3, the amount of light transmission is adjusted by changing the bias voltage value, but it can also be done by changing the frequency of the AC voltage applied to the liquid crystal layer during the TA period (frequency modulation). This is obvious from the light transmission amount retention characteristic shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、強誘電性物質を用いた光スイッチ素子
の駆動法として、直流電圧印加時間を短くでき、かつ、
残りの期間は交流電圧を印加するため、直流電圧の連続
印加によるチャージアップに伴う光スイッチ特性の低下
や、液晶材料の直流劣化を防止できる。
According to the present invention, as a method for driving an optical switch element using a ferroelectric substance, the DC voltage application time can be shortened, and
Since AC voltage is applied during the remaining period, it is possible to prevent deterioration of optical switching characteristics due to charge-up due to continuous application of DC voltage and DC deterioration of the liquid crystal material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の一実施例を示す図、第4
図は強誘電性液晶分子の電界応答性を示す図、第5図は
複屈折を利用した光スイッチ素子の構造と動作原理を示
す図、第6図はゲストホストタイプの光スイッチ素子の
構造と動作原理図。 第7図は従来の駆動法を示す図、第8図、第9図は本発
明の要点を示す図である。 1・・・ラセン軸、2・・・液晶分子、3・・・自発分
極、4・・・液晶層、5・・・基板、6・・・電極、7
・・・偏光板、8・・・光源、9・・・入射光、1o・
・・二色性色素。
1 to 3 are diagrams showing one embodiment of the present invention, and FIG.
Figure 5 shows the electric field response of ferroelectric liquid crystal molecules, Figure 5 shows the structure and operating principle of an optical switch using birefringence, and Figure 6 shows the structure and operating principle of a guest-host type optical switch. Diagram of operation principle. FIG. 7 is a diagram showing the conventional driving method, and FIGS. 8 and 9 are diagrams showing the main points of the present invention. DESCRIPTION OF SYMBOLS 1... Helix axis, 2... Liquid crystal molecule, 3... Spontaneous polarization, 4... Liquid crystal layer, 5... Substrate, 6... Electrode, 7
... Polarizing plate, 8... Light source, 9... Incident light, 1o.
...Dichroic pigment.

Claims (1)

【特許請求の範囲】 1、一対の電極間に透明の強誘電性物質を介在させて電
圧を印加することにより、圧記強誘電性物質の透過光量
を制御する光スイッチ素子の駆動法において、 選択電圧波形と非選択電圧波形が、それぞれ、直流電圧
波形と交流電圧波形の組合せからなり、少なくとも、選
択時と非選択時の前記直流電圧の極性が逆であることを
特徴とする光スイッチ素子の駆動法。 2、選択あるいは非選択の前記電圧波形が前記直流電圧
を印加後、これに続いて前記交流電圧が印加されるよう
な電圧波形としたことを特徴とする特許の請求の範囲第
1項記載の光スイッチ素子の駆動法。 3、前記交流電圧波形の周波数を変化させることにより
前記光スイッチの透過光量を非選択状態での透過光量と
選択状態での透過光量の間で任意に変化させるようにし
たことを特徴とする特許請求の範囲第1項記載の光スイ
ッチ素子の駆動法。 4、前記交流電圧波形に直流バイアスをかけることによ
り、非選択状態あるいは非選択状態での前記光スイッチ
の透過光量を変化させるようにしたことを特徴とする特
許請求の範囲第1項記載の光スイッチ素子の駆動法。 5、前記強誘電性物質が強誘電性をもつカイラルスメク
チツクC液晶あるいはカイラルスメクチツクH液晶であ
ることを特徴とする特許請求の範囲第1項記載の光スイ
ッチ素子の駆動法。
[Scope of Claims] 1. A method for driving an optical switching element that controls the amount of light transmitted through a pressed ferroelectric material by interposing a transparent ferroelectric material between a pair of electrodes and applying a voltage, the method comprising: An optical switching element characterized in that the selection voltage waveform and the non-selection voltage waveform each consist of a combination of a DC voltage waveform and an AC voltage waveform, and at least the polarity of the DC voltage during selection and non-selection is reversed. driving method. 2. The selected or unselected voltage waveform is a voltage waveform such that after the DC voltage is applied, the AC voltage is subsequently applied. Driving method for optical switch elements. 3. A patent characterized in that the amount of transmitted light of the optical switch is arbitrarily changed between the amount of transmitted light in a non-selected state and the amount of transmitted light in a selected state by changing the frequency of the AC voltage waveform. A method for driving an optical switch element according to claim 1. 4. The light according to claim 1, wherein the amount of light transmitted through the optical switch in a non-selected state or a non-selected state is changed by applying a DC bias to the AC voltage waveform. How to drive a switch element. 5. The method of driving an optical switch element according to claim 1, wherein the ferroelectric substance is a chiral smectic C liquid crystal or a chiral smectic H liquid crystal having ferroelectric properties.
JP6364585A 1985-03-29 1985-03-29 Method for driving optical switching element Pending JPS61223828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6364585A JPS61223828A (en) 1985-03-29 1985-03-29 Method for driving optical switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6364585A JPS61223828A (en) 1985-03-29 1985-03-29 Method for driving optical switching element

Publications (1)

Publication Number Publication Date
JPS61223828A true JPS61223828A (en) 1986-10-04

Family

ID=13235293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6364585A Pending JPS61223828A (en) 1985-03-29 1985-03-29 Method for driving optical switching element

Country Status (1)

Country Link
JP (1) JPS61223828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256933A (en) * 1985-09-06 1987-03-12 Matsushita Electric Ind Co Ltd Driving method for liquid crystal matrix display panel
JPH02146525A (en) * 1988-08-12 1990-06-05 F Hoffmann La Roche Ag Method and circuit for driving dhf liquid crystal cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256933A (en) * 1985-09-06 1987-03-12 Matsushita Electric Ind Co Ltd Driving method for liquid crystal matrix display panel
JPH02146525A (en) * 1988-08-12 1990-06-05 F Hoffmann La Roche Ag Method and circuit for driving dhf liquid crystal cell

Similar Documents

Publication Publication Date Title
US4997264A (en) Ferroelectric liquid crystal devices having a high surface tilt
US6320571B1 (en) Bistable liquid crystal display device
JPS62262029A (en) Driving method for optical switch element
US4773716A (en) Method of driving a liquid crystal display apparatus employing a ferroelectric liquid crystal cell
JPH1152431A (en) Liquid crystal display element
JPH02153322A (en) Liquid crystal electrooptical device
KR100266184B1 (en) Smetic liquid crystal material and liquid crystal optical element
JPS61223828A (en) Method for driving optical switching element
JPH04249290A (en) Driving method for liquid crystal electrooptic element
US5555110A (en) Method of driving a ferroelectric liquid crystal display
JPS62118326A (en) Driving method for liquid crystal element
JP2519420B2 (en) Ferroelectric liquid crystal electro-optical device
JPS60235121A (en) Driving method of liquid crystal element
US4109242A (en) Matrix address system using erase operation
DE3812463A1 (en) Method for driving a liquid-crystal cell
JPS6031121A (en) Driving method of optical modulating element
JPS61243430A (en) Driving method for ferroelectric liquid crystal element
JPH06194625A (en) Driving method for ferroelectric liquid crystal display element
JPH06194623A (en) Driving method of antiferroelectric liquid crystal display element
JP2586051B2 (en) Driving method of electro-optical element
JP2576818B2 (en) Driving method of electro-optical element
JPS6256933A (en) Driving method for liquid crystal matrix display panel
JPH01198724A (en) Liquid crystal optical modulating device and its driving method
JPS6348529A (en) Driving method for liquid crystal
JPS6283727A (en) Driving method for ferroelectric liquid crystal element