JPS61223621A - Temperature measuring circuit - Google Patents
Temperature measuring circuitInfo
- Publication number
- JPS61223621A JPS61223621A JP6542085A JP6542085A JPS61223621A JP S61223621 A JPS61223621 A JP S61223621A JP 6542085 A JP6542085 A JP 6542085A JP 6542085 A JP6542085 A JP 6542085A JP S61223621 A JPS61223621 A JP S61223621A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- circuit
- voltage
- switch
- multiplexer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/02—Means for indicating or recording specially adapted for thermometers
- G01K1/026—Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/18—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
- G01K7/20—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は測渇回・路に係り、特に複数個の測温抵抗体を
切換えて複数ポイントの測温を行なうに好適な測温回路
に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a temperature measuring circuit, and more particularly to a temperature measuring circuit suitable for measuring temperatures at multiple points by switching a plurality of resistance temperature sensors.
第6図は従来の測温回路の回路構成図で、特に3線式ブ
リッジ回路とフライングキャパシタ方式によるマルチプ
レクサ構成を例示するものである。FIG. 6 is a circuit configuration diagram of a conventional temperature measurement circuit, particularly illustrating a multiplexer configuration using a three-wire bridge circuit and a flying capacitor system.
同図において示ずように、3個の測温抵抗体RTD1.
RTD2.RTD3はそれぞれ抵抗R1、R2,R3、
抵抗R4,R5,R6、抵抗R7、R8,R9と共に3
線式ブリッジ回路を構成し、各ブリッジ端はそれぞれ抵
抗Rio、R11゜R12、リレー接点に1.に2.に
3を介してフライングキャパシタ方式のためのコンデン
サC1゜C2,C3に接続される。コンデンサCI、C
2゜C3の電圧はそれぞれリレー接点に1.に2.に3
を介して増幅器A1、抵抗R13,R14がら成る増幅
回路に接続され、電圧信号E。とじて送出される。ちな
みに、各3線式ブリッジ回路には基準発生器RGがら定
電圧が供給される。As shown in the figure, three resistance temperature detectors RTD1.
RTD2. RTD3 has resistors R1, R2, R3,
3 with resistors R4, R5, R6, resistors R7, R8, R9
A wire bridge circuit is constructed, and each bridge end has a resistor Rio, R11°R12, and a relay contact 1. 2. is connected to capacitors C1 and C2 and C3 for the flying capacitor system via C1 and C3. Capacitor CI, C
A voltage of 2°C3 is applied to each relay contact. 2. to 3
A voltage signal E is connected to an amplifier circuit consisting of an amplifier A1 and resistors R13 and R14 through a voltage signal E. It will be sent out. Incidentally, each three-wire bridge circuit is supplied with a constant voltage from the reference generator RG.
かかる構成において、各測温抵抗体RT[)1゜RTD
2.RTD3のそれぞれの測温範囲が0〜50℃である
とづると、測温抵抗体RTD1.RTD2.RTD3(
7)抵抗値は1ooΩがら120Ωの笥囲で変化する。In such a configuration, each resistance temperature detector RT[)1°RTD
2. If the temperature measurement range of each RTD3 is 0 to 50°C, then the resistance temperature detector RTD1. RTD2. RTD3(
7) The resistance value changes from 10Ω to 120Ω.
3線式ブリッジ回路はこの抵抗変化を0〜10mV位の
電圧変化に変換し、コンデンサC1,C2,C3の電圧
信号として蓄積する。コンデンサCI、C2,C3の電
圧はリレー接点K1.に2.に3を切換えることにより
、増幅回路に接続されるが、この時、増幅回路のゲイン
を500倍に設定してお(ことによって、測温結果に対
応した0〜5v程度の電圧信号F。を得ることができる
。The three-wire bridge circuit converts this resistance change into a voltage change of about 0 to 10 mV, and stores it as a voltage signal on capacitors C1, C2, and C3. The voltage of capacitors CI, C2, C3 is applied to relay contact K1. 2. By switching 3 to 3, it is connected to the amplifier circuit, but at this time, the gain of the amplifier circuit is set to 500 times. Obtainable.
ところが、第6図の構成では、各測温抵抗体RTD1.
RTD2.RTD3の抵抗値の変化を電圧信号に変換す
るためには、高精度の3線式ブリッジ回路を複数必要と
する。さらに、コンデンサC1,C2,C3に蓄積され
た微弱電圧を増幅回路に接続するためにはリレー接点に
1.に2.に3として、接触抵抗の低いものを選択する
必要があるため、回路が高価になるという問題点があっ
た。However, in the configuration of FIG. 6, each resistance temperature detector RTD1.
RTD2. In order to convert the change in the resistance value of the RTD 3 into a voltage signal, a plurality of highly accurate three-wire bridge circuits are required. Furthermore, in order to connect the weak voltage accumulated in the capacitors C1, C2, and C3 to the amplifier circuit, 1. 2. Thirdly, since it is necessary to select a material with low contact resistance, there is a problem that the circuit becomes expensive.
一方、第7図は従来の測温回路の他の例を示す回路構成
図であるが、第6図の構成と異なる点は、各3線式ブリ
ッジ回路の電圧をそれぞれ抵抗R20,R21,R22
、コン7 > サC11、C12、C13から成るフィ
ルタ回路を通じて、FETスイッチ31.32.83か
ら成るマルチプレクサ回路に接続し、リレー接点Kを介
して増幅回路Aに接続したことである。On the other hand, FIG. 7 is a circuit configuration diagram showing another example of the conventional temperature measuring circuit, but the difference from the configuration in FIG.
, controller 7 > is connected to a multiplexer circuit consisting of FET switches 31, 32, and 83 through a filter circuit consisting of sensors C11, C12, and C13, and connected to an amplifier circuit A via a relay contact K.
かかる構成において、測温抵抗体RTD1.’RTD2
.RTD3の抵抗値は3rA式ブリッジ回路で電圧変換
され、フィルタ回路を介して送出される。フィルタ回路
の出力電圧はマルチプレクサ回路で選択され、リレー接
点Kを介して増幅回路Aに入力され、ここで増幅されて
電圧信号E。とじて出力される。In such a configuration, the resistance temperature detector RTD1. 'RTD2
.. The resistance value of the RTD 3 is converted into a voltage by a 3rA type bridge circuit and sent out through a filter circuit. The output voltage of the filter circuit is selected by a multiplexer circuit and input to an amplifier circuit A via a relay contact K, where it is amplified to form a voltage signal E. The output will be closed.
ところが、M7図の構成におてぃも、高精度のブリッジ
回路はもちろん、フィルタ回路、マルチプレク゛り回路
としても高性能のものが要求され、フライングキャパシ
タ方式が採用できないため増幅回路Aとしてb高価な差
動増幅器を用いる必要がある等、コストダウンの1sf
l書要因が多かった。However, in the configuration of the M7 diagram, not only a high-precision bridge circuit but also a high-performance filter circuit and multiplexer circuit are required, and the flying capacitor method cannot be used, so the amplifier circuit A is an expensive one. 1sf for cost reduction as it is necessary to use a differential amplifier
There were many book factors.
ざらに・第7図の構成では、入出力間が絶縁されないと
いう問題点もあった。Roughly speaking, the configuration shown in FIG. 7 also had the problem that the input and output were not insulated.
従って、本発明の目的は上記従来技術の問題点を解消し
、フライングキャパシタ方式を採用することにより、入
出力間の絶縁と安価な非反転増幅器の使用を可能とし、
さらにリレー接点等の数を低減した測温回路を提供する
ことにある。Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and by adopting a flying capacitor system, it is possible to achieve insulation between input and output and to use an inexpensive non-inverting amplifier.
Another object of the present invention is to provide a temperature measuring circuit with a reduced number of relay contacts and the like.
〔発明の概要〕
上記目的を達成するために、本発明は複数個の測温抵抗
体と、この測温抵抗体の抵抗値を電圧変換すべく各測瀉
抵抗体毎に設けられたブリッジ手段と、このブリッジ手
段の出力電圧を選択するマルチプレクサ回路と、このマ
ルチブレ゛クナ手のがらの電圧信号をスイッチを介して
蓄積するコンデンサと、コンデンサの電圧をスイッチを
介して入力し、増幅して出力する増幅手段と、前記コン
デンサに接続されるスイッチを前記マルチプレクサ手段
側か増幅手段側に切換える手段とを備えた測温回路を提
供覆るものである。[Summary of the Invention] In order to achieve the above object, the present invention includes a plurality of resistance temperature detectors and a bridge means provided for each resistance temperature detector to convert the resistance value of the resistance temperature detector into a voltage. , a multiplexer circuit that selects the output voltage of this bridge means, a capacitor that accumulates the voltage signal from this multiplexer via a switch, and a capacitor that inputs the voltage of the capacitor via the switch, amplifies it, and outputs it. and means for switching a switch connected to the capacitor to either the multiplexer means side or the amplification means side.
更に、上記目的を達成するために、本発明は複数個の測
温抵抗体と、この測温抵抗体の抵抗値を電圧変換するブ
リッジ手段と、前記測温抵抗体を選択的に前記ブリッジ
手段に接続するマルチプレクサ手段と、前記ブリッジ手
段からの電圧信号をスイッチを介して蓄積するコンデン
サと、このコンデンサの電圧をスイッチを介して入力し
、増幅して出力する増幅手段と、前記コンデンサに接続
されるスイッチを前記ブリッジ手段側か増幅手段側に切
換える手段とを備えた測温回路を提供するものである。Further, in order to achieve the above object, the present invention includes a plurality of resistance temperature detectors, a bridge means for converting the resistance value of the resistance temperature detectors into a voltage, and a bridge means that selectively converts the resistance value of the resistance temperature detector into a voltage. multiplexer means connected to the bridge means; a capacitor for accumulating the voltage signal from the bridge means via a switch; amplification means for inputting the voltage of the capacitor via the switch, amplifying and outputting the amplified signal; The present invention provides a temperature measurement circuit including means for switching a switch to either the bridge means side or the amplification means side.
以下、図面を参照しながら本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図は本発明の一実施例に係る測温回路の回路構成図
である。同図において示すように、3線式ブリッジ回路
の出力はFETスイッチsi、s2、S3から成るマル
チプレクサに接続され、選択される。選択された3線式
ブリッジ回路の出力は抵抗R30、リレー接点に11を
介してフライングキャパシタ方式のためのコンデンサC
14に接続され、さらにリレー接点Kllの切換により
増幅器A1、抵RR13,R14から成る増幅回路に入
力され、電圧信号E。とじて送出される。FIG. 1 is a circuit diagram of a temperature measuring circuit according to an embodiment of the present invention. As shown in the figure, the output of the three-wire bridge circuit is connected to and selected by a multiplexer consisting of FET switches si, s2, and S3. The output of the selected three-wire bridge circuit is connected to the resistor R30, the relay contact through 11 to the capacitor C for the flying capacitor system.
14, and is further input to an amplifier circuit consisting of an amplifier A1 and resistors RR13 and R14 by switching the relay contact Kll, and the voltage signal E is input. It will be sent out.
ちなみに、抵抗R30にはFETスイッチS4が並列接
続されるが、これはマルチプレクサ回路の切換後のコン
デンサC14の電圧整定時間を短縮するものである。Incidentally, a FET switch S4 is connected in parallel to the resistor R30, which shortens the voltage settling time of the capacitor C14 after switching the multiplexer circuit.
かかる構成において、各測温抵抗体RTD1゜RTD2
.RTD3の測温結果に基づく各抵抗値は31式ブリッ
ジ回路を通じて、電圧信号に変換される。各電圧信号は
マルチプレクサ回路を通じて選択され、抵抗R30、リ
レー接点に11を通 □じてコンデンサC14に電圧
信号として1mされる。なお、マルチプレクサ回路の切
換直後は、コンデンサC14の信号の整定時間短縮のた
めに、FETスイッチS4が一時的に閉ざされる。コン
デンサC14の蓄積電圧が整定した後、この電圧はリレ
ー接点に11を切換えることにより増幅回路に接続され
、増幅されて測温結果に対応した電圧信号E。どして出
力される。In such a configuration, each resistance temperature detector RTD1° RTD2
.. Each resistance value based on the temperature measurement result of the RTD 3 is converted into a voltage signal through a Type 31 bridge circuit. Each voltage signal is selected through a multiplexer circuit, passed through a resistor R30, a relay contact 11, and is applied as a voltage signal to a capacitor C14 as a 1m voltage signal. Note that immediately after switching the multiplexer circuit, the FET switch S4 is temporarily closed in order to shorten the settling time of the signal of the capacitor C14. After the accumulated voltage of the capacitor C14 has been stabilized, this voltage is connected to the amplifier circuit by switching the relay contact 11, and is amplified to generate a voltage signal E corresponding to the temperature measurement result. How is it output?
第2図は第1図の構成の動作を説明するためのタイムチ
ャートであり、同図(A)はFETスイッチS1、同図
(B)はFETスイッチS2、同図(C)はFETスイ
ッチS3、同図(D)はFETスイッチS4のそれぞれ
オン・オフ状態を示し、同図(E)はリレー接点に11
の切換状態、同図(F)はコンデンサC14の蓄積電圧
を示す゛ものである。FIG. 2 is a time chart for explaining the operation of the configuration shown in FIG. 1, in which (A) is the FET switch S1, (B) is the FET switch S2, and (C) is the FET switch S3. , the same figure (D) shows the on/off state of the FET switch S4, and the same figure (E) shows the relay contact 11.
FIG. 10(F) shows the accumulated voltage of the capacitor C14.
第2図に示ずように、FETスイッチS1.S2、S3
から成るマルチプレクサ回路は各測温抵抗体RTD1.
RTD2.RTD3で測温された結果に基づく3線式ブ
リッジ回路からの゛電圧信号S−1残7七η憾うTVh
ど 7.−下「口T7ノIjl≦QAがオンしない場合
を想定すると、マルチプレクサ回路が切換わってからコ
ンデンサC14が充電され、出力電圧が整定するまでに
大きな時間が必要となる。例えば、抵抗R30の抵抗値
を小さくしてコンデンサC14の電圧整定時間を短くす
る方法も考えられるが、コンデンサC14はサンプル・
アンド・ボールド回路を構成しているため、抵抗R30
とのコンビネーションによるフィルタ構成が除かれると
耐ノイズ性がなくなり実用にならない。このため、マル
チプレクサ回路の切換り直後はFETスイッチS4をオ
ンしてコンデンサC14を高速で充電し、しかる後、F
ETスイッチS4をオフしてコンデンサC14を抵抗R
30とのフィルタ構成でノイズから守り、充電電圧を安
定してからリレー接点に11を切換える。コンデンサC
14の電圧は増幅回路を通じて増幅され、検出温度に対
応した出力電圧E。として出力される。出力電圧E。は
AD変換する等して所期の目的に供される。As shown in FIG. 2, FET switch S1. S2, S3
A multiplexer circuit consisting of each resistance temperature detector RTD1.
RTD2. ``Voltage signal S-1 remaining 77eta TVh from 3-wire bridge circuit based on temperature measurement result with RTD3
7. Assuming that T7 no Ijl≦QA is not turned on, it will take a long time for the capacitor C14 to be charged and the output voltage to settle after the multiplexer circuit is switched.For example, the resistance of the resistor R30 It is also possible to shorten the voltage settling time of capacitor C14 by reducing the value, but capacitor C14 is
Since it constitutes an and bold circuit, the resistor R30
If the filter configuration in combination with this is removed, the noise resistance will be lost and it will not be practical. Therefore, immediately after switching the multiplexer circuit, FET switch S4 is turned on to charge capacitor C14 at high speed, and then FET switch S4 is turned on to charge capacitor C14 at high speed.
Turn off the ET switch S4 and connect the capacitor C14 to the resistor R.
The filter configuration with 30 protects it from noise, and after stabilizing the charging voltage, switch 11 to the relay contact. Capacitor C
The voltage No. 14 is amplified through an amplifier circuit, and an output voltage E corresponding to the detected temperature is obtained. is output as Output voltage E. is used for the intended purpose by performing AD conversion or the like.
WK1EAn’+L’l裔1−1−4/l+r−二t%
、JJ上、、参−L方式が適用可能なため、安価な非反
転増幅器が適用でき、また高性能なリレー接点も1系統
でよいため、信頼性に優れ、コストの低い回路構成を実
現することができる。WK1EAn'+L'l descendant 1-1-4/l+r-2t%
, JJ, , Reference-L method can be applied, so an inexpensive non-inverting amplifier can be applied, and only one system of high-performance relay contacts is required, resulting in a highly reliable and low-cost circuit configuration. be able to.
第3図は本発明の他の実施例に係る測温回路の回路構成
図で、第1図構成と異なる点は、FETスイッチ81.
82.S3から成るマルチプレクサ回路を3線式ブリッ
ジ回路の出力側ではなく入力側に設けたことである。FIG. 3 is a circuit configuration diagram of a temperature measuring circuit according to another embodiment of the present invention, and the difference from the configuration in FIG. 1 is that the FET switch 81.
82. The multiplexer circuit consisting of S3 is provided on the input side of the three-wire bridge circuit rather than on the output side.
第3図の基本的な動作はほぼ第1図の構成と同様である
が、高価な3線式ブリッジ回路が1系統でよいため、更
なるコストダウンを計ることができる。The basic operation of FIG. 3 is almost the same as the configuration of FIG. 1, but since only one system of expensive three-wire bridge circuit is required, further cost reduction can be achieved.
第4図は本発明の更に他の実施例に係る測温回路の部分
回路構成図で、第1図、第3図の構成と異なる点はコン
デンサC11の放電用にFETスイッチS5を設けたこ
とである。FIG. 4 is a partial circuit configuration diagram of a temperature measuring circuit according to still another embodiment of the present invention, and the difference from the configuration of FIGS. 1 and 3 is that an FET switch S5 is provided for discharging the capacitor C11. It is.
第4図の構成において、FETスイッチS5は第5図の
タイムチャートに示すようなタイミングで操作される。In the configuration of FIG. 4, the FET switch S5 is operated at the timing shown in the time chart of FIG.
ちなみに、第5図(A)、(B)、(C)、(D)はそ
れぞれFETスイッチ81゜S2.84.S5のオン・
オフ状態、同図(E)はリレー接点に11の切換状態を
それぞれ示すものである。By the way, FIGS. 5(A), (B), (C), and (D) are FET switches 81°S2, 84. On S5
In the off state, (E) in the same figure shows 11 switching states of the relay contacts.
第4図に示すように、FETスイッチ34.S5をマル
チプレクサ回路を構成するFETスイッチ81,82.
83のいずれもがオンしていないタイミングにオンする
ことによって、コンデンサC14の電荷を放電させる。As shown in FIG. 4, FET switch 34. FET switches 81, 82 .S5 constitute a multiplexer circuit.
By turning on at a timing when none of the capacitors 83 and 83 are on, the charge in the capacitor C14 is discharged.
その結果、マルチプレクサ回路でチャンネルを切換えた
とき、コンデンサC14の残留電圧による前のチャンネ
ルの影響を小さくすることができる。As a result, when switching channels using the multiplexer circuit, the influence of the residual voltage of the capacitor C14 on the previous channel can be reduced.
(発明の効果〕
以上述べたように、本発明によれば高精度な3線式ブリ
ッジ回路やリレー接点を1系統化できると共に出力段の
増幅回路も安価な非反転増幅器が適用できるため、信頼
性に優れ、価格の安い測温回路を得ることができる。(Effects of the Invention) As described above, according to the present invention, a highly accurate three-wire bridge circuit and relay contacts can be integrated into one system, and an inexpensive non-inverting amplifier can be applied to the output stage amplifier circuit, making it reliable. It is possible to obtain a temperature measuring circuit with excellent performance and low price.
第1図、第3図は本発明の一実施例および他の実施例に
係る測温回路の回路構成図、
第2図は第1図の構成の動作を説明するタイムチャート
、
第4図は本発明の更に他の実施例に係る測温回路の部分
回路構成図、
第5図は第4図の構成の動作を説明するタイムチャート
、
第6図、第7図は従来の測温回路の回路構成図である。
RTDl、RTD2.RTD3・・・測温抵抗体、81
.82,83,84.85・・・FETスイッチ、K1
.に2.に3.に、Kl 1・・・リレー接点、 ′A
1・・・増幅器、A・・・増幅回路。
出願人代理人 猪 股 清
第2図1 and 3 are circuit configuration diagrams of temperature measuring circuits according to one embodiment and other embodiments of the present invention, FIG. 2 is a time chart explaining the operation of the configuration of FIG. 1, and FIG. 4 is a FIG. 5 is a time chart explaining the operation of the configuration of FIG. 4; FIGS. 6 and 7 are diagrams of a conventional temperature measurement circuit; FIG. 3 is a circuit configuration diagram. RTDl, RTD2. RTD3...Resistance temperature sensor, 81
.. 82, 83, 84.85...FET switch, K1
.. 2. 3. , Kl 1...Relay contact, 'A
1...Amplifier, A...Amplification circuit. Applicant's agent Kiyoshi Inomata Figure 2
Claims (1)
電圧変換すべく各測温抵抗体毎に設けられたブリッジ手
段と、このブリッジ手段の出力電圧を選択するマルチプ
レクサ手段と、このマルチプレクサ手段からの電圧信号
をスイッチを介して蓄積するコンデンサと、このコンデ
ンサの電圧をスイッチを介して入力し、増幅して出力す
る増幅手段と、前記コンデンサに接続されるスイッチを
前記マルチプレクサ手段側か増幅手段側に切換える手段
とを備えたことを特徴とする測温回路。 2、マルチプレクサ手段の切換り後に、コンデンサの入
力側の抵抗値を低減するスイッチ手段を備えたことを特
徴とする特許請求の範囲第1項に記載の測温回路。 3、マルチプレクサ手段の切換り後に、コンデンサの電
荷を放電する手段を備えたことを特徴とする特許請求の
範囲第2項に記載の測温回路。 4、複数個の測温抵抗体と、この測温抵抗体の抵抗値を
電圧変換するブリッジ手段と、前記測温抵抗体を選択的
に前記ブリッジ手段に接続するマルチプレクサ手段と、
前記ブリッジ手段からの電圧信号をスイッチを介して蓄
積するコンデンサと、このコンデンサの電圧をスイッチ
を介して入力し、増幅して出力する増幅手段と、前記コ
ンデンサに接続されるスイッチを前記ブリッジ手段側か
増幅手段側に切換える手段とを備えたことを特徴とする
測温回路。 5、マルチプレクサ手段の切換り後に、コンデンサの入
力側の抵抗値を低減するスイッチ手段を備えたことを特
徴とする特許請求の範囲第4項に記載の測温回路。 6、マルチプレクサ手段の切換り後に、コンデンサの電
荷を放電する手段を備えたことを特徴とする特許請求の
範囲第5項に記載の測温回路。[Claims] 1. A plurality of resistance temperature detectors, a bridge means provided for each resistance temperature detector to convert the resistance value of the resistance temperature detectors into a voltage, and an output voltage of the bridge means. multiplexer means for selecting a voltage signal, a capacitor for accumulating a voltage signal from the multiplexer means via a switch, an amplification means for inputting the voltage of this capacitor via a switch, amplifying it and outputting it; and means for switching the switch to either the multiplexer means side or the amplification means side. 2. The temperature measurement circuit according to claim 1, further comprising switch means for reducing the resistance value on the input side of the capacitor after switching the multiplexer means. 3. The temperature measurement circuit according to claim 2, further comprising means for discharging the charge of the capacitor after switching the multiplexer means. 4. a plurality of resistance temperature detectors, a bridge means for converting the resistance value of the resistance temperature detectors into a voltage, and a multiplexer means for selectively connecting the resistance temperature detectors to the bridge means;
a capacitor for accumulating the voltage signal from the bridge means via a switch; an amplification means for inputting the voltage of the capacitor via the switch, amplifying and outputting the amplified signal; and a switch connected to the capacitor on the side of the bridge means. 1. A temperature measurement circuit characterized by comprising: means for switching to the amplifying means side. 5. The temperature measurement circuit according to claim 4, further comprising switch means for reducing the resistance value on the input side of the capacitor after switching the multiplexer means. 6. The temperature measurement circuit according to claim 5, further comprising means for discharging the charge of the capacitor after switching the multiplexer means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6542085A JPS61223621A (en) | 1985-03-29 | 1985-03-29 | Temperature measuring circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6542085A JPS61223621A (en) | 1985-03-29 | 1985-03-29 | Temperature measuring circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61223621A true JPS61223621A (en) | 1986-10-04 |
Family
ID=13286545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6542085A Pending JPS61223621A (en) | 1985-03-29 | 1985-03-29 | Temperature measuring circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61223621A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010237148A (en) * | 2009-03-31 | 2010-10-21 | Terumo Corp | Electronic clinical thermometer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50127532A (en) * | 1974-03-27 | 1975-10-07 |
-
1985
- 1985-03-29 JP JP6542085A patent/JPS61223621A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50127532A (en) * | 1974-03-27 | 1975-10-07 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010237148A (en) * | 2009-03-31 | 2010-10-21 | Terumo Corp | Electronic clinical thermometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5920199A (en) | Charge detector with long integration time | |
JP2008145269A (en) | Sensor system | |
JP4089929B2 (en) | Amplification circuit of heat ray sensor | |
JPS61223621A (en) | Temperature measuring circuit | |
JPH08189940A (en) | Digital measuring instrument | |
JPH05110350A (en) | Input offset voltage correcting device | |
JP2595858B2 (en) | Temperature measurement circuit | |
JP3048745B2 (en) | Analog input device | |
JPS58136135A (en) | Switching circuit | |
JPS6314369B2 (en) | ||
JPS59198361A (en) | Signal input apparatus | |
SU1643957A1 (en) | Temperature measuring device | |
SU1732186A1 (en) | Device for measuring temperature | |
JPS58171108A (en) | Amplifier with automatic zero correction | |
SU1018044A1 (en) | Electric radio component parameter automatic measuring device | |
JPS6051901A (en) | High sensitivity comparator | |
JP2541472B2 (en) | Micro voltage change detection circuit | |
JPH0138533Y2 (en) | ||
SU939963A1 (en) | Digital temperature meter | |
SU1126883A1 (en) | Logarithmic resistance converter | |
SU1622843A1 (en) | Device for measuring capacitor parameters | |
SU1582029A1 (en) | Multiple-point digital thermometer | |
JPS6012180Y2 (en) | data logger | |
JPS5821213Y2 (en) | Input switching device | |
JPH05225460A (en) | Thermosensor |