JPS61223528A - Measurement for propagation loss of lightwave guide - Google Patents
Measurement for propagation loss of lightwave guideInfo
- Publication number
- JPS61223528A JPS61223528A JP6582385A JP6582385A JPS61223528A JP S61223528 A JPS61223528 A JP S61223528A JP 6582385 A JP6582385 A JP 6582385A JP 6582385 A JP6582385 A JP 6582385A JP S61223528 A JPS61223528 A JP S61223528A
- Authority
- JP
- Japan
- Prior art keywords
- prism
- optical waveguide
- measurement
- light
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/35—Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、プリズムを用いた光導波路の伝搬損失測定
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the propagation loss of an optical waveguide using a prism.
この発明は、光導波路上の2ケ所のみで測定用出力プリ
ズムからの出射光を測定して、上記先導波路の伝搬損失
を求めることにより、測定を容易にし、しがも高精度の
測定を可能としたものである。This invention simplifies measurement by measuring the light emitted from the measurement output prism at only two locations on the optical waveguide and determining the propagation loss of the leading waveguide, while also allowing highly accurate measurement. That is.
〔従来の技術)
近年、光導波路を用いた各種デバイスの研究が盛んに行
われるようになり、それに伴って、先導波路の性質上、
重要な因子である伝搬損失の測定方法が多数提案されて
いる。[Prior art] In recent years, research on various devices using optical waveguides has been actively conducted, and as a result, due to the nature of the guiding waveguide,
Many methods have been proposed for measuring propagation loss, which is an important factor.
第4図および第5 @’/:例えば、特公昭59−48
335号公報に示された従来の先導波路の伝搬損失測定
方法を示す図である。第4図において、12はモニター
用出力プリズム、13はモニター用出力プリズム固定治
具、14はモニター用出力プリズム12によって外部に
取り出されたモニター出力光、15はモニター出力光1
4のパワーを検出する光検出器である。ここで、モニタ
ー用出力プリズム12は出力プリズム7が必要とする測
定範囲で移動可能であるように出力プリズム7よりも伝
搬方向に離した位置に固定される。Figures 4 and 5 @'/: For example, Tokuko Sho 59-48
335 is a diagram illustrating a conventional method for measuring propagation loss of a leading wavepath disclosed in Publication No. 335. FIG. In FIG. 4, 12 is a monitor output prism, 13 is a monitor output prism fixing jig, 14 is monitor output light taken out to the outside by the monitor output prism 12, and 15 is monitor output light 1.
This is a photodetector that detects the power of 4. Here, the monitor output prism 12 is fixed at a position farther away from the output prism 7 in the propagation direction so that the output prism 7 can move within the required measurement range.
次に動作について説明する。Next, the operation will be explained.
第5図は薄膜先導波路2を伝搬する光のパワーPが伝搬
路離党とともに減衰する様子を示す。FIG. 5 shows how the power P of light propagating through the thin film guide waveguide 2 attenuates as the propagation path separates.
1111光導波路2中を伝搬する光のパワーPは前kL
述のようにp −p oe で表わされる。Q2
点には、モニター用出力プリズム12が固定されている
。出力プリズム7が測定点Q1から除去されている場合
には、パワーPはζ実線にそって減衰し、Q2点におけ
る薄膜先導波路2中−メ7!4
のパワーP2はP2=Poe−となり、モニター用出力
プリズム12からのモニター出力光14のパワーはP3
となる。この時モニター用出力プリズム12のディカッ
プル効率η2は次に測定点Q1に出力プリズム7が設置
された場合、乏1点で出力光9のパワーP1が取り出さ
れ、パワーPは破線にそって減衰し、Q2点におけるN
膜光導波路2中のパワーP’2は、出力プリズム7のデ
ィカップル効率をη1とするトP’2 = (1−
”f)1) Pie−”となり、モニター用出力プリ
ズム12からのモニター出力光14のパワーはP3とな
る。このとなる。モニター出力プリズム12は固定され
ているので出力プリズム7の除去およびmIにかかわら
ず、そのディカップル効率は一定であるからη°2−η
′2すなわち、
設置した場合のモニター用出力プリズム12のモニター
出力パワーであるから、測定される。The power P of the light propagating in the 1111 optical waveguide 2 is expressed as p - poe as described above. Q2
A monitor output prism 12 is fixed at the point. When the output prism 7 is removed from the measurement point Q1, the power P attenuates along the ζ solid line, and the power P2 of the thin film guiding waveguide 2 at point Q2 becomes P2=Poe-, The power of the monitor output light 14 from the monitor output prism 12 is P3.
becomes. At this time, the decoupling efficiency η2 of the output prism 12 for monitoring is as follows: When the output prism 7 is installed at the measurement point Q1, the power P1 of the output light 9 is extracted at one point, and the power P is attenuated along the broken line. Then, N at Q2 point
The power P'2 in the film optical waveguide 2 is expressed as P'2 = (1-
"f)1)Pie-", and the power of the monitor output light 14 from the monitor output prism 12 becomes P3. This is what happens. Since the monitor output prism 12 is fixed, its decoupling efficiency is constant regardless of the removal of the output prism 7 and mI, so η°2−η
'2, that is, the monitor output power of the monitor output prism 12 when installed, so it is measured.
ゆえに出力プリズム7のデカップル効率η1が求められ
る。さらに、測定点J21を変化した場合も同様にこの
ディカップル効率は求められるから出力プリズム7の出
力パワーP1をディカップル効率η1で補正して、距離
対出力パワーの対数
(a=弓npo +収旦〕直線を求めるこPsP+
とにより、その傾きから伝搬損失を求めることが可能で
ある。Therefore, the decoupling efficiency η1 of the output prism 7 is determined. Furthermore, since this decoupling efficiency can be found in the same way when the measuring point J21 is changed, the output power P1 of the output prism 7 is corrected by the decoupling efficiency η1, and the logarithm of distance versus output power (a = bow npo + convergence) is calculated. By first finding a straight line PsP+, it is possible to find the propagation loss from its slope.
(発明が解決しようとする問題点)
上記のように、従来の測定方法では出力プリズム70位
置を変える毎にプリズム7の移動距離並びに、出hプリ
ズム7とモニター用出力プリズム12からの出射光のパ
ワーをそれぞれ測定し、これらの測定値に基づいて伝搬
損失を求めるものであるが、測定精度を上げるためには
出力プリズム7の位置を多数回変更する必要がある。と
ころが、プリズムの取付けには微妙な調整を必要とする
ため、プリズム7の移動距離の測定回数が増加すること
により、測定誤差が大きくなり結果的に伝搬損失の測定
精度が低下してしまうという問題点があった。また、測
定回数が増加することにより測定時間が長くなるという
問題点もあり、しかも、測定時間が長くなると、測定中
にプリズムや光導波路の汚れがひどくなりプリズムと光
導波路との結合効率が著しく低下するので、測定前後あ
るいは測定中にプリズムと光導波路を何度も洗浄しなけ
ればならず、測定時間がより一層長くなるという問題点
があった。さらに、プリズム7の位置を移動する度にプ
リズム固定冶具を取りはずさなければならないため、測
定作業が非常に煩雑であるという問題点があった。(Problems to be Solved by the Invention) As described above, in the conventional measurement method, each time the position of the output prism 70 is changed, the distance traveled by the prism 7 and the distance of the output light from the output prism 7 and the monitor output prism 12 are measured. Although the power is measured and the propagation loss is determined based on these measured values, it is necessary to change the position of the output prism 7 many times in order to improve the measurement accuracy. However, since installation of the prism requires delicate adjustments, the number of times the distance traveled by the prism 7 is measured increases, resulting in larger measurement errors and, as a result, a decrease in the measurement accuracy of propagation loss. There was a point. Another problem is that the measurement time increases as the number of measurements increases.Moreover, as the measurement time increases, the prism and optical waveguide become more contaminated during the measurement, which significantly reduces the coupling efficiency between the prism and the optical waveguide. As a result, the prism and optical waveguide must be cleaned many times before, during, or after the measurement, resulting in a problem that the measurement time becomes even longer. Furthermore, since the prism fixing jig must be removed every time the position of the prism 7 is moved, there is a problem in that the measurement work is extremely complicated.
この発明は、上記の問題点を解決するためになされたも
ので、先導波路内への光の入射位置とモニター用出力プ
リズムとの間に測定用出力プリズムを配設し、上記入射
位置とモニタ相比カブリズム間の任意の2ケ所のみで上
記測定用出力プリズムからの出射光を測定するようにし
たものである。This invention was made in order to solve the above-mentioned problem, and a measuring output prism is disposed between the incident position of light into the leading waveguide and the monitor output prism, and The light emitted from the measurement output prism is measured only at two arbitrary locations between the phase ratio cabulisms.
この発明では、測定用出力プリズムからの出射光を2ケ
所のみで測定するので、作業効率が著しく向上し、測定
精度が非常に高くなる。In this invention, since the light emitted from the measurement output prism is measured at only two locations, work efficiency is significantly improved and measurement accuracy is extremely high.
以下に、この発明の一実施例について第1図および第2
図に従って説明する。第1図は本発明による先導波路の
伝搬損失測定方法の構成図である。第1図において、光
源16から出射した光はアッテネータ17で減衰され、
光チョッパ18でチョップされた後、プリズム4に入射
する。アッテネータ17を用いるのは、強いパワーの入
射光に対して光損傷を生ずるような先導波路(例えば、
LiNbO5基板にTi拡散した光導波路)の伝搬損失
を測定する場合で、光損傷を生じない先導波路の場合に
はアッテネータ17は用いなくてもよい。又、光チョッ
パ18を用いるのは、入射光以外のノイズ光を遮断する
とともにロックインアンプ24で出力信号を検出する際
の同期周波数を得るためである。Below, an embodiment of the present invention will be described in FIGS. 1 and 2.
This will be explained according to the diagram. FIG. 1 is a block diagram of a method for measuring the propagation loss of a leading waveguide according to the present invention. In FIG. 1, light emitted from a light source 16 is attenuated by an attenuator 17,
After being chopped by the optical chopper 18, it enters the prism 4. The attenuator 17 is used for guiding waveguides that would cause optical damage to strong incident light (e.g.
When measuring the propagation loss of an optical waveguide (an optical waveguide in which Ti is diffused in a LiNbO5 substrate), the attenuator 17 may not be used in the case of a leading waveguide that does not cause optical damage. Further, the reason why the optical chopper 18 is used is to block noise light other than the incident light and to obtain a synchronization frequency when detecting the output signal with the lock-in amplifier 24.
この光チョッパ18はチョッパドライバ23によって駆
動される。プリズム4に入射した光は光導波路2に導入
され、光導波路2中を伝搬する。この伝搬光の入射位置
し1から73だけ離れた位置にはモニター用出方プリズ
ム12が固定されていて、伝搬光の入射位置から乙だけ
離れた位! (Z3>21 )にあるプリズム7が光導
波路2に圧着されていないときのプリズム12からの出
射光パワーをPo3とする。プリズム7を固定冶具(図
示せず)によって光導波路2表面に圧着していくと、プ
リズム7からはプリズム7と光導波路2との結合によっ
て光が出射するようになる。圧着を強めていくと、この
プリズム7からの出射光パワーP1は徐々に強まり、逆
にプリズム12からの出射光パワーP3は徐々に弱まる
。このとき、プリズム12からの出射光パワーの減少分
へP’3三P’3− P’3はプリズム7からの出射光
パワーP1に比例するからΔP3−TlPl ・・・・
・・ (1)と表わされる。この関係をグラフに表わす
と第2図の直線40のようになり、この直線の傾きがT
1である。次に、プリズム7を伝搬光の入射位置から7
2だけ離れた位置(Zt <22 <23)に移動し、
圧着を強めていったときのプリズム12からの出射光パ
ワーをP23、このときのプリズム7からの出射光パワ
ーP2とすると(1)式と同様
ΔP”3三P”3− P’3 = T2 P2 ・・
・・・・(2)と表わされる。この関係をグラフに表わ
すと第2図の直線50のようになり、この直線の傾きが
T2である。This optical chopper 18 is driven by a chopper driver 23. The light incident on the prism 4 is introduced into the optical waveguide 2 and propagates through the optical waveguide 2. A monitor output prism 12 is fixed at a position 73 away from the incident position of the propagated light, and is located 73 degrees away from the incident position of the propagated light! Let Po3 be the power of the light emitted from the prism 12 when the prism 7 (Z3>21) is not pressed onto the optical waveguide 2. When the prism 7 is pressed onto the surface of the optical waveguide 2 using a fixing jig (not shown), light is emitted from the prism 7 due to the coupling between the prism 7 and the optical waveguide 2. As the pressure is strengthened, the power P1 of the light emitted from the prism 7 gradually increases, and the power P3 of the light emitted from the prism 12 gradually weakens. At this time, the decrease in the power of the light emitted from the prism 12, P'33P'3-P'3, is proportional to the power P1 of the light emitted from the prism 7, so ΔP3-TlPl...
... is expressed as (1). If this relationship is represented on a graph, it will look like a straight line 40 in Figure 2, and the slope of this straight line is T.
It is 1. Next, the prism 7 is moved 7 degrees from the incident position of the propagating light.
Move to a position 2 apart (Zt < 22 < 23),
If the power of the light emitted from the prism 12 when the pressure is strengthened is P23, and the power of the light emitted from the prism 7 at this time is P2, then ΔP"33P"3-P'3 = T2 as in equation (1). P2...
...It is expressed as (2). If this relationship is represented in a graph, it will look like a straight line 50 in FIG. 2, and the slope of this straight line is T2.
一方、プリズム7を圧着したときのプリズム12から出
射する光パワーの減少分ΔP3は、本来プリズム7から
の出射光パワーP1が光導波路2中を21から23まで
伝搬し、プリズム12から出射するパワーに等しいから
、プリズム12の結合効率をδ、光導波路2の伝搬損失
係数をαとすると
ΔP3−δP、e−cc(7J−g+) ・、、・・・
(31と92−係が成立する。同様に測定用出力プリズ
ム7が72に移動したときには、
ΔP”3−δP2e−″′″7°−” −・・・−(4
)と表わされる。(1)、(2を(3)、(4)に代入
し、δ、Z3、Pl、P2を除去すると、
値をプロットすることにより得られ、Zl、Zλlは測
定用出力プリズム7の距離を測定することにより得られ
るので、光導波路2の伝搬損失係数αは(5)式によっ
て求まる。実際の測定では、プリズムからの出射光は集
光レンズ19.21で集光されて光検出器11.15に
入射し、電圧に変換された後に、例えばロツクインアン
プ24のような検出器に入力されて電圧として読み取ら
れる。On the other hand, the decrease ΔP3 in the optical power emitted from the prism 12 when the prism 7 is crimped is the amount that the optical power P1 originally emitted from the prism 7 propagates through the optical waveguide 2 from 21 to 23, and the power emitted from the prism 12. Therefore, if the coupling efficiency of the prism 12 is δ and the propagation loss coefficient of the optical waveguide 2 is α, then ΔP3−δP, e−cc(7J−g+)
(The relationship between 31 and 92- is established. Similarly, when the measurement output prism 7 moves to 72, ΔP"3-δP2e-"'"7°-" -...-(4
). By substituting (1) and (2 into (3) and (4) and removing δ, Z3, Pl, and P2, we can obtain by plotting the values, and Zl and Zλl are the distances of the measurement output prism 7. Since it is obtained by measurement, the propagation loss coefficient α of the optical waveguide 2 is determined by equation (5).In actual measurement, the light emitted from the prism is condensed by the condensing lens 19, 21 and sent to the photodetector 11. After being converted into a voltage, it is input to a detector such as a lock-in amplifier 24 and read as a voltage.
以上、説明したように本発明による光導波路2の伝搬損
失測定方法では、測定用出力プリズム7の固定位置は2
ケ所のみなので、従来の方法で問題となる測定用出力プ
リズム7の位置の測定誤差による伝搬損失の測定精度の
低下はなくなり、非常に精度の良い測定を行なうことが
できる。又、従来の方法のように多数回のプリズム固定
冶具の取りはずし、取付は作業やプリズム、先導波路の
洗浄に要する時間を削減できるから、本発明による光導
波路2の伝搬損失測定方法□は従来に比べて著しく作業
効率の改善された方法である。As explained above, in the method for measuring the propagation loss of the optical waveguide 2 according to the present invention, the fixed position of the output prism 7 for measurement is 2.
Since there are only two locations, there is no deterioration in measurement accuracy of propagation loss due to measurement error in the position of the measurement output prism 7, which is a problem with the conventional method, and very accurate measurement can be performed. In addition, the method for measuring the propagation loss of the optical waveguide 2 according to the present invention can reduce the time required to remove and attach the prism fixing jig many times and to clean the prism and the leading waveguide, as in the conventional method. This is a method with significantly improved work efficiency.
次に、この発明の他の実施例について第3図に従って説
明する。Next, another embodiment of the present invention will be described with reference to FIG.
第3図は本発明による光導波路の伝搬損失測定方法の他
の実施例を示したものである。第1図では光の入射方法
としてプリズム4を用いて説明したが、どんな方法でも
よく、例えば第3図のように入射光1をレンズ25で集
光して、光導波路2の端面2aに入射させてもよい。FIG. 3 shows another embodiment of the method for measuring propagation loss of an optical waveguide according to the present invention. In FIG. 1, the prism 4 is used as the method of light incidence, but any method may be used. For example, as shown in FIG. You may let them.
(発明の効果〕
以上の様に、この発明では、光導波路内への光の入射位
置とモニタ用土カブリズムとの間に測定用プリズムを配
設し、上記入射位置とモニタ相比カブリズム間の2ケ所
のみで上記測定用出力プリズムからの出射光を測定する
とともに、上記モニタ用土カブリズムからの出射光を測
定し、これらの測定値に基づいて上記光導波路の伝搬損
失を測定するようにしたので、測定用出力プリズムから
の出射光の測定回数が著しく減少して測定精度が非常に
高くなるとともに、上記測定用出方プリズムの固定冶具
の多数回の取りはずしおよび取付は作業、並びに光導波
路の洗浄に要する時間を削減し、作業効率を著しく改善
できる先導波路の伝搬損失測定方法を提供することがで
きる。(Effects of the Invention) As described above, in the present invention, a measuring prism is disposed between the light incident position into the optical waveguide and the monitor phase ratio fog, and the measurement prism is disposed between the light incidence position and the monitor phase ratio fog. In addition to measuring the light emitted from the measurement output prism at only one location, the light emitted from the monitoring soil cabrism was also measured, and the propagation loss of the optical waveguide was measured based on these measured values. The number of measurements of the light emitted from the measurement output prism is significantly reduced, and the measurement accuracy is extremely high.In addition, the multiple removal and installation of the fixing jig for the measurement output prism requires work and cleaning of the optical waveguide. It is possible to provide a method for measuring propagation loss of a leading wavepath that can reduce the time required and significantly improve work efficiency.
【図面の簡単な説明】
第1図はこの発明の一実施例による光導波路の伝搬損失
測定方法の説明図、第2図は伝搬損失を求めるための説
明図、第3図はこの発明の他の実施例を示す図、第4図
は従来の光導波路の伝搬損失測定方法の説明図、第5図
は伝搬距離対出力パワー特性を示す図である。
1・・・・・・導波光、2・・・・・・光導波路、7・
・・・・・測定用出力プリズム、
12・・・・・・モニタ用土カブリズム、16・・・・
・・光源。
特許出願人 立石電機株式会社
第1図
ご−発明の一笑施卆11てよゐ測え方水仝示市薗16:
光 3A
第2図
状[8−矢tギ紗るたVθ説哨回
第3図
Sn1ヒ1月/)4に一つ(力乞イクltホす図f2;
七′−9用出力)1λム
第4図
急騰β九尊液斃ψイ&調罠コ員失シ則λ方法を示す回第
5図[Brief Description of the Drawings] Fig. 1 is an explanatory diagram of a method for measuring propagation loss of an optical waveguide according to an embodiment of the present invention, Fig. 2 is an explanatory diagram for determining propagation loss, and Fig. 3 is an explanatory diagram of a method for measuring propagation loss of an optical waveguide according to an embodiment of the present invention. FIG. 4 is an explanatory diagram of a conventional method for measuring propagation loss of an optical waveguide, and FIG. 5 is a diagram showing propagation distance versus output power characteristics. 1... Waveguide light, 2... Optical waveguide, 7.
... Output prism for measurement, 12 ... Soil cabrism for monitoring, 16 ...
··light source. Patent Applicant: Tateishi Electric Co., Ltd. Figure 1 - How to Measure the Invention Part 11:
Light 3A 2nd figure [8-arrow tgisaruta Vθ theory sentry 3rd figure Sn1hi January/) One in 4 (power begging lt hosu figure f2;
Output for 7'-9) 1λm Figure 4 Sudden rise β Nine liquids ψ I & Adjustment trap member Loss Shi Rule λ Method showing the method Figure 5
Claims (2)
する導波光を取り出す測定用出力プリズムと、上記導波
光の上記光導波路への入射位置から上記測定用出力プリ
ズムの位置よりも上記導波光の伝搬方向に遠ざかつた位
置に固定されたモニター用出力プリズムとを用いた光導
波路の伝搬損失測定方法において、上記モニタ用出力プ
リズムからの出射光を測定するとともに、上記光導波路
上の、上記導波光の入射位置とモニター用出力プリズム
との間の任意の2ケ所で上記測定用出力プリズムからの
出射光を測定することにより、上記光導波路の伝搬損失
を求めることを特徴とする光導波路の伝播損失測定方法
。(1) A measurement output prism that is attached to an optical waveguide and extracts the guided light propagating through the optical waveguide, and a measurement output prism that is located at a position where the guided light is incident on the optical waveguide from a position of the measurement output prism. In a method for measuring the propagation loss of an optical waveguide using a monitoring output prism fixed at a position away from the optical waveguide in the propagation direction, the output light from the monitoring output prism is measured, and the optical waveguide on the optical waveguide is Propagation of an optical waveguide characterized in that the propagation loss of the optical waveguide is determined by measuring the light emitted from the measurement output prism at two arbitrary points between the incident position of the wave light and the monitoring output prism. Loss measurement method.
させ、上記圧着力を変化させる毎に上記測定用出力プリ
ズムとモニター用出力プリズムからの出射光を測定する
ことにより上記光導波路の伝搬損失を求めることを特徴
とする特許請求の範囲第1項記載の光導波路の伝搬損失
測定方法。(2) Propagation of the optical waveguide by changing the pressure bonding force between the measurement output prism and the optical waveguide, and measuring the emitted light from the measurement output prism and the monitoring output prism each time the pressure bonding force is changed. A method for measuring propagation loss of an optical waveguide according to claim 1, characterized in that the loss is determined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6582385A JPS61223528A (en) | 1985-03-28 | 1985-03-28 | Measurement for propagation loss of lightwave guide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6582385A JPS61223528A (en) | 1985-03-28 | 1985-03-28 | Measurement for propagation loss of lightwave guide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61223528A true JPS61223528A (en) | 1986-10-04 |
Family
ID=13298130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6582385A Pending JPS61223528A (en) | 1985-03-28 | 1985-03-28 | Measurement for propagation loss of lightwave guide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61223528A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02244106A (en) * | 1989-03-17 | 1990-09-28 | Hitachi Ltd | Method for measuring optical constant of thin film and optical integrated circuit or semiconductor element produced by using this method |
US5133597A (en) * | 1990-12-26 | 1992-07-28 | Industrial Technology Research Institute | Method and device for measuring the transmission loss and optical waveguide |
-
1985
- 1985-03-28 JP JP6582385A patent/JPS61223528A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02244106A (en) * | 1989-03-17 | 1990-09-28 | Hitachi Ltd | Method for measuring optical constant of thin film and optical integrated circuit or semiconductor element produced by using this method |
US5133597A (en) * | 1990-12-26 | 1992-07-28 | Industrial Technology Research Institute | Method and device for measuring the transmission loss and optical waveguide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4703175A (en) | Fiber-optic sensor with two different wavelengths of light traveling together through the sensor head | |
US4627728A (en) | Compensated Fabry Perot sensor | |
EP0655620A1 (en) | Real-time wafer temperature measurement based on light scattering | |
CN101542255B (en) | Optical fiber thermometer and temperature compensation optical fiber sensor | |
JP4751118B2 (en) | Optical detection sensor | |
KR20190133170A (en) | Integrated Optical Wavemeter and Fiber Gyroscope Scale Factor Stabilization Method | |
CN107727365B (en) | A kind of system using reflectance spectrum fineness measurement optical waveguide loss | |
CN109990975B (en) | Detection system, debugging system and sensor based on optical microcavity mechanical mode | |
US9772188B2 (en) | Frequency based ring laser sensor | |
US20160313145A1 (en) | Reflective Optical Sensor Element | |
JP5354707B2 (en) | Laser equipment | |
US10481338B2 (en) | Optical fiber sensor measuring apparatus | |
JPS61223528A (en) | Measurement for propagation loss of lightwave guide | |
US6340448B1 (en) | Surface plasmon sensor | |
JP4862594B2 (en) | Optical fiber sensor | |
JPH0232561B2 (en) | ||
JP2020134609A (en) | Optical element | |
JPH085834A (en) | Optical filter and oscillation wavelength stabilizing power source | |
JP4654901B2 (en) | Optical waveguide device, temperature measuring device, and temperature measuring method | |
US20230258562A1 (en) | Miniature atomic spectroscopy reference cell system | |
JPH11326199A (en) | Gas sensor | |
JP3844688B2 (en) | Sensor using total reflection attenuation | |
JP3390355B2 (en) | Surface plasmon sensor | |
JP2023516256A (en) | Laser cavity construction for wavelength reduction | |
JPS5948335B2 (en) | Optical waveguide propagation loss measuring device |