JPS61223487A - Condenser equipment - Google Patents

Condenser equipment

Info

Publication number
JPS61223487A
JPS61223487A JP6456285A JP6456285A JPS61223487A JP S61223487 A JPS61223487 A JP S61223487A JP 6456285 A JP6456285 A JP 6456285A JP 6456285 A JP6456285 A JP 6456285A JP S61223487 A JPS61223487 A JP S61223487A
Authority
JP
Japan
Prior art keywords
water
cooling
pipeline
supplementing
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6456285A
Other languages
Japanese (ja)
Inventor
Takeshi Matsuda
武 松田
Takashi Naito
孝 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6456285A priority Critical patent/JPS61223487A/en
Publication of JPS61223487A publication Critical patent/JPS61223487A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the condenser equipment provided with a water packing type vacuum pump, developing good extracting performance of non-condensible gas, by a method wherein a pipeline, branched from a water supplementing pipeline and joining with the water supplementing pipeline at the downstream of the branch through a cooler, is provided in the equipment. CONSTITUTION:The cooler 6 is provided with the pipeline 17, branched from the water supplementing pipeline 16 and equipped with a choke valve 10, at the inlet of cooling water and with the pipeline 17a, connected to the downstream side pipeline 16a of the water supplementing pipeline 16, at the outlet of the cooling water. In such system, supplementing water, flowing from a water supplementing source 8 through the water supplementing pipeline 16, is flowed through the pipeline 17 to the cooler 6 after choking it by the choke valve 10 to a flow amount capable of cooling the water for the water packing of the water packing type vacuum pump 5 to cool the water for the water packing, then the cooling water, discharged from the cooling system, is joined with the supplementing water flowing through the supplementing water pipeline 16a to supplement it to a cooling tower 4. According to this method, the water for the water packing is cooled sufficiently since the temperature of supplementing water is lower than the temperature of cooling water, cooled in the cooling tower, in an area wherein a wet-bulb temperature is high and, whereby, the water packing type vacuum pump may develop good non-condensible gas extracting performance and the high degree of vacuum may be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、復水器に冷却水を通流、循環させる冷却塔と
復水器から不凝縮性ガスを抽出する水封式真空ポンプを
備えた復水器設備に関する。
The present invention relates to condenser equipment that includes a cooling tower that allows cooling water to flow through and circulate through the condenser, and a water ring vacuum pump that extracts noncondensable gas from the condenser.

【従来技術とその問題点】[Prior art and its problems]

復水器を使用するプラント、例えば蒸気タービンを存す
る汽力プラントでは復水器内で冷却のため使用する冷却
水の冷却をプラント内に設置した冷却塔により行ない、
さらに復水器内の不凝縮性ガスを抽出する水封式真空ポ
ンプの水封の水の冷却もこの冷却塔により冷却された冷
却水を使用している。以下図面を用いて従来技術を説明
する。 第2図は従来の冷却塔と復水器と水封式真空ポンプとを
備えた汽力プラントの系統図であり、図において図示し
ないボイラからの蒸気は管路11を流れて蒸気タービン
!に流入し、タービン内にて仕事をし、排出される排気
蒸気は復水器2に流入する。復水器2内では冷却水によ
り復水器内の蒸気を冷却して復水にして復水器内を真空
にしこの復水を管路12を通してボイラに送水している
。この冷却水は冷却塔4から循環水ポンプ3により管路
13を流れて復水器2内に流入し、管路13aを流れて
冷却塔4に戻り、冷却塔4にて復水器2内で昇温した冷
却水を冷却している。 復水器2内にて蒸気を冷却して復水にする際、蒸気に含
まれる不凝縮性ガスは復水器の不凝縮性ガス抽出口に接
続する管路18を経て水封式真空ポンプ5により圧縮さ
れて大気圧になり大気に放出され、復水器は所定の真空
度を得ている。 水封式真空ポンプ5で得られる真空度は水封の水の温度
により制限されるので所要の真空度を得るには水封の水
を冷却する必要がある。このため水封の水は管路14を
流れて冷却器6に流入し冷却器6内を流れる冷却水によ
り冷却されて管路14a経て真空ポンプ内を循環してい
る。この冷却水は管路13から分岐し、絞り弁7が設け
られた管路15を通って冷却器6内を流れた後管路15
aに流れ、管路13mを流れる復水器2から排出する冷
却水と合流される。 冷却塔4には冷却塔内にて冷却のため蒸散して減少する
冷却水を川のような補給水源8から管路16を経て補給
水ポンプ9により冷却塔4に補給している。 上記のように水封式真空ポンプの水封の水は冷却塔で冷
却された冷却水により冷却されている。 番ころで冷却塔の冷却性能は気温や湿度に影響されるの
で湿球温度の高い地域では冷却塔で冷却された冷却水温
度が高くなる。このため水封式真空ポンプの水封の水は
冷却器を流れる冷却水温度が高いため充分冷却されず、
したがって水封の水の温度によって得られる真空度が低
くなる。またさらに復水器の冷却水温度が水封式真空ポ
ンプにキャビチーシランを起こすような水封の水の許容
温度より高い場合には水封式真空ポンプの使用が不可能
となり、蒸気エゼクタにたよらざるを得ないという問題
があった。
In plants that use condensers, for example steam power plants with steam turbines, the cooling water used for cooling in the condenser is cooled by a cooling tower installed within the plant.
Furthermore, the cooling water cooled by this cooling tower is used to cool the water in the water ring of the water ring vacuum pump that extracts noncondensable gas in the condenser. The prior art will be described below with reference to the drawings. FIG. 2 is a system diagram of a conventional steam power plant equipped with a cooling tower, a condenser, and a water ring vacuum pump. Steam from a boiler (not shown in the figure) flows through a pipe 11 to a steam turbine! Exhaust steam flows into the condenser 2, performs work in the turbine, and is discharged. In the condenser 2, the steam in the condenser is cooled by cooling water, converted into condensation water, the inside of the condenser evacuated, and the condensed water is sent to the boiler through a pipe line 12. This cooling water flows from the cooling tower 4 through the pipe 13 by the circulating water pump 3, flows into the condenser 2, flows through the pipe 13a, returns to the cooling tower 4, and flows into the condenser 2 in the cooling tower 4. Cooling water that has been heated up is cooled down. When steam is cooled to condensate in the condenser 2, the non-condensable gas contained in the steam is passed through a pipe 18 connected to the non-condensable gas extraction port of the condenser to a water ring vacuum pump. 5, it is compressed to atmospheric pressure and released into the atmosphere, and the condenser has a predetermined degree of vacuum. Since the degree of vacuum obtained by the water ring vacuum pump 5 is limited by the temperature of the water in the water ring, it is necessary to cool the water in the water ring in order to obtain the required degree of vacuum. Therefore, the water in the water seal flows through the pipe 14, flows into the cooler 6, is cooled by the cooling water flowing inside the cooler 6, and circulates inside the vacuum pump via the pipe 14a. This cooling water branches from the pipe 13, passes through the pipe 15 provided with the throttle valve 7, flows through the cooler 6, and then flows through the pipe 15.
a, and is merged with the cooling water discharged from the condenser 2 flowing through the pipe line 13m. Cooling water that evaporates and decreases in the cooling tower 4 for cooling is supplied to the cooling tower 4 from a makeup water source 8 such as a river via a pipe 16 by a makeup water pump 9. As mentioned above, the water in the water ring of a water ring vacuum pump is cooled by cooling water cooled by a cooling tower. The cooling performance of a cooling tower is affected by temperature and humidity, so in areas with high wet bulb temperatures, the temperature of the cooling water cooled by the cooling tower will be high. For this reason, the water in the water ring of a water ring vacuum pump is not cooled sufficiently because the temperature of the cooling water flowing through the cooler is high.
Therefore, the degree of vacuum obtained is lowered depending on the temperature of the water in the water seal. Furthermore, if the temperature of the cooling water in the condenser is higher than the permissible temperature of water in the water ring, which would cause cavity silane in the water ring vacuum pump, it becomes impossible to use the water ring vacuum pump, and the steam ejector The problem was that I had no choice but to rely on it.

【発明の目的】[Purpose of the invention]

本発明は、前述のような点に鑑み湿球温度の高い地域に
おいても既設の設備の簡単な利用により良好な不凝縮性
ガスの抽出性能を発揮させろ水封式真空ポンプを備えた
復水器設備を提供することを目的とする。
In view of the above-mentioned points, the present invention provides a condenser equipped with a water ring vacuum pump that can exhibit good non-condensable gas extraction performance by simply using existing equipment even in regions with high wet bulb temperatures. The purpose is to provide facilities.

【発明の要点】[Key points of the invention]

上記の目的は、本発明によれば冷却水の蒸散による減少
を補給水管路を経て補給される冷却塔と、この冷却塔に
て冷却される前記冷却水により不凝縮性ガスを含む蒸気
を冷却凝縮して復水にする復水器と、この復水器内の不
凝縮性ガスを抽出する水封式真空ポンプとからなり、こ
の真空ポンプの水封の水が冷却器に通流する冷却水によ
って冷却される復水器設備において、前記補給水管路か
ら分岐し前記冷却器を経由して該分岐部の下流でこの補
給水管路に合流する管路を設けることにより達成される
According to the present invention, the above object is to provide a cooling tower which is replenished via a make-up water pipe to reduce the loss of cooling water due to transpiration, and to cool steam containing non-condensable gases by the cooling water cooled in this cooling tower. The cooling system consists of a condenser that condenses into water, and a water ring vacuum pump that extracts non-condensable gas from the condenser, and the water from the water ring of this vacuum pump flows through the cooler. In a condenser facility cooled by water, this is achieved by providing a pipe that branches from the make-up water pipe, passes through the cooler, and joins the make-up water pipe downstream of the branch.

【発明の実施例】[Embodiments of the invention]

以下図面に基いて本発明の詳細な説明する。 第1図は本発明の実施例による冷却塔と復水器と水封式
真空ポンプとを備えた復水器設備の系統図である。なお
第1図において第2図と同一部品には同じ符号を付して
いる。第1図において蒸気タービン1.復水器2.冷却
水循環ポンプ3.冷却塔4゜水封式真空ポンプ5.補給
水源8等が管路により接続された構成は従来技術のもの
と同じであるので説明を省略する0本実施例では冷却器
6の冷却水の人口には補給水管路16から分岐した絞り
弁1゜を備えた管路17を、出口には補給水管路16の
下流側管路16aに接続する管路17aを設けている。 このような系統において補給水源8から補給水管路16
を流れる補給水を絞り弁10により水封式真空ポンプの
水封の水を冷却し得る流量に絞って管路17を通して冷
却器6に通流させ、水封の水を冷却した後、その排出冷
却水を管路17aを通して補給水管路16aを流れ4補
給水に合流させて冷却塔4に補給するようにしている。 上記のような構成により湿球温度の高い地域では補給水
温度は一般に冷却塔で冷却される冷却水温度より低いの
で水封の水は充分に冷却され、水封式真空ポンプは良好
な不凝縮性ガス抽出性能を発揮でき、高い真空度が得ら
れる。なお、水封の水の冷却水は少量であり、かつその
温度上昇も小さいので冷却塔の冷却性能には特に影響な
い。
The present invention will be described in detail below based on the drawings. FIG. 1 is a system diagram of a condenser facility including a cooling tower, a condenser, and a water ring vacuum pump according to an embodiment of the present invention. In FIG. 1, the same parts as in FIG. 2 are given the same reference numerals. In FIG. 1, steam turbine 1. Condenser 2. Cooling water circulation pump 3. Cooling tower 4゜water ring vacuum pump 5. The structure in which the make-up water source 8 and the like are connected by pipes is the same as that of the prior art, so the explanation will be omitted. A pipe line 17 with an angle of 1° is provided at its outlet, and a pipe line 17a is provided at the outlet thereof to connect to a downstream pipe line 16a of the make-up water line 16. In such a system, from the makeup water source 8 to the makeup water pipe 16
The make-up water flowing through the water ring is throttled by the throttle valve 10 to a flow rate that can cool the water in the water ring of the water ring vacuum pump, and is passed through the conduit 17 to the cooler 6 to cool the water in the water ring, and then discharged. The cooling water is passed through the pipe 17a, flows through the makeup water pipe 16a, and joins with the makeup water 4, thereby replenishing the cooling tower 4. With the above configuration, in regions with high wet bulb temperatures, the make-up water temperature is generally lower than the cooling water temperature cooled by cooling towers, so the water in the water ring is sufficiently cooled, and the water ring vacuum pump has good non-condensing properties. It has excellent gas extraction performance and can provide a high degree of vacuum. Note that since the amount of cooling water in the water seal is small and the temperature rise is small, it does not particularly affect the cooling performance of the cooling tower.

【発明の効果】【Effect of the invention】

以上の説明から明らかなように本発明によれば、水封式
真空ポンプの水封の水の冷却に冷却塔の補給水を利用し
たことにより、湿球温度の高い地域でも補給水の温度が
冷却塔で冷却される冷却水温度より低いため、水封式真
空ポンプの不凝縮性ガスの抽出性能を良好にすることが
できるとともに冷却水温度が水封式真空ポンプのキャビ
テーシ四ンを起こすような許容温度を超えている場合で
も水封式真空ポンプの使用が可能となる。
As is clear from the above description, according to the present invention, the make-up water in the cooling tower is used to cool the water in the water ring of the water-ring vacuum pump, so that the temperature of the make-up water can be maintained even in areas with high wet bulb temperatures. Since the temperature of the cooling water is lower than that of the cooling water cooled by the cooling tower, it is possible to improve the extraction performance of non-condensable gas in water ring vacuum pumps, and to prevent the cooling water temperature from causing cavitation in water ring vacuum pumps. This makes it possible to use a water ring vacuum pump even when the temperature exceeds the allowable temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による復水器設備を備えた汽力
プラントの系統図、第2図は従来の復水器設備を備えた
汽力ブラン上の系統図である。 2:復水器、4:冷却塔、5:水封式真空ポンプ、6:
冷却器、16.16a:補給水管路、17:補給水管路
から分岐した管路、17a:補給水管路に合流する管路
。 才1 困
FIG. 1 is a system diagram of a steam power plant equipped with condenser equipment according to an embodiment of the present invention, and FIG. 2 is a system diagram of a steam power plant equipped with conventional condenser equipment. 2: Condenser, 4: Cooling tower, 5: Water ring vacuum pump, 6:
Cooler, 16. 16a: Make-up water pipe, 17: Pipe branched from the make-up water pipe, 17a: Pipe that joins the make-up water pipe. talent 1 difficulty

Claims (1)

【特許請求の範囲】[Claims] 冷却水の蒸散による減少を補給水管路を経て補給される
冷却塔と、該冷却塔にて冷却される前記冷却水により不
凝縮性ガスを含む蒸気を冷却凝縮して復水にする復水器
と、該復水器内の不凝縮性ガスを抽出する水封式真空ポ
ンプとからなり、該真空ポンプの水封の水が冷却器に通
流する冷却水によって冷却される復水器設備において、
前記補給水管路から分岐し前記冷却器を経由して該分岐
部の下流で補給水管路に合流する管路を設けたことを特
徴とする復水器設備。
A cooling tower in which the loss of cooling water due to transpiration is replenished via a make-up water pipe, and a condenser that cools and condenses steam containing non-condensable gases using the cooling water cooled in the cooling tower to condensate. and a water ring vacuum pump for extracting noncondensable gas in the condenser, and in which the water in the water ring of the vacuum pump is cooled by cooling water flowing through a cooler. ,
A condenser facility comprising a pipe branching from the makeup water pipe, passing through the cooler, and joining the makeup water pipe downstream of the branch.
JP6456285A 1985-03-28 1985-03-28 Condenser equipment Pending JPS61223487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6456285A JPS61223487A (en) 1985-03-28 1985-03-28 Condenser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6456285A JPS61223487A (en) 1985-03-28 1985-03-28 Condenser equipment

Publications (1)

Publication Number Publication Date
JPS61223487A true JPS61223487A (en) 1986-10-04

Family

ID=13261793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6456285A Pending JPS61223487A (en) 1985-03-28 1985-03-28 Condenser equipment

Country Status (1)

Country Link
JP (1) JPS61223487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279810A (en) * 2013-07-01 2015-01-14 中粮生物化学(安徽)股份有限公司 Circulating water cooling system
CN110542325A (en) * 2019-09-26 2019-12-06 岭澳核电有限公司 Condenser vacuum system of nuclear power station

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279810A (en) * 2013-07-01 2015-01-14 中粮生物化学(安徽)股份有限公司 Circulating water cooling system
CN104279810B (en) * 2013-07-01 2017-06-30 中粮生物化学(安徽)股份有限公司 Circulating water cooling system
CN110542325A (en) * 2019-09-26 2019-12-06 岭澳核电有限公司 Condenser vacuum system of nuclear power station

Similar Documents

Publication Publication Date Title
US4037413A (en) Power plant with a closed cycle comprising a gas turbine and a work gas cooling heat exchanger
CA1059326A (en) Steam condensing apparatus
CN109469522A (en) A kind of steam exhaust cooling system and steam exhaust cooling means
US5343705A (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
TW513515B (en) Method and apparatus for preheating of and dewatering from the steam inlet ducts which are communicated with the steam turbines
JPS61223487A (en) Condenser equipment
CN209244620U (en) A kind of steam exhaust cooling system
GB1182900A (en) Condenser System for Steam Turbine Power Plants.
CN216111019U (en) Novel combustion engine TCA cooling system
CN107036454A (en) The vacuum regulator and its control method of turbine condenser
JPS62101809A (en) Single-shaft combined plant having reheating system
JPS5851194B2 (en) Dry cooling power plant system
CN209326399U (en) Condense island system
CN114000928A (en) Series connection type peak cooling and waste heat recovery steam turbine generator unit
JP2002129907A (en) Gland sealing steam system of steam turbine
RU2144994C1 (en) Combined-cycle plant
GB1020448A (en) Steam power plants
CN207247936U (en) Direct Air-cooled Unit steam exhaust condenses water depth cooling system
SU985331A1 (en) Steam turbine plant
CN212671881U (en) External condensate cooling system of exhaust steam recovery heat supply supercritical unit
FI65097C (en) FOERFARINGSSAETT OCH ANORDNING FOER ATT UTNYTTJA RESTVAERME VI CELLULOSAFRAMSTAELLNING
JP2581294B2 (en) Condenser cooling water heat recovery equipment
SU1744277A1 (en) Condenser technical water-supply system
SU1250664A1 (en) Method of cooling last stages of extraction turbine in low-expenditure operating conditions
JPS6248798B2 (en)