JPS61223455A - Cryogenic refrigerator and operation method thereof - Google Patents

Cryogenic refrigerator and operation method thereof

Info

Publication number
JPS61223455A
JPS61223455A JP6062085A JP6062085A JPS61223455A JP S61223455 A JPS61223455 A JP S61223455A JP 6062085 A JP6062085 A JP 6062085A JP 6062085 A JP6062085 A JP 6062085A JP S61223455 A JPS61223455 A JP S61223455A
Authority
JP
Japan
Prior art keywords
cryogenic
refrigerant
pressure
cooled
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6062085A
Other languages
Japanese (ja)
Other versions
JPH04189B2 (en
Inventor
松本 孝三
梶原 博毅
河村 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6062085A priority Critical patent/JPS61223455A/en
Publication of JPS61223455A publication Critical patent/JPS61223455A/en
Publication of JPH04189B2 publication Critical patent/JPH04189B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利月分野〕 木発炉は大気圧飽和温度以下の冷却温度を必要とする極
低温冷凍*を及びその運転方法に係り。
[Detailed Description of the Invention] [Field of the Invention] A wood furnace relates to cryogenic refrigeration* that requires a cooling temperature below the atmospheric pressure saturation temperature and its operating method.

特に超ffi動ヘリウムを使用する被冷却体に好適な極
低温冷凍装置及びその運転方法に関するものである。
In particular, the present invention relates to a cryogenic refrigeration system suitable for objects to be cooled using ultra-ffi dynamic helium, and a method of operating the same.

〔発明の背景〕[Background of the invention]

極低温冷凍装置において、被冷却体として超電導マグネ
ットを考えた場合、こnの冷却の方法の一つに超流動ヘ
リウムを使う方法がある。液体ヘリウムを約1.8K(
飽和圧力として約10 Ton)に冷却してい曵と超流
動ヘリウムが得られ、粘性が悪畷、熱伝達:575rが
非常に大きい特異な性質を示す。一方、被冷却体である
起電導マグネットに使用している超電導線の特・性の一
つに冷却さnる温度が低い程電流密度が大きくとnムと
いう性質がある。つまり、超流動リウムを使うことによ
りコンパクトな超電導マグネットで乱磁界が得らnるこ
とになるために、有力な冷却方法の一つともなっている
。以下、極低温液化冷媒として液体ヘリウムの場合を例
にとり説明する。
When considering a superconducting magnet as an object to be cooled in a cryogenic refrigerator, one of the cooling methods is to use superfluid helium. Liquid helium at about 1.8K (
Superfluid helium is obtained by cooling to a saturation pressure of about 10 tons), exhibiting unique properties such as low viscosity and extremely high heat transfer rate of 575r. On the other hand, one of the characteristics of the superconducting wire used in the electromotive conducting magnet, which is the body to be cooled, is that the lower the cooling temperature, the higher the current density. In other words, by using superfluid lithium, a turbulent magnetic field can be obtained with a compact superconducting magnet, making it one of the most effective cooling methods. Hereinafter, the case of liquid helium as the cryogenic liquefied refrigerant will be explained as an example.

1g2図は従来の超流動ヘリウム装2の構成の一例を示
すブロック図である。第2図において、1は圧縮機、2
は極低温冷凍機、3a〜3fは熱交換器、4は膨張機人
口弁、5はジュールトムソン膨張弁c以下、JT弁と称
する)、6a及び6bは膨張機、7は液体窒素供給管、
11は極低温冷媒供給管、12は極低温冷凍機管、13
は極低濡減圧冷媒戻管、加はクライオスタット、21は
気液分離器、nは減圧弁、囚は液体ヘリウム槽、冴は超
電導マグネット、30は加温器、31は真空ポンプであ
る。
FIG. 1g2 is a block diagram showing an example of the configuration of a conventional superfluid helium system 2. As shown in FIG. In Fig. 2, 1 is a compressor, 2
3a to 3f are cryogenic refrigerators, 3a to 3f are heat exchangers, 4 is an expansion valve, 5 is a Joule-Thomson expansion valve (hereinafter referred to as JT valve), 6a and 6b are expanders, 7 is a liquid nitrogen supply pipe,
11 is a cryogenic refrigerant supply pipe, 12 is a cryogenic refrigerator pipe, 13
1 is an extremely low wet pressure reduced refrigerant return pipe; 2 is a cryostat; 21 is a gas-liquid separator;

次に、上記のように構成さnた従来の超流動ヘリウム1
118の動作について説明する。圧縮W!1で高圧まで
圧縮さnたヘリウムガスは極低温冷凍機2に導入され、
第1の熱交換器3aで低圧戻りガス及び液体窒素供給管
7から導入される液体窒素と熱交換し、更に第2の熱交
換器3bで冷却さnた後膨張機ラインとJTラインに分
岐する。膨張機ラインに分岐した高圧ヘリウムは膨張機
人口弁4を通り第1の膨張機6aで断熱膨張仕事を行い
温度低下して第4の熱交換器3dに入り、第4の熱交換
器3dで冷却さnた参、第2の膨張機6bで再び断熱膨
張仕事を行い温度低下して低圧ラインに合流する。一方
、JTラインに分岐した高圧ヘリウムは、第3〜m!6
の熱交換器3C〜3fで順次冷却さn、JT弁5で大気
圧近くまで断熱膨張することによって一部のガスが液化
し気液混相状態となる。気液混相状態の極低温冷媒は極
低温冷媒供給管11でクライオスタット(9)に供給さ
れ。
Next, a conventional superfluid helium 1 configured as described above is used.
The operation of 118 will be explained. Compression W! The helium gas compressed to high pressure in step 1 is introduced into cryogenic refrigerator 2,
The first heat exchanger 3a exchanges heat with the low-pressure return gas and liquid nitrogen introduced from the liquid nitrogen supply pipe 7, and the second heat exchanger 3b cools the gas, which is then branched into an expander line and a JT line. do. The high-pressure helium branched into the expander line passes through the expander valve 4, performs adiabatic expansion work in the first expander 6a, lowers its temperature, and enters the fourth heat exchanger 3d. After cooling, the second expander 6b performs adiabatic expansion work again to lower the temperature and join the low pressure line. On the other hand, the high-pressure helium branched to the JT line is in the 3rd to m! 6
The gas is sequentially cooled in the heat exchangers 3C to 3f, and adiabatically expanded to near atmospheric pressure in the JT valve 5, whereby a part of the gas liquefies and becomes a gas-liquid mixed phase state. The cryogenic refrigerant in a gas-liquid mixed phase state is supplied to the cryostat (9) through the cryogenic refrigerant supply pipe 11.

気液分離器4で気液分離さnる。気液分離さnたガスは
極低温冷謀反管区を通り極低温冷凍機2に戻り、第6〜
第1の熱交換器3f〜3aで寒冷回収されて大気温に戻
り、圧縮機1の吸入側に帰還す71a一方、清液分離器
ムで分離さnた約4.4K(約1.2atm)の液体ヘ
リウムは、減圧弁■で約10 Torrに減圧さnて液
体ヘリウム槽乙に供給さn、約1.8にの超流動ヘリウ
ムとなって超電導マグネット冴な冷却する。超電導マグ
ラットスを冷却してガス化した極低温減圧ガスは修低濡
減圧冷媒戻管13を通り、加温器(資)で大気温まで加
温された後、真空ポンプ31で圧縮機1の吸入圧力まで
昇圧されて圧縮機1の吸入側に戻る。
Gas and liquid are separated by a gas-liquid separator 4. The separated gas passes through the cryocooler refrigerating section and returns to the cryocooler 2.
The first heat exchanger 3f to 3a recovers the cooled liquid, returns it to the ambient temperature, and returns it to the suction side of the compressor 171a.Meanwhile, the fresh liquid separator 71a separates the liquid at a temperature of approximately 4.4K (approximately 1.2 atm). The liquid helium of ) is reduced in pressure to about 10 Torr with a pressure reducing valve (1) and supplied to a liquid helium tank (2), which becomes superfluid helium with a pressure of about 1.8 Torr and cools the superconducting magnet. The cryogenic reduced pressure gas that has been gasified by cooling the superconducting Magratos passes through the modified wet reduced pressure refrigerant return pipe 13 and is heated to ambient temperature by a heater (supply), and then is sucked into the compressor 1 by the vacuum pump 31. The pressure is increased to the maximum pressure and returned to the suction side of the compressor 1.

以上のような構成、動作の従来の超流動ヘリウム装置で
は、超電導マグネットを冷却してガス化した極低温減圧
冷媒(以下、帰還冷媒と略)の寒冷を有効に回収してい
ないために効率の悪い’iNMとなっていた。
Conventional superfluid helium equipment with the above configuration and operation does not effectively recover the cryogenic temperature of the cryogenic decompression refrigerant (hereinafter referred to as return refrigerant) that cools the superconducting magnet and gasifies it, resulting in a reduction in efficiency. It was a bad 'iNM.

なお、この種の装置として関連するものには例えば特開
昭56−151850号等がある。
Incidentally, related devices of this type include, for example, Japanese Patent Application Laid-Open No. 151850/1983.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、帰還冷媒の寒冷を有効に回収すること
で、大気圧飽和温度以下の冷却8112を必要とする被
冷却体を効率よく冷却できる極低温冷凍機「及びその運
転方法を提供することにある。
An object of the present invention is to provide a "cryogenic refrigerator" that can efficiently cool objects to be cooled that require cooling 8112 below the atmospheric pressure saturation temperature by effectively recovering the cold of the return refrigerant, and a method for operating the same. There is a particular thing.

〔発明の概要〕[Summary of the invention]

従来の超流動ヘリウム数置では被冷却体からの帰還冷媒
の寒冷回収を行っていなかった。これは寒冷回収するた
めには帰還冷媒を極低温冷凍機に導入し熱交換器で熱交
換させる必要があるが、超流動ヘリウムの場合は圧力が
約10 Torrと非常に低いために圧力損失を小さく
せざるを得す、非常に大きな熱交換器を必要とするため
であった。以上のような問題点を解決するために、圧力
損失は概略ガス圧力に夏比例することに着目して、昇圧
手段で圧力的10 Torr の帰還冷媒を50〜10
0Torrの中間圧力まで昇圧する二とによって熱交換
器を実現可能な大きさにできる。一方、昇圧手段で昇圧
する際に帰還冷媒は温度上昇する。一般的に寒冷の評価
は絶対温度の逆数に比例(α1/T)し、圧力損失は概
略、絶対温度の1.25乗に比例するために、被冷却体
からの帰還冷媒を[接に昇圧手段で昇圧するのはシステ
ム的に効率的ではなく。
In the conventional superfluid helium system, the return coolant from the object to be cooled was not recovered by cooling. This is because in order to recover the cold, it is necessary to introduce the returned refrigerant into a cryogenic refrigerator and exchange heat with a heat exchanger, but in the case of superfluid helium, the pressure is extremely low at approximately 10 Torr, so there is no pressure loss. This was because it had to be made smaller and required a very large heat exchanger. In order to solve the above-mentioned problems, focusing on the fact that pressure loss is approximately proportional to gas pressure, the return refrigerant at a pressure of 10 Torr is increased by 50 to 10 Torr using pressure boosting means.
By increasing the pressure to an intermediate pressure of 0 Torr, the heat exchanger can be sized to a practical size. On the other hand, when the pressure of the return refrigerant is increased by the pressure increasing means, the temperature of the return refrigerant increases. In general, the evaluation of cooling is proportional to the reciprocal of the absolute temperature (α1/T), and the pressure loss is roughly proportional to the 1.25th power of the absolute temperature. It is not systemically efficient to increase the pressure by other means.

極低温部の一部の熱交換器で帰還冷媒の寒冷回収後に昇
圧手段で中間圧力に昇圧し、再び熱交換器で寒冷回収す
ることによつて最も有効なシステムを実現できる。
The most effective system can be realized by recovering the returned refrigerant in a cold state using a part of the heat exchanger in the cryogenic section, raising the pressure to an intermediate pressure using a pressure booster, and recovering the coolant again in the heat exchanger.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例をm1図によって説明する。第
1図において、重複を避けるために、第2図と同一部分
は同一符号を付してその説明を省略し、第2図も異なる
部分を重点的に述べることにする。
Hereinafter, one embodiment of the present invention will be described with reference to the m1 diagram. In FIG. 1, in order to avoid duplication, the same parts as in FIG. 2 are given the same reference numerals and their explanations are omitted, and the parts that are different in FIG. 2 will be mainly described.

第1図は本発明の極低製冷凍¥pflの一実施伊1の#
l敢を示すブロック図である。!l!1図において。
Figure 1 shows #1 of one implementation of the ultra-low refrigeration product of the present invention.
FIG. 2 is a block diagram showing the configuration. ! l! In Figure 1.

7は被冷却体からの帰還梗低温減圧冷媒の寒冷回収が行
える極低温冷凍機、38′〜3 d’及び3f’は帰還
冷媒が流通する流路が形成さt″した熱交換器、9は遭
圧手段、例えば、極低温真空ポンプ、31′は修低瀞真
空ポンプ9で昇圧された中間圧力から圧縮機1の吸入圧
力まで昇圧するだめの減圧ポンプである。その他の部分
1.1第1図と同様である。
7 is a cryogenic refrigerator capable of cold recovery of the return stroke low-temperature decompression refrigerant from the object to be cooled; 38' to 3 d' and 3 f' are heat exchangers in which channels through which the return refrigerant flows are formed; 9 31' is a pressure reducing pump for raising the pressure from the intermediate pressure raised by the lowering vacuum pump 9 to the suction pressure of the compressor 1.Other parts 1.1 It is similar to FIG.

以上のようにp成された本発明の枦低澗冷凍装置の動作
について、以下説明する。
The operation of the refrigeration system of the present invention constructed as described above will be explained below.

液冷却体である超電導マグネットUを冷却してガス化し
た帰還冷媒は極低温冷凍機管13を通り、極低温冷凍機
2′に導入され、第6の熱交換器3 f’で寒冷回収さ
れた後、極低温真空ポンプ9で約50〜100Torr
の中間圧力まで昇圧さn、再び第4〜第1の熱交換器3
 d’〜3 a’で熱交換する二とによって寒冷回収さ
n、減圧ポンプ31′で圧縮機1の吸入圧力まで昇圧さ
nて低圧ラインに合流して圧縮filの吸入側に帰還す
る。
The return refrigerant that has been gasified by cooling the superconducting magnet U, which is a liquid cooling body, passes through the cryocooler tube 13, is introduced into the cryocooler 2', and is recovered by the sixth heat exchanger 3f'. After that, the cryogenic vacuum pump 9 is used to generate a
The pressure is increased to an intermediate pressure of n, and then the fourth to first heat exchangers 3
It is cooled and recovered by heat exchange between d' and 3a', and the pressure is increased to the suction pressure of the compressor 1 by the pressure reducing pump 31', and it joins the low pressure line and returns to the suction side of the compressed filter.

以上詳述したように、未実施例にょnば、帰還冷媒の寒
冷回収を行うために、超電導マグネットを効率よく冷却
できるシステムを実現できると共に、極低温真空ポンプ
によって中間圧力まで昇圧するために、コンパクトな装
置にできる。さらに、一部の熱交換器で帰還冷媒の寒冷
を回収した後、極低温真空ポンプに導入するために寒冷
の回収効り良 率が向上すると共に、!#低温真空ポンプの契人温度を
安定した条件に保持できる効果がある。
As described in detail above, in order to perform cryogenic recovery of the return coolant, it is possible to realize a system that can efficiently cool a superconducting magnet, and to raise the pressure to an intermediate pressure using a cryogenic vacuum pump. Can be made into a compact device. Furthermore, after recovering the cold refrigerant in some heat exchangers, it is introduced into the cryogenic vacuum pump, which improves the efficiency of cold recovery. #It has the effect of keeping the temperature of the low-temperature vacuum pump at a stable condition.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したよう暴こ、帰還冷媒の寒冷を有
効に回収できるので、大気圧飽和温度以下の冷却温度を
必要とする被冷却体を効率良く冷却できるという効果が
ある。
As explained above, the present invention can effectively recover the cold of the return refrigerant, so it has the effect of efficiently cooling objects to be cooled that require a cooling temperature below the atmospheric pressure saturation temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はX発明による極低温冷凍装置の一実施例の構成
を示すブロリク図、第2図は従来の超漬動ヘリウム装窟
の構成を示すブロック図であδ。 1・・・・・・圧縮機、2・・・・・・極低温冷凍機、
3 a’ないし3d、3f・・・・・・熱交換器、9・
・・・・・極低温真空ポンプ、24・・・・・・超電導
マグネ−vトl′ 代理人 弁理士  小 川 勝 男 、′°叉
FIG. 1 is a Brolik diagram showing the configuration of an embodiment of the cryogenic refrigeration system according to the X invention, and FIG. 2 is a block diagram showing the configuration of a conventional super-submerged helium cavern δ. 1...Compressor, 2...Cryogenic refrigerator,
3 a' to 3d, 3f... Heat exchanger, 9.
...Cryogenic vacuum pump, 24...Superconducting magnet vl' Agent: Patent attorney Katsuo Ogawa,'°

Claims (1)

【特許請求の範囲】 1、冷媒ガスを圧縮循環する圧縮機と、極低温液化冷媒
を生成する極低温冷凍機と、大気圧飽和湯度以下の温度
に冷却される被冷却体とでなる極低温冷凍装置において
、前記被冷却体からの帰還冷媒が流通する流路を前記極
低温冷凍機の熱交換器に形成し、該熱交換器間で前記帰
還冷媒の圧力を中間圧力まで昇圧する昇圧手段を設けた
ことを特徴とする極低温冷凍装置。 2、冷媒ガスを圧縮循環する圧縮機と、極化温液化冷媒
を生成する極低温冷凍機と、大気圧飽和温度以下の温度
に冷却される被冷却体とでなる極低温冷凍装置において
、前記被冷却体からの帰還冷媒の圧力を中間圧力まで昇
圧する工程と、前記極低温液化冷媒となる前記冷媒ガス
を前記帰還冷媒で冷却して該帰還冷媒の寒冷を回収する
工程とを有することを特徴とする極低温冷凍装置の運転
方法。
[Scope of Claims] 1. A polar system consisting of a compressor that compresses and circulates refrigerant gas, a cryogenic refrigerator that produces cryogenic liquefied refrigerant, and a cooled body that is cooled to a temperature below atmospheric pressure saturation temperature. In a low temperature refrigeration system, a flow path through which the return refrigerant from the object to be cooled flows is formed in a heat exchanger of the cryogenic refrigerator, and the pressure of the return refrigerant is increased to an intermediate pressure between the heat exchangers. A cryogenic freezing device characterized by being provided with means. 2. In a cryogenic refrigeration system comprising a compressor that compresses and circulates refrigerant gas, a cryogenic refrigerator that generates a polarization temperature liquefied refrigerant, and a cooled object that is cooled to a temperature below the atmospheric pressure saturation temperature, the above-mentioned The method includes a step of increasing the pressure of the return refrigerant from the object to be cooled to an intermediate pressure, and a step of cooling the refrigerant gas that becomes the cryogenic liquefied refrigerant with the return refrigerant and recovering the cold of the return refrigerant. Features: How to operate cryogenic refrigeration equipment.
JP6062085A 1985-03-27 1985-03-27 Cryogenic refrigerator and operation method thereof Granted JPS61223455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6062085A JPS61223455A (en) 1985-03-27 1985-03-27 Cryogenic refrigerator and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6062085A JPS61223455A (en) 1985-03-27 1985-03-27 Cryogenic refrigerator and operation method thereof

Publications (2)

Publication Number Publication Date
JPS61223455A true JPS61223455A (en) 1986-10-04
JPH04189B2 JPH04189B2 (en) 1992-01-06

Family

ID=13147504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6062085A Granted JPS61223455A (en) 1985-03-27 1985-03-27 Cryogenic refrigerator and operation method thereof

Country Status (1)

Country Link
JP (1) JPS61223455A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436326A (en) * 1977-08-26 1979-03-17 Akira Kishida Molding method of concrete formed body and mold therefor
JPS5634071A (en) * 1979-08-24 1981-04-06 Osaka Oxygen Ind Helium refrigeration equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436326A (en) * 1977-08-26 1979-03-17 Akira Kishida Molding method of concrete formed body and mold therefor
JPS5634071A (en) * 1979-08-24 1981-04-06 Osaka Oxygen Ind Helium refrigeration equipment

Also Published As

Publication number Publication date
JPH04189B2 (en) 1992-01-06

Similar Documents

Publication Publication Date Title
US6293106B1 (en) Magnetic refrigeration system with multicomponent refrigerant fluid forecooling
CN103062951A (en) Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler
US6644038B1 (en) Multistage pulse tube refrigeration system for high temperature super conductivity
US6425250B1 (en) System for providing cryogenic refrigeration using an upstream pulse tube refrigerator
US4346563A (en) Super critical helium refrigeration process and apparatus
JPH0212349B2 (en)
US5347819A (en) Method and apparatus for manufacturing superfluidity helium
JPH1019402A (en) Low temperature refrigeration system by gas turbine
JPS61223455A (en) Cryogenic refrigerator and operation method thereof
US6484516B1 (en) Method and system for cryogenic refrigeration
JP2666664B2 (en) Method and apparatus for producing superfluid helium
Longsworth et al. Technology for liquid-nitrogen-cooled computers
JP3305508B2 (en) Cooling system
Brisson Cold-cycle dilution refrigeration
JPS5951155B2 (en) superconducting device
JPS6266067A (en) Helium cooling device
JP3206086B2 (en) Helium liquefaction machine
JPS61225556A (en) Cryogenic cooling device
JPH043856A (en) Jt circuit device for precooling operation with freezer device
JPS6317360A (en) Cryogenic refrigerating method
JPH0250381B2 (en)
JPS62129676A (en) Gas liquefying refrigerator
JPS63302280A (en) Method of liquefying helium
JPH08189716A (en) Cool storage vessel type refrigerating machine
JPH11337203A (en) Cryogenic temperature refrigerator