JPS63302280A - Method of liquefying helium - Google Patents

Method of liquefying helium

Info

Publication number
JPS63302280A
JPS63302280A JP62136378A JP13637887A JPS63302280A JP S63302280 A JPS63302280 A JP S63302280A JP 62136378 A JP62136378 A JP 62136378A JP 13637887 A JP13637887 A JP 13637887A JP S63302280 A JPS63302280 A JP S63302280A
Authority
JP
Japan
Prior art keywords
helium
heat exchanger
expansion chamber
refrigerator
helium gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62136378A
Other languages
Japanese (ja)
Other versions
JP2636240B2 (en
Inventor
宗一 蔵園
三田 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP62136378A priority Critical patent/JP2636240B2/en
Publication of JPS63302280A publication Critical patent/JPS63302280A/en
Application granted granted Critical
Publication of JP2636240B2 publication Critical patent/JP2636240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はヘリウムガスの液化方法に関する。本発明は超
高速コンピュータ、赤外線検出器、核磁気共鳴装置など
に使用される液体ヘリウムを得ることができる。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for liquefying helium gas. The present invention can obtain liquid helium used in ultrahigh-speed computers, infrared detectors, nuclear magnetic resonance devices, etc.

(従来の技術) 従来の液体ヘリウムを得る方法としては、J−Tループ
付蓄冷式冷凍サイクルが知られている。
(Prior Art) As a conventional method for obtaining liquid helium, a regenerator refrigeration cycle with a J-T loop is known.

この方法は、スターリング(stirling) 、ギ
フオード−マクマフオン(gifford−memah
on ) 、ツルベイ(solvay>およびブイリウ
v (vuilleumer)等の蓄冷式冷凍サイクル
で15〜20に程度の冷凍温度を得、これによりヘリウ
ムガスを15〜20Kに冷却する。次ぎにJ−Tルーズ
により15〜2OKに冷却されたヘリウムガスをジュー
ルトムソンバルブを通して断熱膨張さV一部のガスを液
化させて液体ヘリウムを得るものである。
This method was developed by Stirling and Gifford-Memah.
A refrigerating temperature of about 15 to 20 K is obtained using a regenerator refrigeration cycle such as a refrigerating system such as a refrigerating system such as a refrigerating machine such as a refrigerating machine such as a refrigerating machine such as a refrigerating machine such as a refrigerating machine such as a refrigerating machine such as a refrigerating machine such as a refrigerating machine such as a refrigerating machine such as a refrigerating machine such as a refrigerating machine, and a refrigerating machine such as a refrigerating machine such as a refrigerating machine such as a refrigerating machine such as a refrigerant. Helium gas cooled to 15-2 OK is adiabatically expanded through a Joule-Thomson valve, and a portion of the gas is liquefied to obtain liquid helium.

J−Tループ付蓄冷式冷凍サイクルを利用した冷凍機の
代表的なものを第4図に示す。この冷凍機は蓄冷式第1
冷却装[100とJ−Tループ式第2冷却装置!200
とからなる。蓄冷式第1冷却装置100はコンプレッサ
ー101と第1膨脹室102、第2膨脹室103を有す
る膨張器104とからなる。J−T式第2冷m装置20
0はコンプレッサー201と第1熱交換器202、第2
熱交M器203、第3熱交換器204と第1冷却部20
5、第2冷却部206とJ−’rバルブ207と液体ヘ
リウム槽208とからなる。そしてヘリウムガスのルー
プはコンプレッサー201から第1熱交換器202、第
1冷却部205、第2熱交換器203、第2冷却部20
6、第3熱交換器204、J−Tバルブ207を通り液
体ヘリウム槽208に至る往路と、さらに、この液体ヘ
リウム槽208より第3熱交換器204、第2熱交yA
器203、第1熱交換器202を通りコンプレッサー2
01に戻る復路とからなる。この冷凍機ではJ−T式第
2冷却装C200のヘリウムガスが蓄冷式第1冷凍装置
100の第1冷却部205、第2冷却部206を通って
充分に予冷され、J−Tパルプ207において等エンタ
ルピー膨張しガスの一部が液化し、液体ヘリウム槽20
8内に蓄えられる。液化しなかった大部分のヘリウムガ
スは復路を液体ヘリウム槽208より第3熱交換器20
4、第2熱交換器203、第1熱交換器202とつぎつ
ぎと熱交換しコンプレッサー201に戻る。
FIG. 4 shows a typical refrigerator using a regenerator refrigeration cycle with a J-T loop. This refrigerator is the first regenerator type.
Cooling system [100 and J-T loop type second cooling system! 200
It consists of. The first regenerator cooling device 100 includes a compressor 101 and an expander 104 having a first expansion chamber 102 and a second expansion chamber 103. J-T type second cold m device 20
0 is a compressor 201, a first heat exchanger 202, a second
Heat exchanger M device 203, third heat exchanger 204 and first cooling section 20
5. Consists of a second cooling unit 206, a J-'r valve 207, and a liquid helium tank 208. The helium gas loop starts from the compressor 201 to the first heat exchanger 202, to the first cooling section 205, to the second heat exchanger 203, to the second cooling section 20.
6. An outgoing path that passes through the third heat exchanger 204 and the J-T valve 207 and reaches the liquid helium tank 208, and further from the liquid helium tank 208 to the third heat exchanger 204 and the second heat exchanger yA.
The compressor 2 passes through the heat exchanger 203 and the first heat exchanger 202.
and a return trip back to 01. In this refrigerator, the helium gas in the J-T type second cooling device C200 is sufficiently precooled through the first cooling section 205 and second cooling section 206 of the regenerator type first cooling device 100, and is then cooled in the J-T pulp 207. Isenthalpic expansion causes a part of the gas to liquefy, forming a liquid helium tank 20.
Stored within 8. Most of the helium gas that has not been liquefied takes a return route from the liquid helium tank 208 to the third heat exchanger 20.
4. Heat is exchanged with the second heat exchanger 203 and the first heat exchanger 202 one after another, and then returns to the compressor 201.

〈発明が解決しようとする問題点) このJ−Tループ付蓄冷式冷凍サイクルを利用した冷凍
機は多聞のヘリウムガスをJ−Tループにそって循環す
る必要があるため、冷凍機そのものが大型になるという
問題がある。
(Problems to be solved by the invention) A refrigerator using this regenerator refrigeration cycle with a J-T loop requires a large amount of helium gas to be circulated along the J-T loop, so the refrigerator itself is large. There is a problem with becoming.

また、J−Tバルブによる膨張ではヘリウムガスは1〜
2に程度わずかに冷却されるにすぎず、ジュールトムソ
ン膨張を利用した作動媒体の冷部には限界があった。
In addition, when expanding with a J-T valve, helium gas is 1~
There was a limit to the cooling part of the working medium that utilized Joule-Thomson expansion.

本発明は上記した実情に鑑みなされたものであり、より
簡単に液体ヘリウムが得られるヘリウム液化方法を提供
するものである。
The present invention was made in view of the above-mentioned circumstances, and provides a helium liquefaction method that allows liquid helium to be obtained more easily.

[問題点を解決するための手段] 本発明のヘリウム液化方法は、作動媒体としてのヘリウ
ムが圧縮される圧縮室と、圧縮されたヘリウムの圧縮熱
を放出する放熱部と、該放熱部と連通する蓄冷器と、該
蓄冷器を経た該ヘリウムが膨張づる膨脹室とを有する冷
凍機の該蓄冷器および該膨脹室の間に設けた熱交換器に
より該冷凍機の作動媒体であるヘリウムと別個のヘリウ
ムガスを冷却液化することを特徴とするものである。
[Means for Solving the Problems] The helium liquefaction method of the present invention comprises: a compression chamber in which helium as a working medium is compressed; a heat radiation part that releases the heat of compression of the compressed helium; and communication with the heat radiation part. A heat exchanger installed between the regenerator and the expansion chamber of the refrigerator has a regenerator for storing helium, and an expansion chamber in which the helium expands after passing through the regenerator. It is characterized by cooling and liquefying helium gas.

本発明はヘリウムガスを作動媒体とする蓄冷式冷凍機で
放熱部を20に程度の冷凍で冷却づることによりヘリウ
ムの液化湿度以下の冷凍が得られることを発見したこと
にもとすく。
The present invention is based on the discovery that in a regenerator refrigerator using helium gas as a working medium, by cooling the heat dissipation section with refrigeration of about 20%, it is possible to achieve refrigeration at a humidity lower than the liquefaction humidity of helium.

本発明のヘリウム液、化方法に使用される冷凍機は、作
動媒体としてのヘリウムが圧縮される圧縮全と、圧縮さ
れたヘリウムの圧縮熱を放出する放熱部と、該放熱部と
連通ずる蓄冷器と、該蓄冷器を経た該ヘリウムが膨張す
る膨脹室とを有する。
The refrigerator used in the helium liquid conversion method of the present invention includes a compressor for compressing helium as a working medium, a heat radiator that releases the heat of compression of the compressed helium, and a cold storage that communicates with the heat radiator. and an expansion chamber in which the helium that has passed through the regenerator expands.

かかる冷凍機としてはスターリング、ギフオード−マク
マフオン、ツルベイおよびブイリウマ等の蓄冷式冷凍サ
イクルで作動づる冷凍機を使用できる。この冷凍機の放
熱部は少なくとも4011fの冷凍、より好ましくは2
0により低い冷凍で冷却する必要がある。この冷W機に
はその蓄冷部および膨脹室の間に作e媒体のヘリウムと
は別のヘリウムガスを冷却するための熱交換器を設ける
必要がある。
As such refrigerators, refrigerators operating on a regenerative refrigeration cycle, such as Sterling, Gifford-McMuffon, Truvay, and Builiuma, can be used. The heat dissipation section of this refrigerator has at least 4011f of refrigeration, more preferably 2
It is necessary to cool down with refrigeration lower than 0. This cold W machine needs to be provided with a heat exchanger between the cold storage section and the expansion chamber to cool helium gas, which is different from helium as the production medium.

液化されるヘリウムガスも予め40に以下より好ましく
は20に以下の温度に冷却する。この予冷については公
知の冷凍機を使用できる。この予冷されたヘリウムガス
を冷凍機の熱交換器に送りここでヘリウムの液化温度以
下に冷却して液体ヘリウムを得るものである。
The helium gas to be liquefied is also pre-cooled to a temperature of 40° C. or less, more preferably 20° C. or less. A known refrigerator can be used for this precooling. This pre-cooled helium gas is sent to the heat exchanger of the refrigerator where it is cooled to below the liquefaction temperature of helium to obtain liquid helium.

ヘリウムガスが液化される熱交換器内のヘリウムガスの
圧力は冷凍機の膨張T内の最低圧力より高く維持される
必要がある。この条件が満たされないと液化効率がt(
i端に悪くなり、また、液化が不可能になる。液化され
るヘリウムガスは熱交換器により冷却液化される前に断
熱膨張させることもできる。これにより液化されるヘリ
ウムガスの温度をさらに低下さぜ、液化湯度に予めちか
ずけることができる。
The pressure of the helium gas in the heat exchanger where the helium gas is liquefied needs to be maintained higher than the lowest pressure in the expansion T of the refrigerator. If this condition is not met, the liquefaction efficiency will decrease t(
The i-end deteriorates, and liquefaction becomes impossible. The helium gas to be liquefied can also be adiabatically expanded before being cooled and liquefied by a heat exchanger. As a result, the temperature of the helium gas to be liquefied can be further lowered and the temperature of the helium gas can be brought closer to the liquefaction temperature.

液化された液体ヘリウムは液体ヘリウム槽に蓄える。な
J3外部からの熱の侵入により気化するヘリウムガスは
熱交換器に戻して再度液化しても、あるいはヘリウムガ
スボンベに戻してもよい。
The liquefied liquid helium is stored in a liquid helium tank. The helium gas that is vaporized by heat entering from the outside of J3 may be returned to the heat exchanger and liquefied again, or may be returned to the helium gas cylinder.

「作用効果」 本発明のヘリウム液化方法は、ヘリウムを作動媒体とす
る蓄冷式冷凍機の蓄冷器および膨脹室の間に設(プた熱
交tIA器に作動媒体と別のヘリウムガスを送り、熱交
換器内でヘリウムガスの液化温度以下に冷却して液体ヘ
リウムを得るものである。
"Effects" The helium liquefaction method of the present invention includes sending a working medium and another helium gas to a heat exchanger installed between a regenerator and an expansion chamber of a regenerator refrigerator using helium as a working medium. Liquid helium is obtained by cooling helium gas to below its liquefaction temperature in a heat exchanger.

本発明のヘリウム液化方法では、J−Tループによる冷
却で液体ヘリウムを1qるのではなく、熱交換器内で液
化温度以下に冷却してヘリウムを液化する。このため使
用する冷1機が小形化され、単純になる。
In the helium liquefaction method of the present invention, instead of cooling 1 q of liquid helium using a J-T loop, helium is liquefied by cooling it below the liquefaction temperature in a heat exchanger. For this reason, the single refrigeration unit used is smaller and simpler.

[実施例] 本発明のヘリウム液化方法に使用した極低温冷凍機のシ
ステム構成図を第1図に、要部断面図を第2図に示す。
[Example] Fig. 1 shows a system configuration diagram of a cryogenic refrigerator used in the helium liquefaction method of the present invention, and Fig. 2 shows a sectional view of the main parts.

この極低温冷凍機は、逆スターリングサイクルで寒冷を
取出す第1冷凍装置1と、同じく逆スターリングサイク
ルでさらに一層低湿度の寒冷を取出す第2冷凍装置2と
、ヘリウム供給袋[3とから構成されている。
This cryogenic refrigerator consists of a first refrigeration device 1 that extracts cold using a reverse Stirling cycle, a second refrigeration device 2 that extracts cold with even lower humidity using a reverse Stirling cycle, and a helium supply bag [3]. ing.

第1冷凍til11は、ヘリウムを作動媒体とし、第1
膨脹室11と第2膨脹室12の2個の膨脹室をもつ通常
のスターリング冷凍機で、2段シリンダ13に圧縮用の
2段ピストン(図示せず)が摺動自在にはめこまれ、ピ
ストンとシリンダ13とで、容積が変動する上記第1膨
脹室11と第21kll張室12が形成されている。
The first frozen til11 uses helium as a working medium, and the first
In a normal Stirling refrigerator that has two expansion chambers, an expansion chamber 11 and a second expansion chamber 12, a two-stage piston (not shown) for compression is slidably fitted into a two-stage cylinder 13, and the piston and the cylinder 13 form the first expansion chamber 11 and the 21st expansion chamber 12 whose volumes vary.

この第1冷凍装u1は図示しない圧縮室と第1膨脹室1
1との間に図示しない放熱部、第1蓄冷室をもち、さら
に第1膨脹室11と第2膨張空12の間に図示しない第
2蓄冷室をもつ。そして図示しない駆動部で圧縮室と第
1膨脹室11および第2膨脹室12間にヘリウムガスを
往復動させ、第1膨脹室11に第1寒冷、第2膨脹室1
2に約20KV1度の第2寒冷を作るものである。
This first refrigeration system u1 includes a compression chamber and a first expansion chamber 1 (not shown).
It has a heat radiation part (not shown) and a first cold storage chamber between the first expansion chamber 11 and the second expansion chamber 12, and further has a second cold storage chamber (not shown) between the first expansion chamber 11 and the second expansion chamber 12. Then, a drive unit (not shown) reciprocates helium gas between the compression chamber and the first expansion chamber 11 and the second expansion chamber 12, so that the first expansion chamber 11 receives the first cold and the second expansion chamber 1.
It creates a second cold of about 20KV 1 degree in 2020.

第2冷凍装置2は、同じくヘリウムを作vJ媒体とする
第1シリンダ21、第2シリンダ22および第3シリン
ダ23をもつ2段膨張式のスターリング冷凍機である。
The second refrigeration device 2 is a two-stage expansion type Stirling refrigerator having a first cylinder 21, a second cylinder 22, and a third cylinder 23, which also use helium as a production medium.

第1シリンダ21には摺動自在に第1ピストン211が
装着され、それら先端部にシール212でシールされた
圧縮室215が形成されている。第2シリンダ22およ
び第3シリンダ23にはそれぞれ第2ピストン221、
第3ピストン231がhvされ、それぞれの先端部には
各々シール222、シール232でシールされた第1膨
張窄225および第2膨脹室235が形成されている。
A first piston 211 is slidably attached to the first cylinder 21, and a compression chamber 215 sealed with a seal 212 is formed at the tip end of the first piston 211. The second cylinder 22 and the third cylinder 23 each have a second piston 221,
The third piston 231 is hv, and a first expansion chamber 225 and a second expansion chamber 235, which are sealed with a seal 222 and a seal 232, are formed at the distal end of each piston 231, respectively.

なお、各シリンダ21.22.23のシールに近い外周
部には第1冷凍装置1の第1rtJ3張至11の寒冷を
伝える銅製の第1冷却部014が当接している。また、
第1シリンダ21の先端外周部には第1冷凍装置1の第
2115張室12の寒冷を伝える銅製の第2冷却部材1
5が当接し、圧縮室215と第111張室225との間
で圧縮室215側に設けられた放熱部27を冷却してい
る。さらに圧縮室215と第1膨脹室225の間で第1
膨脹室225側に第1蓄冷室24、第1膨脹室225と
第2膨脹室235の間で第1膨脹室225側に第2蓄冷
室25、第2IllI!張室235側に熱交換器26が
段けられている。
Note that a first cooling part 014 made of copper that transmits the cold of the first refrigeration system 1 to the first refrigeration unit 1 is in contact with the outer circumferential portion of each cylinder 21, 22, 23 near the seal. Also,
A second cooling member 1 made of copper that conveys the cold of the 2115th chamber 12 of the first refrigeration device 1 is attached to the outer circumference of the tip of the first cylinder 21.
5 are in contact with each other to cool the heat dissipation section 27 provided on the compression chamber 215 side between the compression chamber 215 and the 111th tension chamber 225. Further, between the compression chamber 215 and the first expansion chamber 225, a first
The first cold storage chamber 24 is on the expansion chamber 225 side, the second cold storage chamber 25 is on the first expansion chamber 225 side between the first expansion chamber 225 and the second expansion chamber 235, and the second IllI! A heat exchanger 26 is arranged on the tension chamber 235 side.

この第2冷凍装置2は、図示しない駆動部で第1ピスト
ン211、第2ピストン221および第3ピストン23
1・を駆動し、作動媒体であるヘリウムを圧縮室215
と第1膨脹室225および第2膨脹室235との間で往
復動させ、熱交換器26を4.2に以下に冷却するもの
である。
This second refrigeration device 2 includes a first piston 211, a second piston 221, and a third piston 23 by a drive section (not shown).
1 and compresses helium, which is a working medium, into the compression chamber 215.
and the first expansion chamber 225 and the second expansion chamber 235 to cool the heat exchanger 26 to 4.2 or less.

ヘリウム供給袋e3は、ヘリウムガスボンベ31、ポン
プ32、第1冷凍装置1の第1膨脹室11を形成するシ
リンダ13の外周に当接して巻き付けられた第1コイル
331、第2膨脹室12を形成するシリンダ13の外周
に当接して巻き付けられた第2コイル332、第1蓄冷
室24および第2蓄冷室25の外周に当接して巻き付け
られた第3コイル333、上記した熱交換器26、液体
ヘリウム槽34、第3コイル333、第2コイル332
お↓び第1コイル331のそれぞれ外周に当接して巻き
付けられた第4コイル334、第5コイル335および
第6コイル336とよりなるループで構成されている。
The helium supply bag e3 includes a helium gas cylinder 31, a pump 32, a first coil 331 that is wound around the outer circumference of the cylinder 13 that forms the first expansion chamber 11 of the first refrigeration device 1, and a first coil 331 that forms the second expansion chamber 12. A second coil 332 is wound in contact with the outer periphery of the cylinder 13, a third coil 333 is wound in contact with the outer periphery of the first cold storage chamber 24 and the second cold storage chamber 25, the heat exchanger 26 described above, and the liquid Helium tank 34, third coil 333, second coil 332
It is constituted by a loop consisting of a fourth coil 334, a fifth coil 335, and a sixth coil 336, each of which is wound in contact with the outer periphery of the first coil 331.

ヘリウム供給装置3はヘリウムガスボンベ31内のヘリ
ウムガスをポンプ32で圧縮し、第1コイル331、第
2コイル332、第3コイル333を通して次々に冷却
し、最後に熱交換器26内で4.2に以下に冷却してヘ
リウムガスを液化し、液体ヘリウム槽34に蓄えるもの
である。なお、液化しなかったヘリウムガスおよび外部
からの熱で気化したヘリウムガスは第4コイル334、
第5コイル335および第6コイル336で次々に熱交
換されて寒冷を失い、最後にヘリウムガスボンベ31に
戻る。
The helium supply device 3 compresses helium gas in a helium gas cylinder 31 with a pump 32, cools it one after another through a first coil 331, a second coil 332, and a third coil 333, and finally cools the helium gas in a heat exchanger 26 to 4.2 The helium gas is cooled down to liquefy and stored in a liquid helium tank 34. Note that the helium gas that has not been liquefied and the helium gas that has been vaporized by heat from the outside is transferred to the fourth coil 334,
The heat is exchanged in the fifth coil 335 and the sixth coil 336 one after another, losing the cold, and finally returning to the helium gas cylinder 31.

本実施例のヘリウム液化方法は、この極低温冷a4機で
実施される。すなわち、第1冷凍装置1を作動させ、第
2冷凍装置2の放熱部27を20に程度に冷却するとと
もに、ヘリウム供給装置3の第2コイル332を同じく
20に程度に冷却する。
The helium liquefaction method of this example is carried out in this cryogenic cooling A4 machine. That is, the first refrigeration device 1 is operated to cool the heat radiation section 27 of the second refrigeration device 2 to about 20°C, and the second coil 332 of the helium supply device 3 is also cooled to about 20°C.

また、第2冷凍装置2を駆動し、作vJ媒体のヘリウム
を圧縮室215と第1膨脹室225および第2膨脹室2
35との間を往復動させ、熱交換器26を4.2に以下
に冷却する。(なお、ヘリウムを作動媒体に使用してヘ
リウムの液化温度より低い寒冷が得られるのか不明であ
るが、逆スターリングサイクルで放熱部を20に程度の
寒冷で冷却した場合には4.2に以下の寒冷が19られ
ることを実証している。)この状態でヘリウム供給装置
3のポンプ32を駆動してヘリウムガスを第2冷凍装置
2の第2膨脹室235の最低圧力より高い1 、6kg
mcm 2程度に高める。そして熱交換器26にヘリウ
ムガスを導き、熱交換器26内で液化させ、液化した液
体ヘリウムを液体ヘリウム槽34に蓄える。
In addition, the second refrigeration device 2 is driven to supply helium, which is the production medium, to the compression chamber 215, the first expansion chamber 225, and the second expansion chamber 2.
35 to cool the heat exchanger 26 to 4.2 or less. (It is unclear whether it is possible to obtain a temperature lower than the liquefaction temperature of helium by using helium as a working medium, but if the heat dissipation part is cooled to a temperature of about 20°C using a reverse Stirling cycle, the temperature will be lower than 4.2°. ) In this state, the pump 32 of the helium supply device 3 is driven to supply helium gas at a pressure higher than the lowest pressure of the second expansion chamber 235 of the second refrigeration device 2 by 1.6 kg.
Increase to about 2 mcm. Helium gas is then introduced into the heat exchanger 26, liquefied within the heat exchanger 26, and the liquefied liquid helium is stored in the liquid helium tank 34.

本実施例に使用した極低温冷凍機の代りに、第3図にシ
ステム構成図を示す極低温冷*iを使用して本発明のヘ
リウム液化方法を実施することができる。
Instead of the cryogenic refrigerator used in this example, the helium liquefaction method of the present invention can be carried out using a cryogenic refrigerator *i whose system configuration is shown in FIG. 3.

この極低温冷凍機は上記した極低温冷212機の第3コ
イル333と熱交換器26との間にジュールトムソンバ
ルブ35を設けたもので、他の構成は同じである。この
極低温冷凍機では、比較的高圧で第3コイル333によ
り4.2に近くにまで冷lnされているヘリウムガスが
ジュールトムソンバルブ35を通過することにより断熱
膨張し、ヘリウムガスの温度はさらに低下する。これに
より熱交換器26内での液化をより容易にするものであ
る。
This cryogenic refrigerator has a Joule-Thompson valve 35 between the third coil 333 and the heat exchanger 26 of the cryogenic refrigerator 212 described above, and the other configurations are the same. In this cryogenic refrigerator, helium gas, which is cooled to a temperature close to 4.2 in the third coil 333 at a relatively high pressure, is adiabatically expanded by passing through the Joule-Thomson valve 35, and the temperature of the helium gas is further increased. descend. This facilitates liquefaction within the heat exchanger 26.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で使用した極低温装置のシステム構成図
、第2図はその極低温装置の要部断面図、国 1・・・第1冷凍装置  2・・・第2冷凍装置3・・
・ヘリウム供給装置 24・・・第1蓄冷室  25・・・第2蓄冷室26・
・・熱交換器   27・・・放熱部34・・・液体ヘ
リウム槽 215・・・圧縮室   225・・・第1膨脹室23
5・・・第2膨脹室 特許出願人  アイシン精機株式会社 代理人    弁理士  大川 宏 第2図
Fig. 1 is a system configuration diagram of the cryogenic device used in the example, and Fig. 2 is a sectional view of the main parts of the cryogenic device.・
・Helium supply device 24...first cold storage chamber 25...second cold storage chamber 26・
... Heat exchanger 27 ... Heat radiation section 34 ... Liquid helium tank 215 ... Compression chamber 225 ... First expansion chamber 23
5...Second expansion chamber patent applicant Hiroshi Okawa, agent for Aisin Seiki Co., Ltd. Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)作動媒体としてのヘリウムが圧縮される圧縮室と
、圧縮されたヘリウムの圧縮熱を放出する放熱部と、該
放熱部と連通する蓄冷器と、該蓄冷器を経た該ヘリウム
が膨脹する膨脹室とを有する冷凍機の該蓄冷器および該
膨脹室の間に設けた熱交換器により該冷凍機の作動媒体
であるヘリウムと別個のヘリウムガスを冷却液化するこ
とを特徴とするヘリウム液化方法。
(1) A compression chamber in which helium as a working medium is compressed, a heat radiation part that releases the heat of compression of the compressed helium, a regenerator communicating with the heat radiation part, and the helium expanded after passing through the regenerator. A helium liquefaction method characterized by cooling and liquefying helium, which is a working medium of the refrigerator, and a separate helium gas using a heat exchanger provided between the regenerator and the expansion chamber of a refrigerator having an expansion chamber. .
(2)放熱部は40K以下の寒冷により冷却される特許
請求の範囲第1項記載のヘリウム液化方法。
(2) The helium liquefaction method according to claim 1, wherein the heat dissipation part is cooled by cold of 40K or less.
(3)ヘリウムガスが液化される熱交換器内のヘリウム
ガス圧力は冷凍機の膨脹室内の最低圧力より高く維持さ
れている特許請求の範囲第1項記載のヘリウム液化方法
(3) The helium liquefaction method according to claim 1, wherein the helium gas pressure in the heat exchanger in which the helium gas is liquefied is maintained higher than the lowest pressure in the expansion chamber of the refrigerator.
(4)液化されるヘリウムガスは熱交換器により冷却液
化される前に断熱膨脹して該熱交換器に導入される特許
請求の範囲第1項記載のヘリウム液化方法。
(4) The helium liquefaction method according to claim 1, wherein the helium gas to be liquefied is adiabatically expanded and introduced into the heat exchanger before being cooled and liquefied by the heat exchanger.
(5)冷凍機は逆スターリング冷凍機である特許請求の
範囲第1項記載のヘリウム液化方法。
(5) The helium liquefaction method according to claim 1, wherein the refrigerator is an inverted Stirling refrigerator.
JP62136378A 1987-05-31 1987-05-31 Helium liquefaction method Expired - Fee Related JP2636240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62136378A JP2636240B2 (en) 1987-05-31 1987-05-31 Helium liquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62136378A JP2636240B2 (en) 1987-05-31 1987-05-31 Helium liquefaction method

Publications (2)

Publication Number Publication Date
JPS63302280A true JPS63302280A (en) 1988-12-09
JP2636240B2 JP2636240B2 (en) 1997-07-30

Family

ID=15173757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62136378A Expired - Fee Related JP2636240B2 (en) 1987-05-31 1987-05-31 Helium liquefaction method

Country Status (1)

Country Link
JP (1) JP2636240B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343075A (en) * 2005-06-10 2006-12-21 National Institute Of Advanced Industrial & Technology Cryogenic refrigerator using mechanical refrigerator and joule-thomson expansion
JP2007085700A (en) * 2005-09-26 2007-04-05 Taiyo Nippon Sanso Corp Helium condensing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343075A (en) * 2005-06-10 2006-12-21 National Institute Of Advanced Industrial & Technology Cryogenic refrigerator using mechanical refrigerator and joule-thomson expansion
JP4595121B2 (en) * 2005-06-10 2010-12-08 独立行政法人産業技術総合研究所 Cryogenic refrigerator using mechanical refrigerator and Joule Thomson expansion
JP2007085700A (en) * 2005-09-26 2007-04-05 Taiyo Nippon Sanso Corp Helium condensing device
JP4570546B2 (en) * 2005-09-26 2010-10-27 大陽日酸株式会社 Helium condenser

Also Published As

Publication number Publication date
JP2636240B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
CA2481230C (en) Thermo-siphon method for providing refrigeration
JPS61256158A (en) Refrigeration system
JPS63302280A (en) Method of liquefying helium
JPS63302259A (en) Cryogenic generator
US6484516B1 (en) Method and system for cryogenic refrigeration
JP2941575B2 (en) Cryogenic refrigerator and operating method thereof
JPH062972A (en) Cryogenic refrigerator
JP3278973B2 (en) Cryogenic refrigerator
JPS6073267A (en) Refrigerator
JPH03194364A (en) Cryostatic freezer
JP2723342B2 (en) Cryogenic refrigerator
JP2600728B2 (en) Aircraft refrigeration equipment
JP3379148B2 (en) Cryogenic cooling device
JPS61225556A (en) Cryogenic cooling device
JPS59183259A (en) Cryogenic refrigerator
JPH0285653A (en) Very low temperature refrigerator
JPH07234030A (en) Method and apparatus for refrigerating and liquefying by cold thermal storage type refrigerator
JPH09236340A (en) Cryogenic refrigerating device
JPH0348432B2 (en)
JPH09236344A (en) Cryogenic refrigerating device
Köhler Refrigeration below-100° C
JPH0348431B2 (en)
JPS6033457A (en) Refrigeration system
Chen et al. Pulse Tube Refrigeration with a Combined Cooling and Freezing Cycle for HTSC Devices
Radebaugh c Devices

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees