JPS61223428A - Burning device - Google Patents

Burning device

Info

Publication number
JPS61223428A
JPS61223428A JP60061103A JP6110385A JPS61223428A JP S61223428 A JPS61223428 A JP S61223428A JP 60061103 A JP60061103 A JP 60061103A JP 6110385 A JP6110385 A JP 6110385A JP S61223428 A JPS61223428 A JP S61223428A
Authority
JP
Japan
Prior art keywords
combustion
air
chamber
supplied
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60061103A
Other languages
Japanese (ja)
Other versions
JPH0350927B2 (en
Inventor
Masaru Ito
伊東 勝
Katsuhiko Yamamoto
克彦 山本
Yasushi Hirata
康 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60061103A priority Critical patent/JPS61223428A/en
Publication of JPS61223428A publication Critical patent/JPS61223428A/en
Publication of JPH0350927B2 publication Critical patent/JPH0350927B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/16Controlling secondary air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE:To prevent generation of harmful carbon monoxide and permit low NOx combustion in a burner head during stationary combustion by a method wherein combustion air is divided and one part thereof is supplied to an exhaust gas path by a switching valve upon igniting while the same air is switched to supply it into a flow regulating chamber during the stationary combustion. CONSTITUTION:The combustion air, supplied by a combustion fan 8, is divided and one part of it is supplied into an evaporating chamber 4 through primary air path 9 while the other part is supplied into the air regulating chamber 17, sending out premixed gas from the evaporating chamber 4 into the primary combustion burner head 14, through secondary air path 22. Third air path 33, supplying a part of the combustion air into an exhaust gas path 23, is branched and is provided with a switching valve 20, guiding a part of the combustion air into the flow regulating chamber 17 during the stationary combustion and guiding the same air into the exhaust gas path 23 upon igniting the fuel. According to this method, fuel is ignited easily and the harmful carbon monoxide, easily generated, is oxidized and burnt by the combustion air, supplied into the exhaust gas path 23 by the switching valve 20. During the stationary combustion after ignition, the low NOx combustion may be effected on allover the surface of the primary combustion burner head 14.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、強制供給される燃焼空気と燃料を混合し、全
−次燃焼を行なう燃焼装置の点火特性の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in the ignition characteristics of a combustion device that mixes force-fed combustion air and fuel to perform total combustion.

従来の技術 従来のこの種の燃焼装置は、第3図に示すように、ヒー
タ51によって加熱される気化筒52およびその上部開
口部に配設された副バーナ53によって区画され、ポン
プ54により燃料タンク55から供給される液体燃料を
気化し予混合気とする気化室56と、副バーナ53の上
部に配設され気化室56からの予混合気を混合し、セラ
ミック板にて構成されその表面にて全−次燃焼を行なう
主バーナ57へ予混合気を送出する整流室58と、燃焼
空気の供給を行なう燃焼ファン59から気化室56に至
る一次空気系路60と、一次空気系路60から分岐し整
流室58に至る二次空気系路61と、上記分岐部に設け
られ主バーナ57加熱用の副バーナ53燃焼時には燃焼
空気を一次空気系路60と二次空電系路に分割し主バー
ナ57燃焼時には燃焼空気全量を一次空気系路に導びく
切換弁62と、副バーナ53および主バーナ57の点火
を行なう点火器63および64を備えたものである。上
記構成において、気化筒52が所定温度まで加熱される
とポンプ54により燃料が供給されるとともに燃焼ファ
ン59により燃焼空気が供給されるが、この時切換弁6
2の弁体62Aは下に付勢されて一次空気ロ62Bを閉
じているので燃焼空気は二次空気口62Cおよびバイパ
ス孔62Dにより分割されてそれぞれ気化室56および
整流室58に導びかれる。気化室56に入った燃焼空気
の一部と燃料の気化ガスは混合して予混合気となって副
バーナ53より整流室58内へ噴出し点火器6aによっ
て点火され燃焼が行なわれるが、小径のバイパス孔62
Dを通って気化室56に供給される空気量は燃料の理論
空気量以下であるために、副バーナ53より噴出する予
混合気濃度は濃く、点火器6aによる点火は容易となる
。しかし、副バーナ53における燃焼は理論空気量以下
で行なわれるため、そのままでは空気不足による不完全
燃焼のため多量の一酸化炭素を発生するが、二次空気系
路61を介して整流室58に供給される燃焼空気により
再燃焼するため一酸化炭素は排出されない。副バーナ5
3の燃焼による高温の排ガスは整流室58を通って主バ
ーナ57より排出されるが、その時に主バーナ57を加
熱する。次に、主バーナ57が所定の温度まで加熱され
るとポンプ54を停止して副バーナ53における燃焼を
停止するとともに、弁体62Aを1に付勢して二次空気
口62Cを閉じ燃焼空気の全量を一次空気系路に導き、
再度ポンプ54を起動して燃料を気化室56に供給する
。その結果、気化室56より整流室58を通って主バー
ナ57に供給される予混合気は、その中に含まれる燃焼
空気が燃料の理論空気量以上の比較的薄い予混合気とな
る。主バーナ57より噴出した予混合気は点火器64に
より点火され、主バーナ57の表面にて全−次燃焼を行
なうが、主バーナ57は副バーナ53の燃焼熱により加
熱されているために理論空気量以上の比較的薄い予混合
気であっても容易に点火することができるようになって
いた。(例えば特開昭58−72807号公報) 発明が解決しようとする問題点 しかしながら、上記従来例においては主バーナ用と副バ
ーナ用と2つの点火装置が必要であるとともに、副バー
ナを消火した後に主バーナに点火するので、その際に消
火・点火時の臭気が発生する問題点があった。さらに、
燃焼装置として低NOX e焼を行なうには金網やセラ
ミック板等を用いて面燃焼負荷の小さい全−次燃焼を行
なうことが有効であるが、その場合燃焼負荷が小さいだ
めにたとえばバーナヘッド部が十分に熱せられていても
通常の燃焼が行なわれる空燃比においては、一般的な点
火手段である放電点火によっては点火しにくい問題点が
あった。
2. Description of the Related Art As shown in FIG. 3, a conventional combustion apparatus of this type is divided into a vaporizing cylinder 52 heated by a heater 51 and an auxiliary burner 53 disposed at its upper opening. A vaporization chamber 56 that vaporizes the liquid fuel supplied from the tank 55 to form a premixture, and a vaporization chamber 56 disposed above the auxiliary burner 53 to mix the premixture from the vaporization chamber 56, are made of a ceramic plate and have a surface. a rectifying chamber 58 that sends out the premixture to the main burner 57 where it performs the primary combustion; a primary air system passage 60 that leads from the combustion fan 59 that supplies combustion air to the vaporization chamber 56; A secondary air system path 61 that branches off from the main burner 57 and reaches the rectification chamber 58, and a secondary air system path 53 provided at the branch section for heating the main burner 57. During combustion, the combustion air is divided into a primary air system path 60 and a secondary air system path. The switching valve 62 guides the entire amount of combustion air to the primary air line when the main burner 57 is in combustion, and the igniters 63 and 64 ignite the auxiliary burner 53 and the main burner 57. In the above configuration, when the vaporization cylinder 52 is heated to a predetermined temperature, fuel is supplied by the pump 54 and combustion air is supplied by the combustion fan 59. At this time, the switching valve 6
Since the second valve body 62A is biased downward and closes the primary air hole 62B, the combustion air is divided by the secondary air port 62C and the bypass hole 62D and guided to the vaporizing chamber 56 and the rectifying chamber 58, respectively. Part of the combustion air that has entered the vaporization chamber 56 and the vaporized fuel gas are mixed to form a premixture, which is ejected from the auxiliary burner 53 into the rectifying chamber 58 and ignited by the igniter 6a to cause combustion. bypass hole 62
Since the amount of air supplied to the vaporization chamber 56 through D is less than the theoretical air amount of the fuel, the concentration of the premixture ejected from the auxiliary burner 53 is high, and ignition by the igniter 6a becomes easy. However, since combustion in the auxiliary burner 53 is performed with less than the theoretical amount of air, a large amount of carbon monoxide is generated due to incomplete combustion due to lack of air. Carbon monoxide is not emitted because it is re-combusted using the supplied combustion air. Secondary burner 5
The high temperature exhaust gas from the combustion of No. 3 passes through the rectifying chamber 58 and is discharged from the main burner 57, heating the main burner 57 at this time. Next, when the main burner 57 is heated to a predetermined temperature, the pump 54 is stopped to stop combustion in the auxiliary burner 53, and the valve body 62A is energized to 1 to close the secondary air port 62C and the combustion air is The entire amount of is guided to the primary air system path,
The pump 54 is started again to supply fuel to the vaporization chamber 56. As a result, the premixture supplied from the vaporization chamber 56 through the rectification chamber 58 to the main burner 57 becomes a relatively thin premixture in which the combustion air contained therein is greater than the stoichiometric air amount of the fuel. The premixture ejected from the main burner 57 is ignited by the igniter 64, and complete combustion occurs on the surface of the main burner 57. However, since the main burner 57 is heated by the combustion heat of the auxiliary burner 53, It became possible to easily ignite even a relatively thin premixture containing more than the amount of air. (For example, Japanese Unexamined Patent Publication No. 58-72807) Problems to be Solved by the Invention However, in the conventional example described above, two ignition devices are required, one for the main burner and one for the sub-burner, and after extinguishing the sub-burner, Since the main burner was ignited, there was a problem in that an odor was generated during extinguishing and ignition. moreover,
In order to perform low NOX e-firing as a combustion device, it is effective to use wire mesh, ceramic plates, etc. to perform full combustion with a small surface combustion load. At an air-fuel ratio at which normal combustion occurs even when sufficiently heated, there is a problem in that it is difficult to ignite using discharge ignition, which is a common ignition means.

本発明は、かかる従来の問題を解消するもので、低NO
X燃焼を行なう全−次燃焼バーナヘッドを用いた燃焼装
置の点火性を高めることを目的とする。
The present invention solves such conventional problems, and has low NO.
The purpose of this invention is to improve the ignitability of a combustion device using a full-secondary combustion burner head that performs X-combustion.

問題点を解決するだめの手段 と記問題点を解決するために本発明の燃焼装置は、燃焼
ファンより供給される燃焼空気を分割し、一方を一次空
気系路を介して気化室に供給し、他方を二次空気系路を
介して気化室からの予混合気を全−次燃焼バーナヘッド
に送出する整流室に供給するとともに、排気ガス通路に
燃焼空気の一部を供給する三次空気系路を二次空気系路
より分岐し、その分岐部に燃焼空気の一部を定常燃焼時
には整流室に導びき点火時に排気ガス通路に導びく切換
弁を設けたものである。
Means for Solving the Problems and Description: In order to solve the problems, the combustion apparatus of the present invention divides the combustion air supplied from the combustion fan and supplies one part to the vaporization chamber through the primary air system path. and a tertiary air system that supplies a part of the combustion air to the exhaust gas passage while supplying the premixture from the vaporizing chamber to the rectifying chamber that sends the premixture from the vaporizing chamber to the full-primary combustion burner head via the secondary air system passage. The passage is branched from the secondary air system passage, and a switching valve is provided at the branch part to guide part of the combustion air to the rectifying chamber during steady combustion and to the exhaust gas passage during ignition.

作  用 本発明は上記した構成によって、点火時には一次空気系
路を通って気化室に供給される少量の燃焼空気と燃料の
気化ガスとの濃い混合気が、整流室を介して全−次燃焼
バーナヘッドに供給されるので、点火器によって容易に
点火されるとともに、空気不足燃焼によって発生しやす
い一酸化炭素も切換弁および三次空気系路を介して排気
ガス通路に供給される燃焼空気により酸化・燃焼される
ので有害な一酸化炭素が燃焼装置より排出されない。
According to the above-described configuration, the present invention allows a rich mixture of a small amount of combustion air and vaporized fuel gas, which is supplied to the vaporization chamber through the primary air system path at the time of ignition, to undergo total combustion via the rectification chamber. Since it is supplied to the burner head, it is easily ignited by the igniter, and carbon monoxide, which is likely to be generated due to air-starved combustion, is oxidized by the combustion air supplied to the exhaust gas passage via the switching valve and the tertiary air system path.・Since it is burned, harmful carbon monoxide is not emitted from the combustion device.

また、点火後の定常燃焼時においては、切換弁が切換え
られて燃焼空気の一部が二次空気系路を通って整流室に
供給されるので、気化室よりの濃い混合気と混合して全
−火燃焼バーナヘッドにて燃焼を行なうのに最適な一次
空気比が1以上の比較的薄い予混合気が整流室にて形成
され、全−火燃焼バーナヘッドの表面で低NOX燃焼が
行なわれる。
Also, during steady combustion after ignition, the switching valve is switched and a part of the combustion air is supplied to the rectifying chamber through the secondary air system path, so it mixes with the rich air-fuel mixture from the vaporization chamber. A relatively thin premixture with an optimal primary air ratio of 1 or more for combustion in the all-fire combustion burner head is formed in the rectifier chamber, and low NOx combustion is performed on the surface of the all-fire combustion burner head. It will be done.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

第1図において、ヒータ1を埋設したつぼ状の気化筒2
の1部間口部には空気室本体3が配置され、気化筒2の
内部に気化室4が区画されている。
In FIG. 1, a pot-shaped vaporizing cylinder 2 in which a heater 1 is embedded is shown.
An air chamber main body 3 is disposed in a part of the frontage of the vaporizer cylinder 2, and a vaporization chamber 4 is defined inside the vaporization cylinder 2.

気化室4の側壁には燃料タンク5につながるポンプ6か
らの給油管7および燃焼ファン8につながる一次空気系
路9が開口している。一方、空気室本体3の1方には、
金網によってつくられた燃焼って構成される全一次燃焼
バーナヘッド14(以後バーナヘッドという)が配設さ
れるとともに、バーナヘッド14の下端で空気室本体3
との境界部には仕切板15が配置され、空気室本体3お
よびバーナヘッド14の内部をそれぞれ空気室16およ
び整流室17に区画している。空気室16の上部には、
気化室4より空気室16を貫通して整流室17に至る混
合気通路18と仕切板15の開口部との隙間により形成
される空気口19が開口するとともに、空気室本体3の
側壁にはその途中に切替弁20を設けて燃焼ファン8に
つながる二次空気パイプ21が開口しており、空気室1
6と二次空気パイプ21とにより二次空気系路22を形
成している。またバーナヘッド14と空気室本体3およ
び気化筒2の外周には、排気ガス通路23を隔てて上端
を排気キャップ24によって閉塞された熱透過筒25と
、下端が閉塞され気化筒2近傍に排気口26が開口した
排気筒27とによりなる外筒2Bが配置されている。排
気キャップ24には点火器29が取付けられている。排
気筒27の1部には三次空気口30とそれの外周に三次
空気室31とが設けられるとともに、三次空気室a1と
切換弁20とを接続する三次空気パイプ32が配置され
、三次空気口30と三次空気室31および三次空気パイ
プ32により三次空気系路a3が形成されている。
A fuel supply pipe 7 from a pump 6 connected to a fuel tank 5 and a primary air line 9 connected to a combustion fan 8 are opened in the side wall of the vaporization chamber 4 . On the other hand, on one side of the air chamber body 3,
An all-primary combustion burner head 14 (hereinafter referred to as burner head) composed of combustion made of wire mesh is provided, and an air chamber main body 3 is provided at the lower end of the burner head 14.
A partition plate 15 is disposed at the boundary between the air chamber body 3 and the burner head 14 to partition the inside of the air chamber body 3 and the burner head 14 into an air chamber 16 and a rectification chamber 17, respectively. At the top of the air chamber 16,
An air port 19 is opened, which is formed by a gap between the air-fuel mixture passage 18 that passes through the air chamber 16 from the vaporization chamber 4 to the rectification chamber 17, and the opening of the partition plate 15. A switching valve 20 is provided in the middle of the pipe to open a secondary air pipe 21 connected to the combustion fan 8, and the air chamber 1
6 and the secondary air pipe 21 form a secondary air system path 22. Furthermore, on the outer periphery of the burner head 14, the air chamber body 3, and the vaporization tube 2, there is a heat transmission tube 25 whose upper end is closed by an exhaust cap 24 across the exhaust gas passage 23, and a heat transmission tube 25 whose lower end is closed and which is exhausted near the vaporization tube 2. An outer cylinder 2B consisting of an exhaust pipe 27 with an opening 26 is arranged. An igniter 29 is attached to the exhaust cap 24. A tertiary air port 30 and a tertiary air chamber 31 are provided in one part of the exhaust pipe 27, and a tertiary air pipe 32 is arranged to connect the tertiary air chamber a1 and the switching valve 20. 30, the tertiary air chamber 31, and the tertiary air pipe 32 form a tertiary air system path a3.

上記構成において、ヒータ1に通電されて気化筒2が所
定温度まで加熱されると、ポンプ6および燃焼ファン8
が作動し、燃料と分割された燃焼空気の一方が給油管7
および一次空気系路9を介して気化室4に供給される。
In the above configuration, when the heater 1 is energized and the vaporizer cylinder 2 is heated to a predetermined temperature, the pump 6 and the combustion fan 8
operates, and one of the fuel and the separated combustion air is sent to the fuel supply pipe 7.
and is supplied to the vaporization chamber 4 via the primary air system path 9.

気化室4に供給された燃料は気化筒内壁にて気化し、燃
焼空気の一部と混合して濃い混合気となり、混合気通路
18を通って整流室17に入る。この時切換弁は第1図
に示すごとく二次空気系路22を閉じているので、整流
室17に入った混合気は濃い状態のままバーナヘッド1
4から噴出し、点火器29により点火され燃焼する。一
方、切換弁20により三次空気系路33に導びかれる分
割された燃焼空気の一方は、三次空気口30より排気ガ
ス通路23に噴出すふ。次にバーナヘッド14への点火
が行なわれると、切換弁が切換わり、これまで三次空気
系路33に供給されていた燃焼空気は二次空気系路に供
給され、空気口19より整流室17へ流入する。
The fuel supplied to the vaporization chamber 4 is vaporized on the inner wall of the vaporization cylinder, mixed with a portion of the combustion air to form a rich mixture, and enters the rectification chamber 17 through the mixture passage 18 . At this time, the switching valve closes the secondary air line 22 as shown in FIG.
4, and is ignited by the igniter 29 and combusts. On the other hand, one part of the divided combustion air guided to the tertiary air system passage 33 by the switching valve 20 is ejected from the tertiary air port 30 into the exhaust gas passage 23 . Next, when the burner head 14 is ignited, the switching valve is switched, and the combustion air that has been supplied to the tertiary air system path 33 is supplied to the secondary air system path, and is passed through the air port 19 to the rectifying chamber 17. flows into.

その結果、気化室4よりの濃い混合気は空気口19より
の燃焼空気と混合し、バーナヘッド14にて燃焼を行な
うのに最適な一次空気比が1以上の比較的薄い混合気と
なってバーナヘッド14の燃焼筒10表面にて燃焼され
る。この燃焼熱により、熱容量の小さな金網によってつ
くられた燃焼筒10は赤熱し、熱透過筒25を介して輻
射熱を放散するとともに、高温の排気ガスは排気ガス通
路23を経て排気口26より排出されるが、その際に気
化筒2外周壁に接触して気化筒2への熱回収が行なわれ
る。
As a result, the rich air-fuel mixture from the vaporization chamber 4 mixes with the combustion air from the air port 19, resulting in a relatively lean air-fuel mixture with an optimal primary air ratio of 1 or more for combustion in the burner head 14. It is burned on the surface of the combustion tube 10 of the burner head 14. Due to this combustion heat, the combustion tube 10 made of a wire mesh with a small heat capacity becomes red hot, and radiant heat is radiated through the heat transmission tube 25, and the high-temperature exhaust gas is discharged from the exhaust port 26 via the exhaust gas passage 23. However, at that time, it comes into contact with the outer circumferential wall of the vaporization cylinder 2 and heat is recovered to the vaporization cylinder 2.

と記向成および動作において、バーナヘッド14への点
火時には気化室4へ一次空気系路9を介して供給される
燃焼空気量は少量であるとともに、整流室17への二次
空気系路22を介した燃焼空気がないために、混合気は
一次空気比が1以丁の濃い混合気のままバーナヘッド1
4に供給される。このような濃い混合気は、たとえバー
ナヘッド14が十分に熱せられていなくても通常の点火
手段である放電点火器29によって容易に点火すること
ができる。しかしながら、この状態の燃焼は空気不足状
態での燃焼であるために、そのままでは不完全燃焼によ
り有害な一酸化炭素を発生するが、この時切換弁20に
より三次空気系路33を介して排気ガス通路23へ供給
される燃焼空気により不足分の燃焼空気が補なわれるの
で、−酸化炭素は酸化・燃焼され無害な二酸化炭素とな
って排気口26より排出される。次に、点火が行なわれ
た後は切換弁20が切換わり、点火時には三次空気系路
33に導びかれていた燃焼空気は二次空気系路22を介
して空気口19より整流室17に流入するので、気化室
4からの濃い混合気は希釈されバーナヘッド14の燃焼
筒10の表面にて表面燃焼を行なうのに最適な一次空気
比が1以との比較的薄い混合気となり、燃焼筒10にて
完全燃焼される。燃焼筒10における燃焼は、面燃焼負
荷の小さな表面燃焼であるために火炎温度は低く低NO
X燃焼を行なうことができる。さらには、気化室4へ流
入する燃焼空気量は少量であるために、気化筒2の壁面
における局部冷却がなく気化筒温度を高温に保てるので
、燃料気化時の 1タール生成を抑制できる。また、定
常燃焼時においては、加熱された気化室4を通らずに冷
却状態のまま整流室17に入る燃焼空気により混合気温
度は比較的低温に保たれるので、バーナヘッド14にお
ける逆火も防止できるという効果がある。
In the formation and operation described above, when the burner head 14 is ignited, the amount of combustion air supplied to the vaporizing chamber 4 via the primary air line 9 is small, and the amount of combustion air supplied to the secondary air line 22 to the rectifying chamber 17 is small. Since there is no combustion air flowing through the burner head 1, the mixture remains a rich mixture with a primary air ratio of 1 or more.
4. Such a rich mixture can be easily ignited by a discharge igniter 29, which is a conventional ignition means, even if the burner head 14 is not sufficiently heated. However, since combustion in this state is a combustion in an air-deficient state, harmful carbon monoxide is generated due to incomplete combustion if left as is. Since the combustion air supplied to the passage 23 makes up for the lack of combustion air, the -carbon oxide is oxidized and burned to become harmless carbon dioxide and is discharged from the exhaust port 26. Next, after ignition, the switching valve 20 is switched, and the combustion air that was led to the tertiary air system path 33 at the time of ignition is passed through the secondary air system path 22 and into the rectifying chamber 17 from the air port 19. As the mixture flows in, the rich air-fuel mixture from the vaporization chamber 4 is diluted and becomes a relatively thin air-fuel mixture with an optimum primary air ratio of 1 or more for surface combustion on the surface of the combustion tube 10 of the burner head 14, resulting in combustion. Complete combustion occurs in the cylinder 10. Combustion in the combustion tube 10 is surface combustion with a small surface combustion load, so the flame temperature is low and NO is low.
X combustion can be performed. Furthermore, since the amount of combustion air flowing into the vaporization chamber 4 is small, there is no local cooling on the wall surface of the vaporization cylinder 2, and the temperature of the vaporization cylinder can be maintained at a high temperature, so that generation of 1 tar during fuel vaporization can be suppressed. In addition, during steady combustion, the air-fuel mixture temperature is kept relatively low by the combustion air that enters the straightening chamber 17 in a cooled state without passing through the heated vaporization chamber 4, so that backfire in the burner head 14 is prevented. It has the effect of preventing

次に本発明の他の実施例を第2図を用いて説明する。第
2図において前記実施例と異なる点は三次空気口41を
排気キャップ24に開口し、その上部に三次空気室42
を配設するとともに、三次空気室42と切換弁20を接
続する三次空気パイプ43を設けて、三次空気口41と
三次空気室42と三次空気パイプ43とにより三次空気
系路44を形成したものであるにの場合、点火器45は
排気筒27の土部に取付けられている。この構成によれ
ば、点火時において排気ガス通路23の上端すなわち排
気ガスの上流側から三次空気系路44を介して燃焼空気
が排気ガスに供給されるので、排気ガスとの混合が促進
され、点火時の一酸化炭素の抑制効果が高い。
Next, another embodiment of the present invention will be described using FIG. 2. The difference in FIG. 2 from the previous embodiment is that a tertiary air port 41 is opened in the exhaust cap 24, and a tertiary air chamber 42 is provided in the upper part of the exhaust cap 24.
In addition, a tertiary air pipe 43 is provided to connect the tertiary air chamber 42 and the switching valve 20, and a tertiary air system path 44 is formed by the tertiary air port 41, the tertiary air chamber 42, and the tertiary air pipe 43. In this case, the igniter 45 is attached to the base of the exhaust pipe 27. According to this configuration, at the time of ignition, combustion air is supplied to the exhaust gas from the upper end of the exhaust gas passage 23, that is, from the upstream side of the exhaust gas via the tertiary air system path 44, so that mixing with the exhaust gas is promoted. Highly effective in suppressing carbon monoxide during ignition.

発明の効果 以上のように本発明の燃焼装置によれば次の効果が得ら
れる。
Effects of the Invention As described above, the combustion apparatus of the present invention provides the following effects.

燃焼に供する燃焼空気を分割し、一方を一次空気系路を
介して気化室に供給し、燃料と混合して濃い混合気とし
て整流室を介してバーナヘッドから噴出するとともに、
点火時には他方の燃焼空気を切換弁により三次空気系路
を介して排気ガス通路に供給し、定常燃焼時には切換弁
を切換えて燃焼空気を二次空気系路を介して整流室に供
給する構成としているので、通常の点火手段である放電
点火器においてもバーナヘッドでの点火は容易であると
ともに、有害な一酸化炭素の排出を防止でキ、定常燃焼
時にはバーナヘッドでの低NOX燃焼が行なわれるとい
う効果がある。
Combustion air used for combustion is divided, one part is supplied to the vaporization chamber via the primary air system path, and mixed with fuel and ejected from the burner head via the rectification chamber as a rich mixture.
During ignition, the other combustion air is supplied to the exhaust gas passage via the tertiary air system path using a switching valve, and during steady combustion, the switching valve is switched to supply combustion air to the rectification chamber via the secondary air system path. Therefore, it is easy to ignite at the burner head even with a discharge igniter, which is a normal ignition method, and it also prevents the emission of harmful carbon monoxide, and during steady combustion, low NOx combustion is performed at the burner head. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す燃焼装置の縦断面
図、第2図は同第2の実施例を示す縦断面図、第3図は
従来の燃焼装置を示す縦断面図である。 4・・・・・・気化室、8・・・・・・燃焼ファン、9
・・・・・・一次空気系路、14・・・・・・全−火燃
焼バーナヘッド、20・・・・・・切換弁、22・・・
・・・二次空気系路、2a・・・・・・排気ガス通路、
33および44・・・・・・三次空気系路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名m2
図 第3図
FIG. 1 is a vertical cross-sectional view of a combustion device showing a first embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of the second embodiment, and FIG. 3 is a vertical cross-sectional view of a conventional combustion device. It is. 4... Vaporization chamber, 8... Combustion fan, 9
...Primary air system path, 14...Full-fire combustion burner head, 20...Switching valve, 22...
...Secondary air system path, 2a...Exhaust gas path,
33 and 44...Tertiary air system path. Name of agent: Patent attorney Toshio Nakao and 1 other person m2
Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)燃料を予混合気とする気化室と、気化室よりの予
混合気を整流し全一次燃焼バーナヘッドに送出する整流
室と、燃焼ファンより供給される燃焼空気の一部を気化
室に導びく一次空気系路と、残りの燃焼空気を整流室に
導びく二次空気系路と、二次空気系路より分岐し全一次
燃焼バーナヘッドからの排気ガス通路に燃焼空気の一部
を供給する三次空気系路とを備えるとともに、前記分岐
部に燃焼空気の一部を定常燃焼時には二次空気系路に導
びき点火時には三次空気系路に導びく切換弁を備えた燃
焼装置。
(1) A vaporization chamber that converts fuel into a premixture, a rectification chamber that rectifies the premixture from the vaporization chamber and sends it to the primary combustion burner head, and a vaporization chamber that converts a portion of the combustion air supplied from the combustion fan into the vaporization chamber. A primary air system path leads the remaining combustion air to the rectifying chamber, and a part of the combustion air is branched from the secondary air system path to the exhaust gas path from all primary combustion burner heads. and a tertiary air system path for supplying the combustion air, and a switching valve in the branch part that guides a part of the combustion air to the secondary air system path during steady combustion and to the tertiary air system path during ignition.
(2)一次空気系路を介して気化室に供給される燃焼空
気量を燃料の理論空気量以下とした特許請求の範囲第1
項記載の燃焼装置。
(2) Claim 1 in which the amount of combustion air supplied to the vaporization chamber via the primary air system path is equal to or less than the theoretical air amount of the fuel.
Combustion device as described in section.
JP60061103A 1985-03-26 1985-03-26 Burning device Granted JPS61223428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60061103A JPS61223428A (en) 1985-03-26 1985-03-26 Burning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60061103A JPS61223428A (en) 1985-03-26 1985-03-26 Burning device

Publications (2)

Publication Number Publication Date
JPS61223428A true JPS61223428A (en) 1986-10-04
JPH0350927B2 JPH0350927B2 (en) 1991-08-05

Family

ID=13161412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60061103A Granted JPS61223428A (en) 1985-03-26 1985-03-26 Burning device

Country Status (1)

Country Link
JP (1) JPS61223428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940501A (en) * 2017-11-30 2018-04-20 国网辽宁省电力有限公司电力科学研究院 Air and flue system control optimization method after the transformation of fired power generating unit desulphurization denitration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940501A (en) * 2017-11-30 2018-04-20 国网辽宁省电力有限公司电力科学研究院 Air and flue system control optimization method after the transformation of fired power generating unit desulphurization denitration

Also Published As

Publication number Publication date
JPH0350927B2 (en) 1991-08-05

Similar Documents

Publication Publication Date Title
US4066043A (en) Fuel reforming system for an internal combustion engine
JPS61223428A (en) Burning device
US3978836A (en) Suction heat control unit in internal combustion engine
KR100229759B1 (en) Liquid fuel combustion apparatus
JPH05157211A (en) Catalyst combustion device
JPS61186713A (en) Burning device
JPS61147003A (en) Burning equipment
JPS61147004A (en) Burning equipment
JPH01222105A (en) Burner
JPS62258913A (en) Burner
JPS62255713A (en) Combustion device
JPH01266411A (en) Combustion device
JPS62255715A (en) Combustion device
JPS62258914A (en) Burner
JPS62268909A (en) Burner
JPH0375405A (en) Kerosene burner
JPS62268910A (en) Burner
JPS62255714A (en) Combustion device
JPS62268908A (en) Burner
JPS62255716A (en) Combustion device
JPH09101006A (en) Fuel two-stage supplying type low nox burner
JPS62258905A (en) Burner
JPS58123009A (en) Carburetor
JPH04121509A (en) Low nox burner
JPS5872807A (en) Combustion apparatus