JPS61223169A - Shaft of turbine rotor - Google Patents

Shaft of turbine rotor

Info

Publication number
JPS61223169A
JPS61223169A JP6382385A JP6382385A JPS61223169A JP S61223169 A JPS61223169 A JP S61223169A JP 6382385 A JP6382385 A JP 6382385A JP 6382385 A JP6382385 A JP 6382385A JP S61223169 A JPS61223169 A JP S61223169A
Authority
JP
Japan
Prior art keywords
turbine rotor
less
temperature
ductility
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6382385A
Other languages
Japanese (ja)
Inventor
Masaru Yamamoto
優 山本
Yoichi Tsuda
陽一 津田
Kiyoshi Imai
潔 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6382385A priority Critical patent/JPS61223169A/en
Publication of JPS61223169A publication Critical patent/JPS61223169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PURPOSE:To maintain the ductility at high temp. such as >=600 deg.C temp. of steam and to improve the reliability by using a heat resistant Fe alloy contg. prescribed percentages of C, Si, Mn, Cr, Ni, Mo, etc. CONSTITUTION:The shaft of a turbine rotor is made of a heat resistant Fe alloy contg., by weight, <=0.1% C, <=0.5% Si, <=2% Mn, 10-20% Cr, 20-30% Ni, 1-3% Mo, 0.1-0.5% V, 0.5-2% Ti, <=0.5% Al, 0.001-0.01% B and 0.005-0.1% Zr. The shaft has superior ductility at high temp. such as >=600 deg.C temp. of steam and improved reliability.

Description

【発明の詳細な説明】 〔発明の技術分野〕 た高温延性を有するタービンロータシャフトに関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a turbine rotor shaft having high temperature ductility.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来蒸気タービンは蒸気温度が566C以下であり、ロ
ータシャフト用材料としてはCr −Mo −V鋼や1
20r基鋼などが主として使用されてきた。しかしなが
ら、熱効率°向上の見地から蒸気タービンの蒸気条件は
高温化の頌同にある。この場合蒸気温度が600C以上
の高温蒸気タービンにおいては従来のCr −Mo −
V鋼や12cr基鋼は、クリ・−プ破断強度が低く、よ
り優れた高温強度の材料が必要となる。600 c以上
の高温で優れた高温強度をもつ材料としてはr′相(N
I、 (TJ、人1))によって強化されたFe基耐熱
合金JII9SUI(660などがあるが、この種の強
析出強化屋耐熱合金はり9−プ破断強度C二価れる反面
、高温の延性が劣るという欠点があり、タービンロータ
シャフトとしての信頼性に問題がある。
Conventional steam turbines have a steam temperature of 566C or less, and the materials for the rotor shaft include Cr-Mo-V steel and 1
20r base steel etc. have been mainly used. However, from the standpoint of improving thermal efficiency, the steam conditions for steam turbines are at a high temperature. In this case, in a high-temperature steam turbine with a steam temperature of 600C or higher, conventional Cr-Mo-
V steel and 12cr base steel have low creep rupture strength, and materials with better high temperature strength are required. The r' phase (N
There are Fe-based heat-resistant alloys JII9SUI (660, etc.) strengthened by I, (TJ, person 1)), but this type of strong precipitation-strengthened heat-resistant alloy beam has a high 9-ply breaking strength C, but has low ductility at high temperatures. It has the disadvantage of being inferior, and there is a problem with reliability as a turbine rotor shaft.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであり、蒸気温
度600C以上で、浸れた高温延性を有する信頼性の高
い蒸気タービンロータシャフトを提供することを目的と
する。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a highly reliable steam turbine rotor shaft having immersed high-temperature ductility at steam temperatures of 600C or higher.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明のタービンロ−タシャ
フトは、重量パーセントで、C001以下、旧0.6以
下、Mn2以下、Cr 10〜20. Ni 20〜3
0、Mo 1.0〜3.0 %V 0.1〜0.5 、
  Ti 0.5〜2.0、人10.5以下、B 0.
001〜0.01 、 Zr 0.005〜0.1 、
残部peおよび付随的不純物よりなるFe基耐熱合金に
より形成されたことを特徴とするものである。本発明の
蒸気タービンロータは上記のように特定の組成のFe基
耐熱合金からなる。合金中の各成分の添加目的ならびに
組成限定の理由は次の通りである。
In order to achieve the above object, the turbine rotor shaft of the present invention has a weight percentage of C001 or less, Old 0.6 or less, Mn2 or less, and Cr 10 to 20. Ni 20-3
0, Mo 1.0-3.0% V 0.1-0.5,
Ti 0.5-2.0, human 10.5 or less, B 0.
001~0.01, Zr 0.005~0.1,
It is characterized in that it is formed of an Fe-based heat-resistant alloy consisting of the remainder pe and incidental impurities. The steam turbine rotor of the present invention is made of an Fe-based heat-resistant alloy having a specific composition as described above. The purpose of adding each component in the alloy and the reason for limiting the composition are as follows.

Cは、高温強度を高めるために必要不可欠の元素であり
、C量の増加とともに高温強度は向上するが、一方Cが
多すぎるとTiと反応してMCWの粗大炭化物を形成し
て、合金の延性を低下させるので、C量は0.1 S以
下とする。
C is an essential element for increasing high-temperature strength, and high-temperature strength improves as the amount of C increases, but on the other hand, if there is too much C, it reacts with Ti and forms coarse carbides of MCW, which deteriorates the alloy. Since it reduces ductility, the amount of C is set to 0.1 S or less.

Siは、脱酸剤として作用するが、多量に添加するとN
l、TIと結合して1粒界にG相として析出し、合金の
延性を低下させるので0.6−以下とする。
Si acts as a deoxidizing agent, but when added in large amounts, N
Since it combines with L and TI and precipitates as a G phase at one grain boundary, reducing the ductility of the alloy, it is set to 0.6 or less.

Mnは、脱酸剤として作用するが、多量に添加すると耐
酸化性を劣化させるので、添加量は2%以下とする。
Mn acts as a deoxidizing agent, but if added in a large amount, the oxidation resistance deteriorates, so the amount added is limited to 2% or less.

Orは健全な耐酸化性被膜を形成し、材料に耐酸化・耐
腐食性を付与するのC二有効な元素であるが、101未
満では十分な耐酸化・耐食性は得られず、一方20慢を
越えると高温で長時間使用に際し、脆化相であるσ相を
生成するため、10〜20 mとする。
Or is an effective element that forms a healthy oxidation-resistant film and imparts oxidation and corrosion resistance to materials, but if it is less than 101, sufficient oxidation and corrosion resistance cannot be obtained; If the length exceeds 10 to 20 m, σ phase, which is a brittle phase, will be generated during long-term use at high temperatures.

Niはオーステナイト安定化のためC;必要な元素であ
り、かつTiおよびAIと結合して金属間化合物r′相
(Ni3(Ti、人1))を形成して、高温強度を向上
するのに必要である。このためには上記cr*の範囲に
対して201以上が必要で、多いは   ・ど好ましい
が、高価となるので採算上3o−を上限とする。
Ni is a necessary element for stabilizing austenite, and also combines with Ti and AI to form an intermetallic compound r' phase (Ni3 (Ti, human 1)) to improve high-temperature strength. is necessary. For this purpose, 201 or more is required for the above range of cr*, and a higher number is preferable, but it is expensive, so the upper limit is set at 3o- for profitability.

MOは、オーステナイト相に固溶して固溶強化に有効な
元素であるが、0.f1未満ではその効果は得られず、
また多量に添加するとオーステナイト母相を不安定にし
て、高温延性を低下するので、その範囲を0.6〜3.
0チとする。
MO is an element that dissolves in the austenite phase and is effective for solid solution strengthening. If it is less than f1, the effect cannot be obtained,
Also, if added in a large amount, the austenite matrix becomes unstable and the high temperature ductility decreases, so the range is 0.6 to 3.
Let it be 0chi.

Tiよ、脱酸剤として作用するとともにNl、人lとと
もに金属間化合物r′相(Nl、(’f’l、人鳳))
を生成して、高温強度を付与するのC;必要不可欠な元
素であるが、0.5 S以下ではr′相の析出量が少な
く、その効果が十分に得られない。また多量に添加する
とη相(Ntm’rt)が粒界から層状に析出して、延
性を損なうので、0.5〜2.01とする。。
Ti acts as a deoxidizing agent, and together with Nl, it forms the intermetallic compound r' phase (Nl, ('f'l, Renfeng)).
C is an essential element, but if it is less than 0.5 S, the amount of r' phase precipitated is small and its effect cannot be obtained sufficiently. Furthermore, if added in a large amount, the η phase (Ntm'rt) will precipitate in layers from the grain boundaries, impairing ductility, so it should be set at 0.5 to 2.01. .

人lは、耐酸化性を付与するとともにN[、TIととも
にr′相(Ni、(TI、ム1))を形成する重要な元
素であるが、多量に添加すると延性を低下させるので、
0.5 S以下とする。
Ni is an important element that imparts oxidation resistance and forms the r' phase (Ni, (TI, Mu1)) with N[, TI, but when added in large amounts it reduces ductility.
0.5 S or less.

■は、高温切欠じん性を増すとともに炭化物を形成して
高温強度を向上するのC二有効な元素であ0.1〜0.
5−とする。
(2) is an effective element for increasing high-temperature notch toughness and forming carbides to improve high-temperature strength; 0.1 to 0.
5-.

Bは、粒界に偏析して粒界を強化するのに有効で、高温
延性を向上する。そのためには0.001−以上が必要
であるが、多すぎると熱間加工性を損うので、上限を0
.01%とする。
B segregates to the grain boundaries, is effective in strengthening the grain boundaries, and improves high-temperature ductility. To achieve this, a value of 0.001- or more is required, but too much will impair hot workability, so the upper limit should be set to 0.001- or more.
.. 01%.

Zrは粒界を強化して、ラブチャー強度とともに高温延
性を同上させるのに有効な元素であるが。
Zr is an effective element for strengthening grain boundaries and increasing both Lubutture strength and high-temperature ductility.

0.005%未満ではその効果がなく、また多量に添加
すると熱間加工性を損うので、0.006〜0.1チと
する。
If it is less than 0.005%, it has no effect, and if it is added in a large amount, it impairs hot workability, so the content is set at 0.006 to 0.1 inch.

本発明のタービンロータシャフトを得るためには、まず
各素材金属を真空あるいは大気下で混合溶解し、脱酸後
において実質的に上記組成のPa基耐熱合金溶湯な得る
。ついでこれを鋳造して鋼塊とし、これをそのtt鍜鍛
造てタービンロータシャフト形状の素材を形成すること
もできるが、さらにこの鋼塊に真空アーク再溶解あるい
はエレクトロスラグ再溶解を適用することは高温延性を
同上する上で好ましい。このようにして製造された鋼塊
を鍛造し、必要な熱処理を施こすことにより本発明のタ
ービンロータシャフトが得られる。
In order to obtain the turbine rotor shaft of the present invention, first, various raw material metals are mixed and melted in a vacuum or in the atmosphere, and after deoxidation, a molten Pa-based heat-resistant alloy having substantially the above composition is obtained. This can then be cast into a steel ingot and then TT forged to form a material in the shape of a turbine rotor shaft, but it is not possible to apply vacuum arc remelting or electroslag remelting to this steel ingot. This is preferable in terms of high-temperature ductility. The turbine rotor shaft of the present invention can be obtained by forging the steel ingot produced in this manner and subjecting it to necessary heat treatment.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例によりさらに詳細に説明する。第
1表に示す組成を有する4種の合金試料を高周波炉にて
各2004溶製し、これを電極としてB8B再溶解を行
なって鋼塊を得た。これを据込、鍛伸して鍛造素材とし
、その後第1表に示す熱処理を施したものについて引張
試験とラブチャー試験を実施した。その結果は第2表と
第3表に示すとおりである。本発明よりなる実施例1〜
3は比較例と比べて、室温と650Cにおける引張強さ
、や耐力は同等であるが、室温ならびに高温における引
張破断伸びと絞りならびにラブチャー伸びと絞りが、そ
れぞれ30〜60−と著しく向上している。また、第3
表の破断寿命も実施例1〜3は比較例とほぼ同等か優れ
ている。
The present invention will be explained in more detail below using examples. Four types of alloy samples having the compositions shown in Table 1 were each melted in a high frequency furnace, and B8B was remelted using this as an electrode to obtain a steel ingot. This was upset and forged to obtain a forged material, which was then subjected to the heat treatment shown in Table 1 and subjected to a tensile test and a Loveture test. The results are shown in Tables 2 and 3. Example 1 of the present invention
Comparing Example 3 with Comparative Example, the tensile strength and yield strength at room temperature and 650C are the same, but the tensile elongation at break and the area of area at room temperature and high temperature, as well as the Labourture elongation and area of area, are significantly improved by 30 to 60 - respectively. There is. Also, the third
The rupture life shown in the table is also that Examples 1 to 3 are approximately equal to or superior to the comparative example.

(以下余白) 第  2  表 第  3  表 〔発明の効果〕 上記実施例の結果から明らかなように、本発明のタービ
ンロータシャフトは、従来材よりも優れた室温ならびζ
二高温の伸び、絞りを有しており、ラブチャー寿命も従
来材と同程度かそれ以上に優れている。したがって、本
発明のタービンロータシャフトは、600C以上で使用
される蒸気タービン用のロータシャフトとして極めて信
頼性が高いものということができる。なお1本発明にな
るロータシャフトは、蒸気タービン用ロータばかりでな
く、ガスタービンロータにも通用できる。
(Leaving space below) Table 2 Table 3 [Effects of the invention] As is clear from the results of the above examples, the turbine rotor shaft of the present invention has better room temperature and ζ resistance than conventional materials.
It has two high-temperature elongation and narrowing properties, and its Loveture life is as good as or better than conventional materials. Therefore, the turbine rotor shaft of the present invention can be said to be extremely reliable as a rotor shaft for a steam turbine used at 600C or higher. Note that the rotor shaft according to the present invention can be used not only as a steam turbine rotor but also as a gas turbine rotor.

Claims (1)

【特許請求の範囲】[Claims] 重量比で、C0.1%以下、Si0.5%以下、Mn2
%以下、Cr10〜20%、Ni20〜30%、Mo1
.0〜3.0%、V0.1〜0.5%、Ti0.5〜2
.0%、Al0.5%以下、B0.001〜0.01%
、Zr0.005〜0.1%、残部Feおよび付随的不
純物よりなるFe基耐熱合金で構成されていることを特
徴とするタービンロータシャフト。
Weight ratio: C0.1% or less, Si0.5% or less, Mn2
% or less, Cr10-20%, Ni20-30%, Mo1
.. 0-3.0%, V0.1-0.5%, Ti0.5-2
.. 0%, Al 0.5% or less, B 0.001-0.01%
, 0.005 to 0.1% Zr, the balance being Fe and incidental impurities.
JP6382385A 1985-03-29 1985-03-29 Shaft of turbine rotor Pending JPS61223169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6382385A JPS61223169A (en) 1985-03-29 1985-03-29 Shaft of turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6382385A JPS61223169A (en) 1985-03-29 1985-03-29 Shaft of turbine rotor

Publications (1)

Publication Number Publication Date
JPS61223169A true JPS61223169A (en) 1986-10-03

Family

ID=13240467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6382385A Pending JPS61223169A (en) 1985-03-29 1985-03-29 Shaft of turbine rotor

Country Status (1)

Country Link
JP (1) JPS61223169A (en)

Similar Documents

Publication Publication Date Title
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
EP0384433B1 (en) Ferritic heat resisting steel having superior high-temperature strength
US2562854A (en) Method of improving the high-temperature strength of austenitic steels
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
US3811960A (en) Process of producing nickel chromium alloy products
US8048368B2 (en) High temperature and oxidation resistant material
US2996379A (en) Cobalt-base alloy
EP0053948B1 (en) Nickel-chromium-cobalt base alloys and castings thereof
JP3912815B2 (en) High temperature sulfidation corrosion resistant Ni-base alloy
US3385698A (en) Nickel base alloy
JP3424314B2 (en) Heat resistant steel
JPS616256A (en) 12% cr heat resisting steel
JPS61249699A (en) Welding method for rotor welding compensation
JPH06287667A (en) Heat resistant cast co-base alloy
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JPS61223169A (en) Shaft of turbine rotor
JPS6293353A (en) Austenitic heat resisting alloy
US3047381A (en) High temperature heat and creep resistant alloy
JPS59232231A (en) Manufacture of rotor for turbine
JPS61217555A (en) Heat resistant austenitic steel
US4049432A (en) High strength ferritic alloy-D53
JPS61217556A (en) Heat resistant austenitic alloy
JPS6046353A (en) Heat resistant steel
JPS60245772A (en) Low alloy steel for rotor of integrated high and low pressure type steam turbine