JPS61223161A - Shape memory alloy - Google Patents

Shape memory alloy

Info

Publication number
JPS61223161A
JPS61223161A JP6434485A JP6434485A JPS61223161A JP S61223161 A JPS61223161 A JP S61223161A JP 6434485 A JP6434485 A JP 6434485A JP 6434485 A JP6434485 A JP 6434485A JP S61223161 A JPS61223161 A JP S61223161A
Authority
JP
Japan
Prior art keywords
shape memory
alloys
alloy
memory effect
martensite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6434485A
Other languages
Japanese (ja)
Inventor
Hideji Okaguchi
秀治 岡口
Tamotsu Hashimoto
保 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6434485A priority Critical patent/JPS61223161A/en
Publication of JPS61223161A publication Critical patent/JPS61223161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the shape memory effect and to reduce cost by incorporating C, Cr and Ni to an Fe-base alloy having Si and Mn as principal components so that the Mn equivalent value represented in a prescribed relational expression is obtained. CONSTITUTION:The shape memory alloy consists of 0.4-2% Si, 10-28% Mn, >=1 kind among C, Cr and Ni, and the balance Fe, in which the quantity of C, Cr and Ni having a function of increasing epsilon-martensite formation is regulated so that the Mn equivalent represented in [Mn equivalent (%) = Mn(%)+9C(%)+ Cr(%)/2+Ni(%)/2] is 21-28%.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 こ、の発明は、良好な形状記憶効果を安定して発揮する
鉄系形状記憶合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> This invention relates to an iron-based shape memory alloy that stably exhibits a good shape memory effect.

従来から1機械部品や各種構造部材の固定、締付け、接
合或いは補修等の基本的操作は、!業分  野を問うこ
となく極めて重要な位置を占めており、  、、今日で
は、その具体的手段として例えばボルト・ナツト等にお
けるようなネジの利用、リベット、キー、ビン又はコツ
タ等の利用、各穆溶接技術の利用等、様々な技術が目的
に応じて適宜に採用されている。
Traditionally, basic operations such as fixing, tightening, joining, or repairing one mechanical part or various structural members have been... It occupies an extremely important position regardless of the field of business, and today, concrete methods include the use of screws such as bolts and nuts, the use of rivets, keys, bottles, etc. Various techniques, such as the use of welding techniques, are employed as appropriate depending on the purpose.

しかし、このような産業上の基本的な分野(二おいても
、新材料の出現、或いは一層厳臀、い環境下での使用や
悪条件下での施工等の要求にともない。
However, in these basic industrial fields, with the advent of new materials and the demand for use in harsher environments and construction under adverse conditions, etc.

更なる技術の高度化が要望されるようになってきた。There is a growing demand for further technological sophistication.

例えば、ネジを利用して締結を行う場合には締め付は後
のゆるみが問題となることが多い。そして、このような
締め付は後のゆるみを防止するには、かなり大きな締め
付は力を予め付与しておくか、或いはロックナツトの使
用や割りビンの使用等のような特殊手段を適用する等の
対策が必要であるが、より高精度のゆるみ防止にはかな
り高度な施工技術が要求されることとなる。
For example, when fastening using screws, loosening after tightening often becomes a problem. In order to prevent such tightening from loosening later on, it is necessary to apply force in advance for considerably large tightening, or to apply special means such as using a lock nut or split bottle. Countermeasures are necessary, but highly sophisticated construction techniques are required to prevent loosening with higher precision.

ところで、地中埋蔵資源や海底資源等の開発では、パイ
プ同士の接合や補修が極めて重要な技術的事項とされて
いる。
By the way, in the development of underground resources, seabed resources, etc., joining and repairing pipes is considered to be an extremely important technical matter.

こめパイプ同士の接合や補修は、溶接又はネジ結合を利
用して実施される場合が多いが、溶接継手を採用する場
合にはパイプ本体に必ず熱影響を−受ける部分ができる
ので、この部分の性能を落すことなく目的を達成するた
めには、材質面や施工面で格別な工夫を施すことが必要
であった。一方、ネジ継手を採用する場合には、高圧の
管内圧力に耐え得るように、ネジの形状はもちろんのこ
と、ネジ切り作業での1m部にわたる細心の注意や高度
な技術までもが要求され、また、海底等におけるパイプ
の補修のためには管内の密封性や耐圧性の要求がかなり
厳しいものとなることから、この点でもより一層高度な
技術を必要としたのである。
Connections and repairs between pipes are often carried out using welding or screw connections, but when welding joints are used, there is always a part of the pipe body that is affected by heat, so In order to achieve this goal without compromising performance, it was necessary to make special efforts in terms of materials and construction. On the other hand, when using threaded joints, in order to withstand high pressure inside the pipe, not only the shape of the thread, but also careful attention to the 1 m section during thread cutting and advanced techniques are required. Furthermore, in order to repair pipes on the ocean floor, the requirements for sealing and pressure resistance inside the pipes are quite strict, so even more advanced technology was required in this respect.

このようなことから、各種構造物を製作する上で生じる
上述の如き問題に対処するため、構造物素材自体、或い
はその継手や接合治具等に形状記憶特性な頁する合金を
活用しようとの試みがなされるようになってきた。
For this reason, in order to deal with the above-mentioned problems that occur when manufacturing various structures, efforts are being made to utilize shape-memory alloys in the structure materials themselves, or in their joints and joining jigs. Attempts are beginning to be made.

〈従来技術並びにその問題点〉 現在、形状記憶特性を有する合金、所謂°形状記憶合金
”としてTi−Ni系合金やCu−Zn−Ant系合金
を中心に多数のものが知られるようになったが。
<Prior art and its problems> At present, a large number of alloys having shape memory properties, so-called shape memory alloys, are known, mainly Ti-Ni alloys and Cu-Zn-Ant alloys. but.

その大部分は非鉄系の合金である。そして、これらの合
金のほとんどは、いずれも通常の鋼に比べて製造コスト
が高く、また製造の際に細心の注意を払わなければ良好
な形状記憶効果を得ることが内錐であることから、大型
構造物やその部品として実用するには多くの問題があっ
た。
Most of them are non-ferrous alloys. Most of these alloys are more expensive to manufacture than ordinary steel, and if careful attention is not taken during manufacture, good shape memory effects cannot be obtained due to the fact that most of these alloys are internal cone. There were many problems when it came to practical use in large structures and their parts.

このような中にあって、大型構造物への適用が期待され
る鉄系の形状記憶合金としては、Fe −Mn系合金、
Fe−Ni系合金、Fe−Pt系合金、Fe−Pd系合
金及び18−8オーステナイト系ステンレス鋼が知られ
ている。そして、これらのうちではFe −励系合金が
最も安価であるため、この系に属する形状記憶合金の報
告が目立つようになってきた。
Among these, iron-based shape memory alloys that are expected to be applied to large structures include Fe-Mn-based alloys,
Fe-Ni alloys, Fe-Pt alloys, Fe-Pd alloys, and 18-8 austenitic stainless steels are known. Since Fe-excited alloys are the cheapest among these, reports on shape memory alloys belonging to this type have become prominent.

例えば、Mn含有量を15.9〜30.0重量%に規制
したre−Mn合金C特開昭55−73846号公報)
、地金有量を他の合金元素との兼ね合いで12.2〜2
0、59量%に規制したFe −Mn −Si 、 N
i 、 Cr合金C特開昭55−76043号公報)、
或いはMn含有量を14〜20重量優に規制したFe−
C−Mn合金(特開昭55−91956号公報)がそれ
である。
For example, re-Mn alloy C in which the Mn content is regulated to 15.9 to 30.0% by weight (JP-A-55-73846)
, the base metal content is 12.2 to 2 in balance with other alloying elements.
Fe-Mn-Si, N regulated to 0.59% by mass
i, Cr alloy C JP-A-55-76043),
Alternatively, Fe-
This is the C--Mn alloy (Japanese Unexamined Patent Publication No. 55-91956).

しかしながら、上記合金系(Fe−Mn系)では形状記
憶効果は極めて小さくC加熱・冷却による膨張・収縮量
が通常鋼の精々2倍程度)、形状記憶合金としての用途
には極めて不満足なものでしかなかった。なぜなら、F
e−Mn系合金の形状記憶効果は、Ni−Ti合金やC
u系合金等の熱弾性マルテンサイト合金とは異なりe−
マルテンサイトの生成によって生じるとされてkす、こ
のため完全に塑性変形前の形状に回復する所謂1完全形
状記憶効果”を得るのが雛かしいからC:他ならず、従
って。
However, the shape memory effect of the above alloy system (Fe-Mn system) is extremely small (the amount of expansion and contraction due to heating and cooling is at most twice that of normal steel), making it extremely unsatisfactory for use as a shape memory alloy. There was only one. Because F
The shape memory effect of e-Mn alloys is similar to that of Ni-Ti alloys and C
Unlike thermoelastic martensitic alloys such as U-based alloys, e-
It is said that this is caused by the formation of martensite, and therefore it is difficult to obtain the so-called "complete shape memory effect" in which the shape is completely restored to the shape before plastic deformation.Therefore, there is no other choice than C: Therefore.

良好な形状記憶効果を安定して得る手段に裏打ちされた
ところの、より一層潰れた形状記憶効果を有した鉄合金
の出現が待望されているのが現状であった。
At present, there has been a long-awaited expectation for the appearance of an iron alloy having an even more refined shape memory effect, backed by means for stably obtaining a good shape memory effect.

もつとも、前述したようなFe −Mn系合金における
形状記憶効果のメカニズムは必ずしも明確なものではな
いが、詳細には次のように解釈されている。
However, the mechanism of the shape memory effect in Fe-Mn alloys as described above is not necessarily clear, but it is interpreted in detail as follows.

即ち、冷間において加工を行うと歪誘起変態によってe
−マルテンサイトが生成し、加工歪がC−マルテンサイ
トとして蓄えられる。次いで、こ   ゛うした状態の
合金?A01点以上に加熱すると、C−マルテンサイト
からオーステナイトへの逆変態時に前記冷間加工時の塑
性歪を可逆的に解放することとなり、その結果形状記憶
効果を示すと言うものである。従って、冷間加工の際に
ε−マルテンサイトが生成し易くて加工による格子歪C
転位)の発生が抑えられる合金はど、より優れた形状記
憶効果が得られると予想されるが、従来の合金ではこの
加工時のε−マルテンサイトの生成が十分でなく、大部
分の塑性歪が転位として導入されるため良好な形状記憶
効果が得られなかったと考えられる。
That is, when cold processing is performed, e
- Martensite is generated and processing strain is stored as C-martensite. Next, what about the alloy in this state? When heated above the A01 point, the plastic strain during cold working is reversibly released during reverse transformation from C-martensite to austenite, and as a result, a shape memory effect is exhibited. Therefore, ε-martensite is likely to be generated during cold working, and the lattice distortion due to working is C.
It is expected that an alloy that suppresses the generation of dislocations will have a better shape memory effect, but in conventional alloys, the formation of ε-martensite during this processing is not sufficient, and most of the plastic strain It is thought that a good shape memory effect could not be obtained because these were introduced as dislocations.

く問題点を解決するための手段〉 本発明者等は、上述のような観点から、従来知られてい
た鉄系形状記憶合金にみられる上記問題点を解消し、よ
り一層者れた形状記憶効果を備えたコストの安い合金を
実現すべく研究を重ねたところ。
Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors solved the above-mentioned problems found in conventionally known iron-based shape memory alloys, and created a shape memory alloy with even better shape memory. We have conducted repeated research to create an alloy that is both effective and inexpensive.

Fe−Mn系形状記憶合金(二おいてはC,Cr及びN
i、  も6−マルテンサイト生成を助長する作用を発
揮する元素であり、これらの作用をも総合的に考慮した
ところの、式 %式%() で表わされるMn当量を、従来知られていたFe−Mn
系形状記憶合金のMn含有量よりも高い特定範囲に調整
された鉄合金に微量のSlを添加すると、加工時のe−
マルテンサイトの生成が極めて容易となり、室温での形
状記憶効果が従来の鉄合金に比べて大幅に改善される。
Fe-Mn-based shape memory alloy (C, Cr and N
i, is also an element that exerts the effect of promoting the formation of 6-martensite, and by comprehensively considering these effects, the Mn equivalent expressed by the formula % formula % ( ) can be calculated as Fe-Mn
When a small amount of Sl is added to an iron alloy whose Mn content has been adjusted to a specific range higher than the Mn content of the shape memory alloy, the e-
The formation of martensite becomes extremely easy, and the shape memory effect at room temperature is significantly improved compared to conventional iron alloys.

との知見を得るに至ったのである。This led us to the following knowledge.

この発明は、上記知見に基づいてなされたものであり、 鉄合金を。This invention was made based on the above findings, iron alloy.

Si : 0.4〜2.0%(以下、成分割合は重量基
準で示す)、 Mn:10−2896 を含有するとともに、更にC,Cr及びNiのうちの1
橿以上をも含み、かつ残部がFe及び不可避的不純物で
あって、しかも1式 で表わされるMn当量が21〜2896である化学成分
組成に構成することで、優れた形状記憶効果を安定して
発揮せしめ得るようにした点 に特徴を有するものである。
Contains Si: 0.4 to 2.0% (hereinafter, component proportions are shown on a weight basis), Mn: 10-2896, and further contains one of C, Cr, and Ni.
By configuring the chemical composition to include more than 100% of the total weight, the remainder being Fe and unavoidable impurities, and having a Mn equivalent expressed by 1 formula of 21 to 2896, it is possible to stably maintain an excellent shape memory effect. It is characterized by the fact that it can be made to perform effectively.

なお、ここで言う形状記憶効果とは、  rMs点以下
で加えた塑性変形歪が、Ac、点以上に一旦加熱してか
ら室温まで冷却すると完全に塑性変形前の形状に戻る」
との1通常言われているような形状記憶効果を指すもの
ではな(、rMs点以下で加えた塑性変形歪の一部のみ
が塑性変形前の形状に戻る」と言う効果を意味するもの
である。従って。
The shape memory effect referred to here means that plastic deformation strain applied below the rMs point completely returns to the shape before plastic deformation when it is heated above the Ac point and then cooled to room temperature.
1. This does not refer to the shape memory effect that is usually referred to (i.e., only a portion of the plastic deformation strain applied below the rMs point returns to the shape before plastic deformation). Yes, therefore.

この発明の形状記憶合金は、言わば1不完全形状記憶効
果“による復元力及び復元量を活用するものであること
は言うまでもない。
It goes without saying that the shape memory alloy of the present invention makes use of the restoring force and amount of restoration due to the so-called "incomplete shape memory effect".

次いで、この発明において合金の組成成分割合を上記の
如くに数値限定した理由を説明する。
Next, the reason why the composition ratio of the alloy is numerically limited as described above in this invention will be explained.

+     (a)  3i Si成分I:は、Fe−Mn合金の冷間加工時における
ε−マルテンサイト生成を容易にし、形状記憶効果を大
幅に向上させる効果があるが、その含有量が0.4%未
満では上記作用に所望の効果が得られず、他方、2.0
%を越えて含有させると合金の熱間加工性を著しく劣化
させることから、Sl含有量は0.4−2.0 %と定
めた。
+ (a) 3i Si component I: facilitates the formation of ε-martensite during cold working of Fe-Mn alloy and has the effect of greatly improving the shape memory effect, but when its content is 0.4 If it is less than 2.0%, the desired effect cannot be obtained in the above action;
The Sl content was set at 0.4-2.0% since the hot workability of the alloy would be significantly degraded if it was contained in excess of 0.4% to 2.0%.

(b)  Mn Mn成分子は、形状記憶効果を発現するのに有効である
8−マルテンサイトの生成に極めて大きな影響を与える
元素であるが、その含有量が10%未満では、例え前記
Mn当量が適正な範囲内にあったとしても室温C:おけ
るC−マルテンサイト生成が不十分となり、一方、28
*v越えて含有させた場合にも、やはりC−マルテンサ
イトの生成が十分でなく、いずれにしても良好な形状記
憶効果が得られなくなることから、Mtl含有量は10
〜2896と定めた。
(b) Mn The Mn element is an element that has a very large influence on the production of 8-martensite, which is effective in expressing the shape memory effect, but if its content is less than 10%, even if the Mn equivalent is Even if C-martensite is within the appropriate range, C-martensite formation at room temperature C: is insufficient;
* Even if the content exceeds v, the generation of C-martensite will not be sufficient, and in any case, a good shape memory effect will not be obtained, so the Mtl content is 10
~2896.

(c)  C、Or 、及びN1 これらの元素は、Mn成分との共存によってC−マルテ
ンサイトの生成を助長する作用を有しているため1種以
上の添加がなされる成分であるが、その総量は の式に従うNi当普値で21〜28%の範囲に制限され
る。
(c) C, Or, and N1 These elements have the effect of promoting the formation of C-martensite by coexisting with the Mn component, so one or more of these elements are added. The total amount is limited to a range of 21 to 28% by the normal Ni value according to the formula.

これは、該勘当量が2196未満であったり、或いは2
896を越えたりすると、いずれの場合にもe−マルテ
ンサイトの生成が不十分となり、十分に満足できる形状
記憶効果を達成できなくなるからである。なお、C成分
は1合金の強度特性向上に極めて有効なものであるが、
加工性の確保と言う点を考慮すれば0.5 *以下の含
有量に抑えるのが望ましい。
This means that the corresponding amount is less than 2196 or 2
This is because if it exceeds 896, e-martensite will not be sufficiently produced in any case, making it impossible to achieve a sufficiently satisfactory shape memory effect. Note that the C component is extremely effective in improving the strength properties of alloy 1, but
Considering the point of ensuring workability, it is desirable to suppress the content to 0.5* or less.

さて、181図は、形状記憶効果の指標である復元率(
α値)に及ぼすMn当量値及びSi含有量の影響を示す
グラフであるが、第1図からも、Mn当量が21へ28
96で、かつ0.4へ2.0%のSiを含む鉄合金(=
おいてのみ、極めて優れた復元率(α値)、つまり良好
な形状記憶効果を有することが明らかである。
Now, Figure 181 shows the restoration rate (
This is a graph showing the influence of Mn equivalent value and Si content on α value), and from FIG.
96 and containing 0.4 to 2.0% Si (=
It is clear that only this material has an extremely excellent recovery rate (α value), that is, a good shape memory effect.

なお、前記復元率(α値)の測定は1次のように実施し
た。
Note that the restoration rate (α value) was measured in a first-order manner.

まず、種々の組成の鉄合金から、第2図(IL)で正面
図が示されるような厚さ:1雪の短冊状試験片を作成し
1次いで、室温下において第2図(b)で示される如く
曲率半径:10+wにて90〔度〕の角度をなすまでの
曲げ加工を行い、更に核曲げ加工後の各試験片を加熱炉
中でAa1点以上の温度に加熱保持してから室温にまで
冷却し、加熱−冷却による試験片の曲がり角度の変化(
1$2図(e)参照)を調査する。続いて、この調査で
得られた値から。
First, strip-shaped specimens with a thickness of 1 snow, whose front view is shown in Figure 2 (IL), were prepared from iron alloys of various compositions. As shown, bending is performed until an angle of 90 degrees is formed with a radius of curvature of 10+w, and each test piece after core bending is heated and maintained in a heating furnace at a temperature of Aa1 or higher, and then heated to room temperature. Changes in the bending angle of the specimen due to heating and cooling (
1$2Refer to Figure (e)). Next, from the values obtained in this study.

を用いて復元率(α値)を算出するものである。The restoration rate (α value) is calculated using

ここで、復元率Cα値)が0より大きいと言うことは形
状記憶効果が発現されていることを意味し、前記α値が
大きければ大きいほど形状記憶効果に優れていると判断
されるわけである。
Here, if the recovery rate (Cα value) is greater than 0, it means that a shape memory effect is being expressed, and the larger the α value, the better the shape memory effect is judged to be. be.

次に、この発明を実施例によって比較例、と対比しなが
ら説明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

〈実施例〉 高周波溶解にて、@1表に示される如き化学成分の鉄合
金を溶製した。
<Example> An iron alloy having the chemical composition shown in Table 1 was melted by high-frequency melting.

次いで、該合金の鋳塊を1200℃に加熱してから厚さ
=5雪の板にまで圧延し、常温にまで空冷した後、再び
1100℃に加熱して水冷すると言う焼入れ処理を施し
た。
Next, the ingot of the alloy was heated to 1200°C, rolled to a thickness of 5 snow plates, air cooled to room temperature, then heated again to 1100°C and water-cooled, which was a quenching treatment.

このようにして得た板材から、厚さ1s+X幅5swX
長さ100雪の短冊状試験片を切り出し、各試験片に対
して、前記182図で示したような室温での曲げ加工、
Ae1点以上の加熱、及び室温までの空冷を行い、その
復元率Cα値)を測定した。
From the board material obtained in this way, thickness 1s + width 5sw
Cut out strip-shaped test pieces of snow with a length of 100 mm, and bend each test piece at room temperature as shown in Figure 182 above.
Heating to Ae 1 point or higher and air cooling to room temperature were performed, and the recovery rate (Cα value) was measured.

これらの結果V第1表に併せて示す。These results are also shown in Table V.

第1表に示される結果からも明らかなように。As is clear from the results shown in Table 1.

本発明の条件を満たす鉄合金はいずれも復元率が0.3
以上と大きな値を示していて1例えばエネルギー資源開
発設備機器類の信頼性向上、或いはパイプ接合や補修等
の確実化要求等に十分対処し得る材料であることがわか
るのに対して、勤成分やBt酸成分含有量が本発明で規
定する範囲から外れている比較合金は、十分に満足でき
る形状記憶効果を有していないことが明白である。
All iron alloys that meet the conditions of the present invention have a recovery rate of 0.3.
The above-mentioned large values indicate that the material is sufficient to meet requirements such as improving the reliability of energy resource development equipment, or ensuring reliability in pipe joints and repairs, etc. It is clear that comparative alloys in which the Bt acid component content is outside the range defined by the present invention do not have a sufficiently satisfactory shape memory effect.

以上に説明した如く、この発明によれば、従来知られて
いたFe−Mn合金よりも著しく優れた形状記憶効果を
有する低コストの鉄合金を得ることができ、各種構造部
材の締結・固定等における信頼性向上が達成されるのみ
ならず、より新規な産業技術開発の可能性を一層身近か
なものとすることができるなど、産業上極めて有用な効
果がもたらされるのである。
As explained above, according to the present invention, it is possible to obtain a low-cost iron alloy that has a significantly superior shape memory effect than conventionally known Fe-Mn alloys, and can be used for fastening and fixing various structural members. This not only improves the reliability of the system, but also brings extremely useful industrial effects, such as bringing the possibility of developing new industrial technology closer to home.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、復元率(α値)に及ぼすMn当量値及びSi
含有量の影響を示すグラフ。 第2図は、形状記憶効果C復元率)の測定方法の説明図
であり、第2図(alは試験前の試験片を、第2図(b
)は曲げ加工後の試験片を、そして第2図(elはAe
、点以上への加熱と冷却とを施した後の試験片の状態と
をそれぞれ示している。 出願人  住友金属工業株式会社 代理人  富 1)和 夫  はか2名OIQ    
20   30   40  50Mn茅量 (重量%
λ
Figure 1 shows the effect of Mn equivalent value and Si on recovery rate (α value).
Graph showing the influence of content. Figure 2 is an explanatory diagram of the method for measuring the shape memory effect (recovery rate).
) is the test piece after bending, and Fig. 2 (el is Ae) is the test piece after bending.
, respectively, show the state of the test piece after heating and cooling to above a point. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo Haka 2 people OIQ
20 30 40 50Mn amount (weight%)
λ

Claims (1)

【特許請求の範囲】 重量割合にて Si:0.4〜2.0% Mn:10〜28% を含有するとともに、更にC、Cr及びNiのうちの1
種以上をも含み、かつ残部がFe及び不可避的不純物で
あつて、しかも、式 Mn当量(%)=Mn(%)+9C(%)+Cr(%)
/2+Ni(%)/2で表わされるMn当量が21〜2
8%である化学成分組成を有して成ることを特徴とする
形状記憶合金。
[Claims] Contains Si: 0.4 to 2.0% and Mn: 10 to 28% by weight, and further contains one of C, Cr and Ni.
The remainder is Fe and unavoidable impurities, and the formula Mn equivalent (%) = Mn (%) + 9C (%) + Cr (%)
Mn equivalent expressed as /2+Ni (%)/2 is 21 to 2
A shape memory alloy having a chemical composition of 8%.
JP6434485A 1985-03-28 1985-03-28 Shape memory alloy Pending JPS61223161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6434485A JPS61223161A (en) 1985-03-28 1985-03-28 Shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6434485A JPS61223161A (en) 1985-03-28 1985-03-28 Shape memory alloy

Publications (1)

Publication Number Publication Date
JPS61223161A true JPS61223161A (en) 1986-10-03

Family

ID=13255527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6434485A Pending JPS61223161A (en) 1985-03-28 1985-03-28 Shape memory alloy

Country Status (1)

Country Link
JP (1) JPS61223161A (en)

Similar Documents

Publication Publication Date Title
EP0176272B1 (en) Shape memory alloy and method for producing the same
US4929289A (en) Iron-based shape-memory alloy excellent in shape-memory property and corrosion resistance
KR101907759B1 (en) Austenitic stainless steel clad steel plate and process for manufacturing same
CN114086049B (en) 2.0GPa grade CoCrNi-based medium entropy alloy with ultrahigh yield strength and plasticity and preparation method thereof
RU2169786C2 (en) Nitrogen-containing iron based-alloys having properties of damping and effect of memory of shape
AU2002252427B2 (en) Duplex stainless steel
Xu et al. Martensitic transformation of the Ti50Ni48Fe2 alloy deformed at different temperatures
JPH0328319A (en) Pipe joint made of stainless steel and its production
EP1123983B1 (en) Shape memory alloy
JPS61223161A (en) Shape memory alloy
JPS5913023A (en) Production of steel plate for large diameter welded pipe
JP3970645B2 (en) Method for producing iron-based shape memory alloy
AU1222899A (en) Pipe joint made of shape memory stainless steel
JPS63216946A (en) Shape-memory alloy
Xue et al. Comprehensive improvement of strength and ductility in CLAM steel subjected to TEU: The role of heterogeneous microstructure
JPS61223160A (en) Shape memory alloy
US20020119069A1 (en) Iron-manganese-silicon-based shape memory alloys containing chromium and nitrogen
JPS5983744A (en) Shape memory alloy
JP3510787B2 (en) High strength and high toughness stainless steel sheet with excellent bendability
JP2002249858A (en) Iron - chromium - aluminum alloy for heating wire
CN114657335B (en) Super duplex stainless steel and annealing method thereof
JPS6160848A (en) Long range regular alloy
JPH09143626A (en) Corrosion-resistant maraging alloy
JP3241912B2 (en) Manufacturing method of hot rolled steel sheet with excellent sulfide stress corrosion cracking resistance in plastic deformation environment
JPH0230734A (en) Iron-base shape memory alloy having excellent shape memory characteristics and corrosion resistance