JPS61222901A - Porous material for hydrogen occlusion - Google Patents

Porous material for hydrogen occlusion

Info

Publication number
JPS61222901A
JPS61222901A JP60063047A JP6304785A JPS61222901A JP S61222901 A JPS61222901 A JP S61222901A JP 60063047 A JP60063047 A JP 60063047A JP 6304785 A JP6304785 A JP 6304785A JP S61222901 A JPS61222901 A JP S61222901A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy powder
hydrogen storage
synthetic resin
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60063047A
Other languages
Japanese (ja)
Inventor
Chiaki Marumo
千郷 丸茂
Masao Hayashi
林 政夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP60063047A priority Critical patent/JPS61222901A/en
Publication of JPS61222901A publication Critical patent/JPS61222901A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To provide a porous material for hydrogen occlusion, composed of a hydrogen-occlusion alloy powder and a specific synthetic resin, having open- cell network structure with uniform pore-size distribution, having excellent gas-permeability and uniform thermal conductivity and the heat absorption and generation caused by the occlusion and release of hydrogen. CONSTITUTION:20-50wt% synthetic resin having a tensile modulus of <=1,000kg/cm<2> (e.g. PVA) is dissolved in hot water. A pore-forming material such as starch, soluble salt, etc., is added to the solution and mixed homogeneously, and then 80-50wt% hydrogen-occlusion alloy powder having particle diameter of 1-500mum (e.g. TiFe) is added and uniformly mixed to the solution. The obtained mixture is added with an aldehyde and an acid catalyst, poured into a frame having a definite shape and cured at 40-80 deg.C. A hydrogen- occluding porous material having an apparent density of 0.3-3.0g/cm<3>, a porosity of 50-90wt%, an average pore diameter of 1-500mum and containing interconnected macropore network can be produced by this process.

Description

【発明の詳細な説明】 水素エネルギーは、資源上の制約が少なく、かつ、自然
環境を汚染する心配のないクリーン、エネルギーであり
、また貯蔵が容易で、熱エネルギー、化学エネルギー、
燃料電池による直接発電等。
[Detailed Description of the Invention] Hydrogen energy is a clean energy with few resource constraints and no risk of polluting the natural environment. It is also easy to store and can be used as thermal energy, chemical energy,
Direct power generation using fuel cells, etc.

応用分野が広いことなど優れた特性含有しておシ、近年
、利用技術の開発に多くの関心が持たれるようになって
きている。
In recent years, there has been a lot of interest in the development of technology for using it, as it has excellent properties such as a wide range of applications.

最近の水素利用技術の開発のなかでも、特に水  。Among the recent developments in hydrogen utilization technology, especially water.

素吸蔵合金は、水素の運搬貯蔵のみでなく、エネルギー
変換機能を有する材料として注目を集め。
Elementary storage alloys have attracted attention as materials that not only transport and store hydrogen, but also have energy conversion functions.

例えiflMg−Ni系、La−Ni系、T(−Fe−
Mn@、馳 (ミツシュメタル)−Nt 系など多、く
の合金が開発登れてきている。これらの水素吸蔵合金に
要求される特性は、その利用目的によって多少異なるが
、一般的に下記の特性が要求される。
For example, iflMg-Ni system, La-Ni system, T(-Fe-
Many alloys have been developed, including Mn@ and Mitsushmetal-Nt. The properties required of these hydrogen storage alloys vary somewhat depending on the purpose of use, but the following properties are generally required.

(1)  i性5ヒが容易で水素吸蔵量が多い。(1) It is easy to form i-character and has a large amount of hydrogen storage.

(2)水素の吸蔵、放出速度が大きく、適当な解離圧を
有してい、る。
(2) It has a high hydrogen absorption and release rate and has an appropriate dissociation pressure.

(3)熱伝導度が大きい。(3) High thermal conductivity.

(4)  水素の吸蔵、放出をくり返しても合金の微粉
化が少ない。
(4) Even when hydrogen is absorbed and released repeatedly, the alloy hardly becomes pulverized.

しかしながら、現在開発されている水素吸蔵合金では、
水素の吸蔵、放出時に体積変化を生じ。
However, currently developed hydrogen storage alloys
A change in volume occurs when absorbing and desorbing hydrogen.

吸蔵と放出をくり返すことにより微粉化して実用上大き
な問題を生じている。即ち、合金の微粉化現象によシ、
容器に局部的な負荷がかかり亀裂が発生する、微粉化し
元合金微粒子によりパイプやバルブがつまる、熱伝導p
Jヲ低下させ水素の吸え放出速at−遅くする、合金の
充填状態が局在化し、発熱、吸熱が不均一になり、温度
むらが生じる等種々の問題点が発生し、5j!用化の大
きな障害となっているのが現状である。
Repeated occlusion and release results in pulverization, which poses a major practical problem. That is, due to the pulverization phenomenon of the alloy,
Cracks occur due to localized load on the container, pipes and valves become clogged due to pulverized particles of the original alloy, thermal conduction
Various problems occur, such as lowering J and slowing down the rate of hydrogen adsorption and release, localized filling of the alloy, uneven heat generation and heat absorption, and uneven temperature. The current situation is a major obstacle to commercialization.

本発明者らは、上記の諸問題1:解決すべく鋭意研究の
結果本発明を完成させたものであり、その目的は、水素
吸蔵合金の微粉化により生じる問題点を解消し、水素ガ
スの捕集、精製や水素エネルギーの効率的利用が可能な
水素吸蔵多孔体を提供するにある。
The present inventors completed the present invention as a result of intensive research to solve the above-mentioned problem 1.The purpose of the present invention is to solve the problems caused by the pulverization of hydrogen storage alloys and to solve the problems of hydrogen gas. The object of the present invention is to provide a hydrogen storage porous material that is capable of collecting, purifying, and efficiently utilizing hydrogen energy.

本発明の水素吸蔵多孔体は、水素吸蔵合金粉末50〜8
0重量%、引張シ弾性率1,000にり/cI!以下の
合成樹脂20〜5011量%よりなり、見掛密度0.3
〜3.0#/CI&、気孔率50〜85重量%。
The hydrogen storage porous body of the present invention has a hydrogen storage alloy powder of 50 to 8
0% by weight, tensile modulus 1,000 N/cI! Consists of 20-5011% of the following synthetic resin, apparent density 0.3
~3.0#/CI&, porosity 50-85% by weight.

平均気孔径1〜500μmの網目状の連続したマクロ孔
を有する多孔体であり、水素吸蔵合金粉末と引張り弾性
率1. OOOkQ/dの合成樹脂の原料全気孔形成材
、発泡剤、硬化触媒等と共に混合し反応させることによ
シ得られる。
It is a porous body having continuous network macropores with an average pore diameter of 1 to 500 μm, and has a tensile modulus of elasticity of 1. The synthetic resin raw material of OOOkQ/d is obtained by mixing and reacting with a total pore forming material, a blowing agent, a curing catalyst, etc.

本発明の水素吸蔵多孔体の製造に用いる水素吸蔵合金粉
末には特に制限はなく、例えば、T iFe、TiFe
6.gMnO,1,TiMn1.s、 Feoy94T
io、5eZro、o+Nbo、o4、MmN i 4
.5人i o、 s、MmN i 4.1 !IF e
Q、B 5、LaNi5、MgzNi、 TiMn14
. OaN i 5%LaNi 4.7AJo、a、M
mN i 4.5Mn o、 s、MmN i t 5
Alo、 s、T ioo 6.5 F e O,5,
T io oo、5unJ3.5、MmNi 5.更に
Lm  (ランタンリッチミツシュメタル) −Ni 
系、Lm−Mn 系等の合金を用いることが出来る。こ
れらの水素吸蔵合金は、粉末の形態で合成樹脂原料と混
合するが、良好なる混合状態を得るKは1合金粉末粒子
の大きさは、通常1〜500μmの範囲が好ましく、更
に好ましくは、5〜100μm、最も好ましくは、10
〜50μmである。
The hydrogen storage alloy powder used for manufacturing the hydrogen storage porous body of the present invention is not particularly limited, and examples include TiFe, TiFe, etc.
6. gMnO,1, TiMn1. s, Feoy94T
io, 5eZro, o+Nbo, o4, MmN i 4
.. 5 people i o, s, MmN i 4.1! IF e
Q, B5, LaNi5, MgzNi, TiMn14
.. OaNi 5%LaNi 4.7AJo,a,M
mN i 4.5 Mn o, s, MmN i t 5
Alo, s, Tioo 6.5 F e O,5,
T io oo, 5unJ3.5, MmNi 5. Furthermore, Lm (Lantern Rich Mitsushi Metal) -Ni
Alloys such as Lm-Mn type and Lm-Mn type can be used. These hydrogen storage alloys are mixed with synthetic resin raw materials in the form of powder, and to obtain a good mixing state, K is 1. The size of the alloy powder particles is usually in the range of 1 to 500 μm, more preferably 5 μm. ~100 μm, most preferably 10
~50 μm.

本発明に用いる合成樹脂は、引張り弾性率1.000#
/cd以下の合成樹脂1例えば、ポリビニルホルマール
、ポリビニルベンザール等のポリとニルアセタール樹脂
またはポリウレタン樹脂等であシ、これらの合成樹脂は
低い弾性率によシュ水素吸蔵合金の微粉化により生じる
内部応力を吸収し、微粒子の脱落を防止して水素吸蔵多
孔体としてその形態を保持することが出来る。
The synthetic resin used in the present invention has a tensile modulus of 1.000 #
/cd or less Synthetic resin 1 For example, poly(vinyl formal, polyvinyl benzal, etc.) or polyurethane resin. It can absorb stress, prevent fine particles from falling off, and maintain its shape as a hydrogen-absorbing porous body.

ポリビニルアセタール樹脂は、ポリビニルアルコールと
架橋剤のアルデヒド類″Ik酸触媒とともに混合し、反
応させることによシ得ら・れる、架橋剤としてはホルム
アルデヒド、アセトアルデヒド、ブチルアルデヒド、ベ
ンズアルデヒドet−用いることができる。また、触媒
としては蓚酸、蟻酸、酢酸、プロピオン酸、tgI酸、
乳酸、マレイン酸。
Polyvinyl acetal resin is obtained by mixing polyvinyl alcohol and an aldehyde as a crosslinking agent with an Ik acid catalyst and reacting it.Formaldehyde, acetaldehyde, butyraldehyde, benzaldehyde, etc. can be used as the crosslinking agent. In addition, as a catalyst, oxalic acid, formic acid, acetic acid, propionic acid, tgI acid,
lactic acid, maleic acid.

マロン酸、ビニル酢酸、パラトルエンスルホン醜ベンゼ
ンスルホン酸等の有機酸類が好適である。
Organic acids such as malonic acid, vinyl acetic acid, and para-toluenesulfone-ugly benzenesulfonic acid are suitable.

これらの原料混合時に澱粉あるいは回答性塩類等の気孔
形成材を混入することによりポリビニルアセタール多孔
体を製造することができる。
A porous polyvinyl acetal body can be produced by mixing a pore-forming material such as starch or responsive salts when mixing these raw materials.

ポリウレタンは、ポリイソシアネートとポリオールを触
媒とともに混合し、反応させることによル得られ発泡剤
を加えることによりポリウレタン多孔体が得られる。
Polyurethane is obtained by mixing polyisocyanate and polyol together with a catalyst and reacting the mixture, and a porous polyurethane body is obtained by adding a blowing agent.

ポリイソシアネートとしては、例えば、トリレンジイソ
シアネート(TI)I)、ジフェニルメタンジイソシア
ネート(MDI)あるいは変性MDIなどを用いること
ができる。ポリオールには、ポリエーテル化合物とポリ
エステル化合物があり、ポリエーテル化合物は、グリセ
リン、ソルビトール、トリメチルプロパン、蔗糖などの
多価アルコールにエチレンオキサイドあるいはプロピレ
ンオキサイドなどを付加重合させたものであり、ポリエ
ステル化合物は、アジピン酸、無水フタル酸、ダイマー
酸などの多価の酸と多価のアルコールでポリエステル化
したものである。ポリイソシアネートとポリオールの反
応に用いる触媒としては、アミン化合物のトリエチレン
ジアミン、NN−ジメチルシクロヘキシルアミン、トリ
メチルピペラジンなどまたは、有機金属化合物のスタナ
スオクトエート、ジブチルチンラウレートなどを用いる
ことができる。また発泡剤としては、フロロカーボン−
11、塩化メチル、ニトロアルカン等管用いればよい、
更に添加剤として、シリコン系分散剤、パラフィン系分
散剤、あるいはジメチルポリシロキサン−ポリオキシア
ルキレン共重合体の如き、セルオーブン剤を加えてもよ
い。
As the polyisocyanate, for example, tolylene diisocyanate (TI), diphenylmethane diisocyanate (MDI), or modified MDI can be used. Polyols include polyether compounds and polyester compounds. Polyether compounds are the addition polymerization of ethylene oxide or propylene oxide to polyhydric alcohols such as glycerin, sorbitol, trimethylpropane, and sucrose. Polyester compounds are , adipic acid, phthalic anhydride, dimer acid, and other polyhydric acids and polyhydric alcohols. As the catalyst used for the reaction between polyisocyanate and polyol, amine compounds such as triethylenediamine, NN-dimethylcyclohexylamine, and trimethylpiperazine, and organometallic compounds such as stannath octoate and dibutyltin laurate can be used. In addition, as a blowing agent, fluorocarbon
11. Methyl chloride, nitroalkane, etc. can be used,
Further, as an additive, a cell oven agent such as a silicone dispersant, a paraffin dispersant, or a dimethylpolysiloxane-polyoxyalkylene copolymer may be added.

水素吸蔵合金粉末と上記の合成樹脂原料より水素吸蔵多
孔体を製造するには、以下の如くおこなえばよい。
In order to produce a hydrogen storage porous body from the hydrogen storage alloy powder and the above-mentioned synthetic resin raw material, the following procedure may be performed.

合成梅脂がポリとニルアセクールの場合には。If the synthetic plum fat is poly and nil acecool.

合成樹脂原料として所定量のポリビニルアルコールを温
水で溶解し、澱粉や可溶性塩類等の気孔形成材を加えて
均一に混合し、混合液の粘度を金属粉末が沈降しない様
に調整した後、所定量の水素吸蔵合金粉末を加えて更に
均一に混合してから。
Dissolve a specified amount of polyvinyl alcohol as a synthetic resin raw material in warm water, add pore-forming materials such as starch and soluble salts, and mix uniformly. After adjusting the viscosity of the mixed liquid so that the metal powder does not settle, dissolve the specified amount. Add the hydrogen storage alloy powder and mix evenly.

架橋剤のアルデヒド類及び酸触媒を加え所定の形状の型
枠内で40〜80℃程度の温度で硬化反応させればよい
。合成樹脂原料としては、ポリビニルアルコールの他に
、フェノールホルムアルデヒド樹脂、メラミン樹脂等上
ポリビニルアルコール樹脂の特性を損なわない15曲で
少量加えてもより〜合成樹脂原料がポリウレタンの場合
には、ます水とlリオール類、触媒、水素吸蔵合金粉末
とを十分に混合し、次いで上記分散液に界面活性剤。
An aldehyde as a crosslinking agent and an acid catalyst may be added and a curing reaction may be carried out at a temperature of about 40 to 80° C. in a mold having a predetermined shape. In addition to polyvinyl alcohol, synthetic resin raw materials include phenol formaldehyde resin, melamine resin, etc. It is better to add a small amount of 15 pieces without impairing the properties of polyvinyl alcohol resin. If the synthetic resin raw material is polyurethane, water and water can be added. The liols, catalyst, and hydrogen storage alloy powder are thoroughly mixed, and then a surfactant is added to the dispersion.

発泡剤その他の添加剤等金加えて十分に混合し、更にこ
の混合物にポリイソシアネートを加えて、均一に攪拌混
合する。こうして得られた混合組成物を所定の形状の型
枠に注型し、反応、発泡させることにより水素吸蔵多孔
体が得られる。
A foaming agent and other additives are added and thoroughly mixed, and then polyisocyanate is added to the mixture and stirred and mixed uniformly. A hydrogen-absorbing porous body is obtained by casting the thus obtained mixed composition into a mold of a predetermined shape, causing reaction and foaming.

本発明の水素吸蔵多孔体の組成は、水素吸蔵合金粉末が
通常50〜80重量%、好ましくは55〜75重量%、
最も好ましくは60〜75重量覧引張り弾性率1,00
0#/−以下の合成樹脂が通常20〜50重量%、好ま
しくは25〜45重量%、最も好ましくは25〜40重
量%である。
The composition of the hydrogen storage porous body of the present invention is that the hydrogen storage alloy powder is usually 50 to 80% by weight, preferably 55 to 75% by weight;
Most preferably 60-75 weight tensile modulus 1,00
0#/- or less synthetic resin is usually 20 to 50% by weight, preferably 25 to 45% by weight, and most preferably 25 to 40% by weight.

水素吸蔵合金粉末の含有量が50重装置未満の場合には
、合金粉末量が少ないこと及び樹脂多孔体基質内層に合
金粉末が埋没している割合が多くなることにより水素吸
蔵合金の水素吸蔵能力が低下し、好ましくない、また、
ヒートポンプ用蓄熱材料等の用途に対しても、−吸発熱
量の低下、熱伝導率の低下等管きたし、好ましくない。
When the content of hydrogen-absorbing alloy powder is less than 50%, the hydrogen-absorbing capacity of the hydrogen-absorbing alloy decreases because the amount of alloy powder is small and the proportion of alloy powder buried in the inner layer of the porous resin matrix increases. decreases, which is undesirable, and
It is also undesirable for applications such as heat storage materials for heat pumps because it causes a decrease in the amount of heat absorbed and a decrease in thermal conductivity.

水素吸蔵合金粉末の含有量が80重素置を越える場合に
は樹脂多孔体基質の割合が少な過ぎ、水素の吸蔵、放出
のくり返しによる合金の微粉化に伴なって生じる内部応
力を吸収しきれずに水素吸蔵多孔体に亀裂を生じ、極端
な場合には破損に至ることがあり、更に微粉化した合金
粉末が多孔体より脱落する現象がみられ好ましくない。
If the content of the hydrogen-absorbing alloy powder exceeds 80 hydrogen atoms, the proportion of the porous resin matrix is too small to absorb the internal stress that occurs when the alloy is pulverized by repeated hydrogen absorption and release. Cracks may occur in the hydrogen-absorbing porous body, and in extreme cases, this may lead to breakage, and furthermore, the pulverized alloy powder may fall off from the porous body, which is undesirable.

本発明に用いる合成樹脂は、引張り弾性率1.000幻
/c11以下の合成樹脂、例えばポリビニルホルマール
、ポリビニルベンザール等のポリビニルアセタールまた
は、ポリウレタン等であり、これらの合成樹脂は、低い
弾性率により水素吸蔵合金の微粉化により生じる内部応
力を吸収し、微粒子の脱落全防止して、水素吸蔵多孔体
に良好なる形態保持性を賦与することができる。またポ
リビニルアセタール及びポリウレタンはいずれも網■状
の連続気at−有する多孔体にすることが容易であり1
合金微粉末の保持性が良好でかつ複合化により水素吸蔵
合金の水素吸蔵合金の低下が少なく最も好ましい。
The synthetic resin used in the present invention is a synthetic resin with a tensile modulus of 1.000 phantom/c11 or less, such as polyvinyl acetal such as polyvinyl formal or polyvinyl benzal, or polyurethane. It is possible to absorb the internal stress caused by the pulverization of the hydrogen storage alloy, completely prevent the fine particles from falling off, and provide the hydrogen storage porous body with good shape retention. In addition, both polyvinyl acetal and polyurethane can be easily made into porous bodies having a network-like continuous air atmosphere.
It is most preferable because it has good retention of the alloy fine powder and because of compounding, there is little deterioration in the hydrogen storage alloy.

また、本発明の水素吸蔵多孔体は、通常、見掛!!Jt
0.3〜3.Of/cd、 気孔率50〜90%fアリ
、好まシくハ、見掛’alt0.40〜2.5 f /
d気孔率60〜85%であり、最も好ましくは、見掛密
go、so〜2.3f/cd気孔率65〜150%であ
%を越える場合には単位体積尚9の水素吸蔵合金鐵が少
な過ぎ、水素吸蔵多孔体としての実用性が乏しい。また
、見掛密度が3.Of/lxl’に越えあるいは、気孔
率が50%程度未満小さ過ぎる場合には、水素吸蔵多孔
体内のガス透過性が低下し、かつ、多孔体内に亀裂が発
生し易くなり、多孔体としての利点が失な°われて好ま
しくない。
Moreover, the hydrogen storage porous body of the present invention usually has an apparent appearance! ! Jt
0.3-3. Of/cd, porosity 50-90% f, preferred, apparent 'alt 0.40-2.5 f/
d porosity 60-85%, most preferably apparent density go, so ~ 2.3f/cd porosity 65-150%, when the unit volume is above 9. If the amount is too small, the practicality as a hydrogen storage porous body is poor. Also, the apparent density is 3. Of/lxl' or if the porosity is too small, less than about 50%, the gas permeability in the hydrogen storage porous body will decrease and cracks will easily occur in the porous body, which will reduce the advantages of the porous body. I don't like it because it gets lost.

本発明の合成樹脂として好適なポリビニルアセタールと
ポリウレタンを比較しt場合、ポリビニルアセタールは
ポリウレタンに比較してガス透過性が優れており、水素
吸蔵合金粉末の複合化による水素吸蔵能力の低下がよシ
少なくて好ましい。
Comparing polyvinyl acetal and polyurethane, which are suitable as the synthetic resin of the present invention, it was found that polyvinyl acetal has superior gas permeability compared to polyurethane, and the reduction in hydrogen storage capacity due to the composite of hydrogen storage alloy powder is less likely to occur. Less is preferable.

また、ポリウレタンには、軟質、半硬質、硬質ポリウレ
タン等の種類があるが、これらのなかでは軟質ポリウレ
タンが好適である。軟質ポリウレタンは、ポリビニルア
セクールに比較して伸度が大きく従って、より優れ次形
態保持性金与える利点がある。
Further, there are various types of polyurethane such as soft, semi-hard, and hard polyurethanes, and among these, soft polyurethane is preferred. Flexible polyurethane has a greater elongation than polyvinyl acetate, and therefore has the advantage of providing better shape retention.

更に本発明の水素吸蔵多孔体の平均気孔径は通常1〜5
00μm、好ましくは、10〜300μm、最も好まし
くは、15〜300μmである。
Furthermore, the average pore diameter of the hydrogen storage porous material of the present invention is usually 1 to 5.
00 μm, preferably 10-300 μm, most preferably 15-300 μm.

本発明により得られ次水素吸蔵多孔体は憧れた形態保持
性?有し、水素の吸蔵、放出をくり返し題を解消するこ
とが出来る。また該水素吸蔵多孔体は、孔径分布が均一
な網目状の連続気孔含有する多孔体である究め、ガスの
透過性が良好で、かつ熱伝導率も均一であり、水素の吸
蔵、放出にともなう吸発熱が均一で局部的な蓄熱等を生
じなし〜かかる特性を有する本発明の水素吸蔵多孔体は
Does the hydrogen-absorbing porous material obtained by the present invention have the longed-for shape retention? This problem can be solved by repeatedly absorbing and releasing hydrogen. In addition, the hydrogen storage porous material is a porous material containing continuous pores with a uniform pore size distribution, and has good gas permeability and uniform thermal conductivity. The hydrogen storage porous material of the present invention has such characteristics that heat absorption and heat absorption are uniform and local heat accumulation does not occur.

水素の分離精製、水素の貯蔵、あるいはヒートポンプ用
蓄熱材料とし、て排熱利用冷暖房システムや水素コンプ
レッサー等に用いることができる。
It can be used for hydrogen separation and purification, hydrogen storage, or as a heat storage material for heat pumps, exhaust heat utilization heating and cooling systems, hydrogen compressors, etc.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例1 重合11700、けん化ff99%のポリビニルアルコ
ール(・P、 V A ) ?所定量の水に分散させ加
熱溶解後、所定の粒度の馬鈴薯澱粉の水分散液を加えて
65°C以上に加熱しながら攪拌混合した。
Example 1 Polyvinyl alcohol (·P, V A ) with polymerization 11700 and saponification ff 99%? After dispersing and dissolving in a predetermined amount of water and heating, an aqueous dispersion of potato starch having a predetermined particle size was added and mixed with stirring while heating to 65° C. or higher.

この混合液に所定量の水素吸蔵合金粉末caNi5(日
本重化学工業(掬製品、粒度:葦] 00mesh )
を加え十分く攪拌混合し、更に液IAI整用の水を加え
て混合液量’i 10 kgに調整した。該混合液中の
澱粉濃度は3.0重It%である。
Add a predetermined amount of hydrogen-absorbing alloy powder caNi5 (Japan Heavy and Chemical Industry (recipe product, particle size: reed) 00mesh) to this mixed solution.
was added and thoroughly stirred and mixed, and further water for preparing liquid IAI was added to adjust the mixed liquid volume to 10 kg. The starch concentration in the mixture was 3.0% by weight.

上記の混合液を40 ’C以下になるまで冷却後、50
重量%濃度のマレイン酸水溶液70o1及び37重量%
のホルマリン9001−加えて更に攪拌した後、内径2
50X250X250鱈の塩化ビニル樹脂製型枠に注型
し、60°Cの温水浴中で48時間硬化反応させた後取
出し、シャワーで48時間洗浄した。更に該試料を80
°Cで24時間乾燥して網目状の連続気孔含有する水素
吸蔵多孔体を得比ゆ 該水素吸蔵多孔体の重jiを測定し、あらかじめ混入し
たCaNi5  合金粉末量を考慮してポリビニルホル
マール量を算出した。こうして得られた水素吸蔵多孔体
の諸物性を測定後、ステンレス容器に入れ、約10−3
Torrの減圧下に1時間保持した後、20気圧の水素
ガス雰囲気にして活性化処理を行ない、試料の水素吸蔵
量を測定した。更に水素の吸蔵、放出を50回くカ返し
た後、試料を取出して破損の有無を観察した。それらの
結果は第1表に示すとおシである。
After cooling the above mixture to below 40'C,
Maleic acid aqueous solution 70o1 and 37% by weight
Formalin 9001-Additionally, after further stirring, the inner diameter 2
The mold was poured into a 50 x 250 x 250 cod vinyl chloride resin mold, allowed to harden in a 60°C hot water bath for 48 hours, then taken out and washed in the shower for 48 hours. Furthermore, the sample was
After drying at °C for 24 hours, a hydrogen-absorbing porous body containing mesh-like continuous pores was obtained.The weight ji of the hydrogen-absorbing porous body was measured, and the amount of polyvinyl formal was determined by considering the amount of CaNi5 alloy powder mixed in advance. Calculated. After measuring the various physical properties of the hydrogen storage porous material obtained in this way, it was placed in a stainless steel container and
After holding the sample under a reduced pressure of Torr for 1 hour, an activation process was performed in a hydrogen gas atmosphere of 20 atm, and the hydrogen absorption amount of the sample was measured. After hydrogen absorption and release were repeated 50 times, the sample was taken out and observed for damage. The results are shown in Table 1.

11表よシ明らかな如く、0aNis 粉末50〜80
重景%の装置で良好なる水素吸蔵多孔体が得実施例2 ポリプロビレエーテルポリオール2001、トリエチレ
ンジアミンIf、シリコーン系分散剤L−520(日本
ユニカー(卵製品)20 f 1発泡剤フレオン11(
三井ケミカル(卵製品)20fI及び水10Fを均一に
混合した後、これに所定量の水素吸蔵合金粉末、LaN
i4.yAlo、a  (日本重化学工業(卵製品1粒
度ニーN−100mesh )を加えて十分に攪拌混合
した。
As is clear from Table 11, 0aNis powder 50-80
A good hydrogen-absorbing porous material was obtained using a device with a heavy weight ratio Example 2 Polypropylene ether polyol 2001, triethylenediamine If, silicone dispersant L-520 (Nippon Unicar (egg product) 20 f 1 blowing agent Freon 11 (
After uniformly mixing 20 fI of Mitsui Chemicals (egg products) and 10 F of water, a predetermined amount of hydrogen storage alloy powder and LaN are added to the mixture.
i4. yAlo, a (Japan Heavy Chemical Industry (egg product 1 particle size, knee N-100 mesh)) was added and thoroughly stirred and mixed.

更に上記の混合液にトリレンジイソシアネートTDI−
80,220ft−加えて攪拌混合し、この混合液t2
00X200X250mのステンレス製型枠に注型し、
10分間反応させ脱型後、70 ’Qで48時間乾燥し
、水素吸蔵多孔体を得九該水素吸蔵多孔体の重量を測定
し、あらかじめ混入したLaNi4.yAlo、a合金
粉末量を考慮してポリウレタン量を算出し穴。更に実施
例1と同様にして、該水素吸蔵多孔体の諸物性及び水素
吸蔵量を測定し、まt水素の吸蔵、放出?50回くり返
しt後の試料状態全観察した。それらの結果上第2表に
示す。
Furthermore, tolylene diisocyanate TDI-
80,220ft-additionally stirred and mixed, and this mixture t2
Cast into a stainless steel mold of 00x200x250m,
After reacting for 10 minutes and demolding, it was dried at 70'Q for 48 hours to obtain a hydrogen-absorbing porous body.9 The weight of the hydrogen-absorbing porous body was measured, and the LaNi4. Calculate the amount of polyurethane by considering the amount of yAlo and a alloy powder. Furthermore, in the same manner as in Example 1, various physical properties and hydrogen storage amount of the hydrogen storage porous body were measured, and whether hydrogen was stored or released? The entire state of the sample was observed after 50 repetitions. The results are shown in Table 2.

(以下蚕白)(hereinafter referred to as Serihaku)

Claims (3)

【特許請求の範囲】[Claims] (1)水素吸蔵合金粉末50〜80重量%、引張り弾性
率1,000kg/cm^3以下の合成樹脂20〜50
重量%よりなり、見掛密度0.3〜3.0kg/cm^
3、気孔率50〜90重量%、平均気孔径1〜500μ
mの網目状の連続したマクロ孔を有する水素吸蔵多孔体
(1) Hydrogen storage alloy powder 50-80% by weight, synthetic resin with tensile modulus of 1,000kg/cm^3 or less 20-50%
Consists of weight%, apparent density 0.3-3.0kg/cm^
3. Porosity 50-90% by weight, average pore diameter 1-500μ
A hydrogen storage porous material having continuous macropores in the form of a network of m.
(2)合成樹脂がポリビニルアセタールまたはポリウレ
タンである特許請求の範囲第(1)項記載の水素吸蔵多
孔体。
(2) The hydrogen storage porous body according to claim (1), wherein the synthetic resin is polyvinyl acetal or polyurethane.
(3)水素吸蔵合金粉末が粒子径500μm以下のもの
である特許請求の範囲第(1)項記載の水素吸蔵多孔体
(3) The hydrogen-absorbing porous body according to claim (1), wherein the hydrogen-absorbing alloy powder has a particle size of 500 μm or less.
JP60063047A 1985-03-27 1985-03-27 Porous material for hydrogen occlusion Pending JPS61222901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60063047A JPS61222901A (en) 1985-03-27 1985-03-27 Porous material for hydrogen occlusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063047A JPS61222901A (en) 1985-03-27 1985-03-27 Porous material for hydrogen occlusion

Publications (1)

Publication Number Publication Date
JPS61222901A true JPS61222901A (en) 1986-10-03

Family

ID=13218027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063047A Pending JPS61222901A (en) 1985-03-27 1985-03-27 Porous material for hydrogen occlusion

Country Status (1)

Country Link
JP (1) JPS61222901A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005999A1 (en) * 1993-08-23 1995-03-02 United Technologies Corporation Polymeric storage bed for hydrogen
JP2019014957A (en) * 2017-07-05 2019-01-31 株式会社三徳 Hydrogen storage material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005999A1 (en) * 1993-08-23 1995-03-02 United Technologies Corporation Polymeric storage bed for hydrogen
JP2019014957A (en) * 2017-07-05 2019-01-31 株式会社三徳 Hydrogen storage material

Similar Documents

Publication Publication Date Title
JPH05505634A (en) Polymer foam containing gas barrier resin
CN112457596B (en) Energy-saving foaming polypropylene bead and preparation method thereof
CN110484214B (en) Shaped MOF-based composite phase change material and preparation method and application thereof
JPH05505205A (en) Polymeric foam containing inhibitor
WO2015131340A1 (en) Low-thermal conductivity rigid polyurethane foam with c-pentane as main body and manufacturing method and applications thereof
CN102229707A (en) Biodegradable poly (butylene adipate terephthalate) micro-pore foaming particle with high foamability and preparation method thereof
JP2009510266A (en) High porosity metal dual pore porous foam
WO2021035819A1 (en) Aerogel adsorption phase change energy storage powder, preparation method therefor, and application thereof
CN110890550A (en) Air electrode and preparation method and application thereof
CN109530674B (en) Micron-sized open-cell metal silver foam and preparation method thereof
WO1997034962A1 (en) Heat accumulating agent and its production method, heat accumulating material and its production method, and heat accumulator
JPS61222901A (en) Porous material for hydrogen occlusion
Du et al. Fabrication and characterization of polyurethane foams containing phase change materials for thermal energy storage
CN112331868A (en) Iron-nitrogen-doped core-shell carbon sphere material and preparation method thereof
EP0056724A2 (en) Polymeric structure for hydrogen storage
CN114891176B (en) Double-temperature-domain phase-change polyurethane hard foam composite material and preparation method thereof
CN113328202B (en) Honeycomb high-porosity and large-aperture lithium battery diaphragm and preparation method thereof
CN106731214A (en) A kind of lightweight material for water treatment and preparation method thereof
JPH0267336A (en) Manufacture of highly water-absorbing foamed molded item
CN102863645A (en) Method for preparing high-functionality foamed polymer material by supercritical CO2
JP5246875B2 (en) Method for producing polyvinyl alcohol foam using freeze-gelation of polyvinyl alcohol
CN111469505A (en) Moisture-conducting and quick-drying moisture-absorbing and heating fiber sponge material and preparation method thereof
CN116655994B (en) Porous polyethylene device and preparation method thereof
CN109824935B (en) Production process of polystyrene foam insulation board
JP4779337B2 (en) Biodegradable foam