JPS61221919A - Load current controller - Google Patents
Load current controllerInfo
- Publication number
- JPS61221919A JPS61221919A JP6189785A JP6189785A JPS61221919A JP S61221919 A JPS61221919 A JP S61221919A JP 6189785 A JP6189785 A JP 6189785A JP 6189785 A JP6189785 A JP 6189785A JP S61221919 A JPS61221919 A JP S61221919A
- Authority
- JP
- Japan
- Prior art keywords
- current
- value
- load
- integration
- deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/575—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Voltage And Current In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は負荷電流制御装置、特にその電流設定変更時
における負荷電流のオーバシュートま九はアンダーシュ
ートを極力抑えて制御しうるようし一−L 91 +l
+ jL噌辷膳l餉絵蟲+1横引昏←Mm ’II鱈
黛−一 啼 コ j−か振る制御装置は、例えば
超電導磁石コイルの如く、インダクタンスが極めて大き
く抵抗外が殆んど存在しないような負荷を制御する場f
!rK用いて好都合である。[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a load current control device, and particularly to a load current control device that can control overshoot or undershoot of a load current when changing its current setting as much as possible. L 91 +l
+ jL 虌辷膳l餉え蜲 + 1 横平 ← Mm 'II 閱黛-一 啼 ko j-The control device that swings has extremely large inductance, such as a superconducting magnet coil, and there is almost no resistance. When controlling a load like f
! It is convenient to use rK.
第3図は一般的な負荷給電システム例を示す概要図、第
4図は第6図の動作を説明するための電流設定値、実際
値および電流調節器出力相互の関係を示す特性図である
。第5図において、6は電力変換器、7は負荷、8は電
流検出器、9は電流調節器(人CR)91および点弧角
調整器92等からなる電力変換器制御装置である。Fig. 3 is a schematic diagram showing an example of a general load power supply system, and Fig. 4 is a characteristic diagram showing the relationship among the current setting value, actual value, and current regulator output to explain the operation of Fig. 6. . In FIG. 5, 6 is a power converter, 7 is a load, 8 is a current detector, 9 is a power converter control device consisting of a current regulator (CR) 91, a firing angle regulator 92, and the like.
すなわち、電流調節器(A、CR)91は少なくとも比
例要素(P要素)および積分要素(I要素)からなり、
電流検出器8を介して得られる電流実際値iをその設定
値1 に等しくなるようPI調節演算をして所定の操作
出力を出し、点弧角調整器92はこの操作出力にもとづ
いて電力変換器60点弧制御を行ない、これにより、負
荷7に対しイ給中姑シ争セhめ譬躊ル掛語穿爲zト^f
手1こへて、負荷電流設定値l を変更する場合、積分
要素は生かさず、設定値鳳 と実際値iとの偏差(ji
)が成る値以内になったとき積分要素を生かすようにす
るのが一般的である。なお、このようにするのはオフセ
ットエラーを無くすためである。That is, the current regulator (A, CR) 91 consists of at least a proportional element (P element) and an integral element (I element),
A PI adjustment calculation is performed on the actual current value i obtained through the current detector 8 so that it becomes equal to the set value 1, and a predetermined operation output is output, and the firing angle regulator 92 performs power conversion based on this operation output. The ignition control is performed on the load 7, thereby causing a conflict between the load 7 and the load 7.
When changing the load current set value l, the integral element is not used and the deviation (ji) between the set value and the actual value i is
) is within a value, it is common to make use of the integral element. Note that this is done in order to eliminate offset errors.
したがって、いま例えば電流設定値の時間的変化が第4
図(イ)の如く表わされるものとすると、電流調節器の
出力は同図(ロ)の如く変化し、その結果、負荷に流れ
る電流(実際値)は同図()・)の如くなる。Therefore, for example, if the temporal change in the current setting value is
If it is expressed as shown in figure (a), the output of the current regulator changes as shown in figure (b), and as a result, the current (actual value) flowing through the load becomes as shown in figure () and ).
つまり、設定変更時には設定値と実際値との偏差が出来
るだけ小さいときに、積分特性を生かすようにすること
が望ましい。しかしながら、その偏差を作る演算回路お
よびこの偏差を検出するコンパレータ回路のドリフト等
によって、最適なタイミングをもって積分特性を生かす
ことが難かしい。このため、積分要素のコンデンサに対
して余分な充放電を行なわせることとなり、この充放電
をリセットする丸めに、負荷電流には第4図(ハ)K示
されるようなオーバシュートSoまえはアンダーシュー
トSUが生じる結果になる。これによる影響は、例えば
負荷として超電導磁石コイルの如く大きなインダクタン
スをもつものを制御する場合等に著しく、その大きな時
定数やヒステリシス特性のために所望の電流制御ができ
なくなり、性能が低下するという問題が発生する。In other words, when changing settings, it is desirable to take advantage of the integral characteristic when the deviation between the set value and the actual value is as small as possible. However, it is difficult to take advantage of the integral characteristic with optimal timing due to the drift of the arithmetic circuit that creates this deviation and the comparator circuit that detects this deviation. For this reason, the capacitor of the integral element is forced to perform extra charging and discharging, and when this charging and discharging is reset, the load current has an overshoot as shown in Figure 4 (c) K. This results in shoot SU. The effect of this is noticeable, for example, when controlling a load with a large inductance such as a superconducting magnet coil, and its large time constant and hysteresis characteristics make it impossible to control the desired current, resulting in a drop in performance. occurs.
電流設定値の変更時にのみ積分要素に対して所定の電流
を印加する電流印加回路と、同じく電流設定値の変更時
にのみ積分要素に積分動作を行なわせる制御回路とを設
ける。A current application circuit that applies a predetermined current to the integral element only when the current setting value is changed, and a control circuit that similarly causes the integral element to perform an integral operation only when the current setting value is changed are provided.
電流設定値の変更時には、上記電流印加回路からの電流
を積分用コンデンサへ流して充放電を行なわせることK
より、余分な充放電を無くしてオー、<シュートまえは
アンダーシュートを出来るだけ抑えるようにする。When changing the current setting value, the current from the current applying circuit should be passed to the integrating capacitor for charging and discharging.
By eliminating excess charging and discharging, try to suppress undershoot as much as possible before shooting.
第1図はこの発明の実施例を示す回路図、第2図は第1
図の動作を説明するための電流設定値。Fig. 1 is a circuit diagram showing an embodiment of the present invention, and Fig. 2 is a circuit diagram showing an embodiment of the present invention.
Current setting value to explain the operation in the figure.
実際値および電流調節器出力の関係を示す特性図である
。なお、第1図において、11,12,13゜14は演
算増幅器(オペアンプ)であり、オペアンプ11によっ
て比例要素、オペアンプ12によって積分要素、またオ
ペアンプ13によって加算要素、さらにオペアンプ14
によって偏差検出要素がそれぞれ形成される。また、2
は電界効果トランジスタ(FET)、3は制御回路、R
e R1−R4は抵抗、Cは積分コンデンサである。FIG. 3 is a characteristic diagram showing the relationship between an actual value and a current regulator output. In FIG. 1, reference numerals 11, 12, 13, and 14 are operational amplifiers. The operational amplifier 11 functions as a proportional element, the operational amplifier 12 functions as an integral element, the operational amplifier 13 functions as an addition element, and the operational amplifier 14 functions as an integral element.
The deviation detection elements are respectively formed by. Also, 2
is a field effect transistor (FET), 3 is a control circuit, R
e R1-R4 are resistors, and C is an integrating capacitor.
FET2および制御回路3は、設定値の変更時にのみ与
えられる制御信号によって動作する。FET2の動作に
より、オペアンプ14を介して与えられる電流設定値と
実際値との偏差に比例する出力および抵抗R4等にて決
まる電流i。が積分コンデンサCへ与えられるため、こ
の電流i0の大きさと方向によってコンデンサCの充放
電が行なわれ、余分な充放電が回避される。このとき、
アンプ12による積分動作が有効にされるが、上記の如
き充放電によって積分動作は緩やかに行なわれることに
なる。その結果、電流調節器(ACR)の出力波形は第
2図(ロ)の如く時刻t1以降は緩やかとなり、従って
、電流実際値は同図(ハ)ノ如く、オーバシュートの生
じない良好な波形となる。なお、時刻t1は上記制御信
号の与えられた時刻であり、また、第2図(イ)は電流
設定値の時間変化を示す特性図である。以上では、主と
してオーバシュートについて説明したが、アンダーシュ
ートについても同様であることは云う迄もない。The FET 2 and the control circuit 3 are operated by a control signal given only when a set value is changed. Due to the operation of FET 2, current i is determined by the output proportional to the deviation between the current setting value given via operational amplifier 14 and the actual value, resistor R4, etc. is applied to the integrating capacitor C, the capacitor C is charged and discharged depending on the magnitude and direction of this current i0, and unnecessary charging and discharging is avoided. At this time,
Although the integration operation by the amplifier 12 is enabled, the integration operation is performed slowly due to the above-described charging and discharging. As a result, the output waveform of the current regulator (ACR) becomes gradual after time t1 as shown in Figure 2 (B), and therefore the actual current value has a good waveform without overshoot, as shown in Figure 2 (C). becomes. Incidentally, time t1 is the time when the above control signal is given, and FIG. 2(a) is a characteristic diagram showing the change over time of the current setting value. Although overshoot has been mainly explained above, it goes without saying that the same applies to undershoot.
この発明によれば、積分要素のコンデンサを入力量(設
定値と実際値の偏差の関数)に応じて充放電させるよう
にしたので、余分な充放電が回避される結果、負荷電流
のオーバシュートまえはアンダーシュートを極力抑える
ことができる。したがって、超電導磁石コイルの如き大
きなインダクAソッ4Tr呂&ll智ル宜柿ゆI/r鍔
も信1、蜆1引富古礒ftたらされる。According to this invention, since the capacitor of the integral element is charged and discharged according to the input amount (a function of the deviation between the set value and the actual value), excessive charging and discharging is avoided, resulting in overshoot of the load current. Undershoot can be minimized in the front. Therefore, a large inductor such as a superconducting magnet coil is also made to have 1 value and 1 value.
第1図はこの発明の実施例を示す回路図、第2図は第1
図の動作を説明するための電流設定値−実際値および電
流調節器出力相互の関係を示す特性図、第3図は一般的
な負荷制御システム例を示す構成図、第4図は第3図の
動作を説明するための電流設定値、実際値および電流調
節器出力相互の関係を示す特性図である。
符号説明
11.12,13.14・・・・・・演算増幅器(オペ
アンプ)、2・・・・・・電界効果トランジスタ(FE
T)、3・・・・・・制御回路、6・・・・・・電力変
換器、7・・・・・・負荷、8・・・・・・電流検出器
、9・・・・・・電力変換器用制御装置、91・・・・
・・電流調節器(ACFL)、92・・・・・・点弧角
調整器、R2R1〜R4・・・・・・抵抗、C・・・・
・・コンデンサ
代理人 弁理士 並 木 昭 夫
代理人 弁理士 松 崎 清
N I !l
霞21!1
1、 吟閣Fig. 1 is a circuit diagram showing an embodiment of the present invention, and Fig. 2 is a circuit diagram showing an embodiment of the present invention.
A characteristic diagram showing the relationship between current setting value, actual value, and current regulator output to explain the operation of the figure. Figure 3 is a configuration diagram showing an example of a general load control system. FIG. 2 is a characteristic diagram showing the relationship between a current setting value, an actual value, and a current regulator output to explain the operation of the controller. Symbol explanation 11.12, 13.14... operational amplifier (op amp), 2... field effect transistor (FE)
T), 3... Control circuit, 6... Power converter, 7... Load, 8... Current detector, 9...・Power converter control device, 91...
...Current regulator (ACFL), 92...Ignition angle regulator, R2R1-R4...Resistance, C...
... capacitor agent patent attorney Akio Namiki agent patent attorney Kiyoshi Matsuzaki NI! l Kasumi 21!1 1, Ginkaku
Claims (1)
例、積分要素を用いてフィードバック制御する負荷電流
制御装置において、前記積分要素に対して電流設定値と
実際値との偏差に比例する比例電流を印加する電流印加
回路と、積分要素の積分動作を有効まえは無効にする制
御回路とを設け、負荷電流設定値を変更するときは該制
御回路により積分動作を有効にするとともに積分要素へ
前記比例電流を流してその入力電流量を制御することを
特徴とする負荷電流制御装置。In a load current control device that uses a proportional and integral element to feedback-control the current to flow through a load supplied via a power converter, the integral element has a proportional current that is proportional to the deviation between the current setting value and the actual value. A current application circuit that applies current and a control circuit that disables the integral operation of the integral element before enabling it are provided, and when changing the load current setting value, the control circuit enables the integral operation and also disables the integral operation of the integral element. A load current control device that controls the amount of input current by flowing the proportional current.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6189785A JPS61221919A (en) | 1985-03-28 | 1985-03-28 | Load current controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6189785A JPS61221919A (en) | 1985-03-28 | 1985-03-28 | Load current controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61221919A true JPS61221919A (en) | 1986-10-02 |
JPH0576644B2 JPH0576644B2 (en) | 1993-10-25 |
Family
ID=13184390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6189785A Granted JPS61221919A (en) | 1985-03-28 | 1985-03-28 | Load current controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61221919A (en) |
-
1985
- 1985-03-28 JP JP6189785A patent/JPS61221919A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0576644B2 (en) | 1993-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4039897A (en) | System for controlling power applied to a gas discharge lamp | |
JPH0443284B2 (en) | ||
JPS61221919A (en) | Load current controller | |
JPH06282338A (en) | Constant current circuit and ramp voltage generating circuit | |
JPS6011902A (en) | Controller for induction adjusting operation element | |
JPS61221918A (en) | Load current controller | |
JP2535323B2 (en) | Load current control device | |
JPH05111266A (en) | Controller for piezoelectric actuator | |
JPH089776Y2 (en) | Voltage generator | |
JPS61221917A (en) | Load current controller | |
JPH0360015B2 (en) | ||
JPS60207294A (en) | Firing device | |
JPH0213709A (en) | Combustion controller | |
SU1610479A1 (en) | Variable power stabilizer | |
JPH03245765A (en) | Power supply | |
JPS5831202Y2 (en) | controller | |
JPS61221916A (en) | Load current controller | |
JPS58169044A (en) | Constant temperature type pirani vacuum gauge | |
JPS6154514A (en) | Stabilizer power supply circuit | |
JPH0365102B2 (en) | ||
JPH0572199B2 (en) | ||
JPS61236366A (en) | Switching regulator | |
JPS62201064A (en) | Converter control circuit | |
JPH02126309A (en) | Direct current feeding circuit | |
JPS63195713A (en) | Constant voltage/current control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |