JPH0576644B2 - - Google Patents

Info

Publication number
JPH0576644B2
JPH0576644B2 JP6189785A JP6189785A JPH0576644B2 JP H0576644 B2 JPH0576644 B2 JP H0576644B2 JP 6189785 A JP6189785 A JP 6189785A JP 6189785 A JP6189785 A JP 6189785A JP H0576644 B2 JPH0576644 B2 JP H0576644B2
Authority
JP
Japan
Prior art keywords
current
proportional
signal
output
integral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6189785A
Other languages
Japanese (ja)
Other versions
JPS61221919A (en
Inventor
Eisuke Azegami
Koichi Ishida
Masatoshi Watanabe
Masaki Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6189785A priority Critical patent/JPS61221919A/en
Publication of JPS61221919A publication Critical patent/JPS61221919A/en
Publication of JPH0576644B2 publication Critical patent/JPH0576644B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Voltage And Current In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は負荷電流制御装置、特にその電流設
定変更時における負荷電流のオーバシユートまた
はアンダーシユートを極力抑えて制御しうるよう
にするための負荷電流制御装置に関する。なお、
かゝる制御装置は、例えば超電導磁石コイルの如
く、インダクタンスが極めて大きく抵抗分が殆ん
ど存在しないような負荷を制御する場合に用いて
好都合である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a load current control device, and particularly to a load current control device that can control a load current while minimizing overshoot or undershoot when changing its current setting. This invention relates to a current control device. In addition,
Such a control device is conveniently used when controlling a load such as a superconducting magnet coil, which has an extremely large inductance and almost no resistance.

〔従来の技術〕[Conventional technology]

第3図は一般的な負荷給電システム例を示す概
略図、第4図は第3図の動作を説明するための電
流設定値,実際値および電流調節器出力相互の関
係を示す特性図である。第3図において、6は電
力変換器、7は負荷、8は電流検出器、9は電流
調節器(ACR)91および点弧角調整器92等
からなる電力変換器制御装置である。
Fig. 3 is a schematic diagram showing an example of a general load power supply system, and Fig. 4 is a characteristic diagram showing the relationship among the current setting value, actual value, and current regulator output to explain the operation of Fig. 3. . In FIG. 3, 6 is a power converter, 7 is a load, 8 is a current detector, and 9 is a power converter control device that includes a current regulator (ACR) 91, a firing angle regulator 92, and the like.

すなわち、電流調節器(ACR)91は少なく
とも比例要素(P要素)および積分要素(I要
素)からなり、電流検出器8を介して得られる電
流実際値iをその設定値i*に等しくなるようPI調
節演算をして所定の操作出力を出し、点弧角調整
器92はこの操作出力にもとづいて電力変換器6
の点弧制御を行ない、これにより、負荷7に対し
て設定値どおりの電流を供給し得るようにする。
こゝで、負荷電流設定値i*を変更する場合、積分
要素は生かさず、設定値i*と実際値iとの偏差
(Δi)が或る値以内になつたとき積分要素を生か
すようにするのが一般的である。なお、このよう
にするのはオフセツトエラーを無くすためであ
る。
That is, the current regulator (ACR) 91 consists of at least a proportional element (P element) and an integral element (I element), and adjusts the actual current value i obtained via the current detector 8 to be equal to its set value i * . The PI adjustment calculation is performed to output a predetermined operation output, and the firing angle regulator 92 adjusts the power converter 6 based on this operation output.
The ignition control is performed so that the current can be supplied to the load 7 according to the set value.
Here, when changing the load current setting value i * , the integral element is not used, but the integral element is used when the deviation (Δi) between the set value i * and the actual value i is within a certain value. It is common to do so. Note that this is done in order to eliminate offset errors.

したがつて、いま例えば電流設定値の時間的変
化が第4図イの如く表わされるものとすると、電
流調節器の出力は同図ロの如く変化し、その結
果、負荷に流れる電流(実際値)は同図ハの如く
なる。
Therefore, if, for example, the temporal change in the current setting value is expressed as shown in Figure 4A, the output of the current regulator will change as shown in Figure 4B, and as a result, the current flowing through the load (actual value) will change as shown in Figure 4B. ) is shown in Figure C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

つまり、設定変更時には設定値と実際値との偏
差が出来るだけ小さいときに、積分特性を生かす
ようにすることが望ましい。しかしながら、その
偏差を作る演算回路およびこの偏差を検出するコ
ンパレータ回路のドリフト等によつて、最適なタ
イミングをもつて積分特性を生かすことが難かし
い。このため、積分要素のコンデンサに対して余
分な充放電を行なわせることとなり、この充放電
をリセツトするために、負荷電流には第4図ハに
示されるようなオーバーシユートSOまたはアンダ
ーシユートSUが生じる結果になる。これによる
影響は、例えば負荷として超電導磁石コイルの如
く大きなインダクタンスをもつものを制御する場
合等に著しく、その大きな時定数やヒステリシス
特性のために所望の電流制御ができなくなり、性
能が低下するという問題が発生する。
In other words, when changing settings, it is desirable to take advantage of the integral characteristic when the deviation between the set value and the actual value is as small as possible. However, it is difficult to take advantage of the integral characteristic with optimal timing due to drift in the arithmetic circuit that creates the deviation and the comparator circuit that detects this deviation. For this reason, the capacitor of the integral element is forced to perform extra charging and discharging, and in order to reset this charging and discharging, the load current has an overshoot SO or an undershoot as shown in Figure 4C. This results in the formation of Ute S U. The effect of this is noticeable, for example, when controlling a load with a large inductance such as a superconducting magnet coil, and its large time constant and hysteresis characteristics make it impossible to control the desired current, resulting in a drop in performance. occurs.

〔問題点を解決するための手段〕[Means for solving problems]

電流設定値と実際値との偏差に比例した大きさ
を持ち該偏差とは逆極性の比例信号を出力する信
号印加回路と、該信号印加回路の出力を有効また
は無効にする第1制御手段と、電流設定値と実際
値との偏差と前記比例信号との和が入力される積
分要素の積分動作を有効または無効にする第2制
御手段とを設ける 〔作用〕 電流設定値の変更時には、第1,第2制御手段
により積分動作を有効にするとともに、電流印加
回路出力も有効にして前記積分要素のコンデンサ
へ前記比例電流を流し、該コンデンサへの充放電
を行わせることにより、余分な充放電を無くして
オーバシユートまたはアンダーシユートを出来る
だけ抑えるようにする。
a signal application circuit that outputs a proportional signal having a magnitude proportional to the deviation between the current setting value and the actual value and having a polarity opposite to the deviation; and a first control means for enabling or disabling the output of the signal application circuit. and a second control means for validating or disabling the integral operation of the integral element into which the sum of the deviation between the current set value and the actual value and the proportional signal is input. [Function] When changing the current set value, 1. The second control means enables the integral operation and also enables the output of the current application circuit to flow the proportional current to the capacitor of the integral element to charge and discharge the capacitor, thereby eliminating excess charge. Eliminate discharge and suppress overshoot or undershoot as much as possible.

〔実施例〕〔Example〕

第1図はこの発明の実施例を示す回路図、第2
図は第1図の動作を説明するための電流設定値,
実際値および電流調節器出力の関係を示す特性図
である。なお、第1図において、11,12,1
3,14は演算増幅器(オペアンプ)であり、オ
ペアンプ11によつて比例要素、オペアンプ12
によつて積分要素、またオペアンプ13によつて
加算要素、さらにオペアンプ14によつて偏差検
出要素がそれぞれ形成される。また、2は電界効
果トランジスタ(FET)、3は制御回路、R,R1
〜R4は抵抗、Cは積分コンデンサである。
Fig. 1 is a circuit diagram showing an embodiment of this invention, Fig. 2 is a circuit diagram showing an embodiment of the present invention;
The figure shows the current setting value to explain the operation in Figure 1.
FIG. 3 is a characteristic diagram showing the relationship between an actual value and a current regulator output. In addition, in FIG. 1, 11, 12, 1
3 and 14 are operational amplifiers, and the operational amplifier 11 controls the proportional element and the operational amplifier 12.
The operational amplifier 13 forms an integral element, the operational amplifier 13 forms an addition element, and the operational amplifier 14 forms a deviation detection element. In addition, 2 is a field effect transistor (FET), 3 is a control circuit, R, R 1
~ R4 is a resistor and C is an integrating capacitor.

FET2および制御回路3は、設定値の変更時
にのみ与えられる制御信号によつて動作する。電
流設定値iSと実際値iDとの偏差はオペアンプ14
に入力され、オペアンプ14からは反転増幅によ
り偏差に比例した大きさを持ち偏差とは逆極性の
出力が得られる。この出力に基づいてFET2の
作により抵抗R4等にて決まる電流icが得られ、積
分コンデンサCへ与えられる。同時に電流設定値
iSと実際値iDとの偏差も積分コンデンサCへ与え
られる。前記電流iCの大きさと方向および前記電
流設定値iSと実際値iDとの偏差の大きさによつて
コンデンサCの充放電が行われ、余分な充放電が
回避される。このとき、制御回路3は上記の如き
制御信号によつて、オペアンプ12による積分動
作が有効にされるが、上記の如き充放電によつて
積分動作は緩やかに行なわれることになる。その
結果、電流調節器(ACR)の出力波形は第2図
ロの如く時刻t1以降は緩やかとなり、従つて、電
流実際値は同図ハの如く、オーバシユートの生じ
ない良好な波形となる。なお、時刻t1は上記制御
信号の与えられた時刻であり、また、第2図イは
電流設定値の時間変化を示す特性図である。以上
では、主としてオーバシユートについて説明した
が、アンダーシユートについても同様であること
は云う迄もない。
The FET 2 and the control circuit 3 are operated by a control signal that is applied only when a set value is changed. The deviation between the current setting value i S and the actual value i D is the operational amplifier 14.
The operational amplifier 14 outputs an output having a magnitude proportional to the deviation and a polarity opposite to that of the deviation by inverting amplification. Based on this output, a current i c determined by resistor R 4 etc. is obtained by the action of FET 2 and is applied to integrating capacitor C. At the same time, the current setting value
The deviation between i S and the actual value i D is also applied to the integrating capacitor C. The capacitor C is charged and discharged depending on the magnitude and direction of the current i C and the magnitude of the deviation between the current set value i S and the actual value i D , and excessive charging and discharging is avoided. At this time, the control circuit 3 enables the integration operation by the operational amplifier 12 by the above-mentioned control signal, but the integration operation is performed slowly due to the above-mentioned charging and discharging. As a result, the output waveform of the current regulator (ACR) becomes gradual after time t1 as shown in FIG. Incidentally, time t 1 is the time when the above control signal is applied, and FIG. 2A is a characteristic diagram showing the time change of the current setting value. Although the above description has mainly focused on overshoot, it goes without saying that the same applies to undershoot.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、積分要素のコンデンサを入
力量(設定値と実際値の偏差の関数)に応じて充
放電させるようにしたので、余分な充放電が回避
される結果、負荷電流のオーバシユートまたはア
ンダーシユートを極力抑えることができる。した
がつて、超電導磁石コイルの如き大きなインダク
ンス負荷の制御を高精溺に行ない得る利点がもた
らされる。
According to this invention, since the capacitor of the integral element is charged and discharged according to the input amount (a function of the deviation between the set value and the actual value), excessive charging and discharging is avoided, and as a result, load current overshoot or Undershoot can be suppressed as much as possible. Therefore, there is an advantage that a large inductance load such as a superconducting magnet coil can be controlled with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す回路図、第2
図は第1図の動作を説明するための電流設定値,
実際値および電流調節器出力相互の関係を示す特
性図、第3図は一般的な負荷制御システム例を示
す構成図、第4図は第3図の動作を説明するため
の電流設定値,実際値および電流調節器出力相互
の関係を示す特性図である。 符号説明、11,12,13,14……演算増
幅器(オペアンプ)、2……電界効果トランジス
タ(FET)、3……制御回路、6……電力変換
器、7……負荷、8……電流検出器、9……電力
変換器用制御装置、91……電流調節器
(ACR)、92……点弧角調整器、R,R1〜R4
…抵抗、C……コンデンサ。
Fig. 1 is a circuit diagram showing an embodiment of this invention, Fig. 2 is a circuit diagram showing an embodiment of the present invention;
The figure shows the current setting value to explain the operation in Figure 1.
A characteristic diagram showing the relationship between the actual value and the current regulator output. Figure 3 is a configuration diagram showing an example of a general load control system. Figure 4 shows the current setting value and actual value to explain the operation of Figure 3. FIG. 3 is a characteristic diagram showing the relationship between the value and the current regulator output. Explanation of symbols, 11, 12, 13, 14... operational amplifier (op amp), 2... field effect transistor (FET), 3... control circuit, 6... power converter, 7... load, 8... current Detector, 9... Control device for power converter, 91... Current regulator (ACR), 92... Firing angle regulator, R, R 1 to R 4 ...
...Resistance, C...Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 電力変換器を介して給電される負荷に流すべ
き電流を比例,積分要素を用いてフイードバツク
制御する負荷電流制御装置において、電流設定値
と実際値との偏差に比例した大きさを持ち該偏差
とは逆極性の比例信号を出力する信号印加回路
と、該信号印加回路の出力を有効または無効にす
る第1制御手段と、電流設定値と実際値との偏差
と前記比例信号との和が入力される積分要素の積
分動作を有効または無効にする第2制御手段とを
設け、負荷電流設定値を変更するときは、前記第
1,第2制御手段により積分動作を有効にすると
ともに、前記信号印加回路出力も有効にして前記
積分要素へ前記比例信号を出力し、該比例信号に
よつて前記積分要素への入力信号の大きさを制御
することを特徴とする負荷電流制御装置。
1. In a load current control device that performs feedback control of the current to be supplied to a load via a power converter using proportional and integral elements, the current value is proportional to the deviation between the current setting value and the actual value. a signal application circuit that outputs a proportional signal with a polarity opposite to that of the signal application circuit; a first control means that enables or disables the output of the signal application circuit; a second control means for enabling or disabling the integral operation of the input integral element; when changing the load current setting value, the first and second control means enable the integral operation; A load current control device characterized in that a signal application circuit output is also enabled to output the proportional signal to the integral element, and the magnitude of the input signal to the integral element is controlled by the proportional signal.
JP6189785A 1985-03-28 1985-03-28 Load current controller Granted JPS61221919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6189785A JPS61221919A (en) 1985-03-28 1985-03-28 Load current controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6189785A JPS61221919A (en) 1985-03-28 1985-03-28 Load current controller

Publications (2)

Publication Number Publication Date
JPS61221919A JPS61221919A (en) 1986-10-02
JPH0576644B2 true JPH0576644B2 (en) 1993-10-25

Family

ID=13184390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6189785A Granted JPS61221919A (en) 1985-03-28 1985-03-28 Load current controller

Country Status (1)

Country Link
JP (1) JPS61221919A (en)

Also Published As

Publication number Publication date
JPS61221919A (en) 1986-10-02

Similar Documents

Publication Publication Date Title
US6885177B2 (en) Switching regulator and slope correcting circuit
JPH06282338A (en) Constant current circuit and ramp voltage generating circuit
JPH0576644B2 (en)
JPS613215A (en) Integrable load voltage sampling circuit for effective value load average voltage controller
GB2143347A (en) Current regulation of an electromagnetic load
US4635180A (en) Device for controlling and regulating current flowing through an electromagnetic consumer, particularly for use in connection with an internal combustion engine
JP2535323B2 (en) Load current control device
JPH0576643B2 (en)
JPH0137589B2 (en)
JPS61221918A (en) Load current controller
JP2582635B2 (en) Drive device for electromagnetic pump
JPH05111266A (en) Controller for piezoelectric actuator
SU1610479A1 (en) Variable power stabilizer
JP2679581B2 (en) Switching power supply circuit
JPH0744248A (en) Constant voltage circuit
JPH0546569B2 (en)
KR950010035Y1 (en) Current control circuit for an electromagnetic type actuator
JPS6313525Y2 (en)
SU594492A1 (en) Transistor dc voltage stabilizer
JPH0146884B2 (en)
JPH0934565A (en) Stabilized power circuit
JP2568847Y2 (en) Motor drive circuit
JPS6215038B2 (en)
SU809467A1 (en) Method and device for asynchronous regulating of dependent multiphase power-diode converter
SU824166A1 (en) Continuous switch-type dc voltage stabilizer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees