JPS6122152B2 - - Google Patents

Info

Publication number
JPS6122152B2
JPS6122152B2 JP55174053A JP17405380A JPS6122152B2 JP S6122152 B2 JPS6122152 B2 JP S6122152B2 JP 55174053 A JP55174053 A JP 55174053A JP 17405380 A JP17405380 A JP 17405380A JP S6122152 B2 JPS6122152 B2 JP S6122152B2
Authority
JP
Japan
Prior art keywords
housing
rotor
vane
acceleration
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55174053A
Other languages
Japanese (ja)
Other versions
JPS5797094A (en
Inventor
Mitsuo Inagaki
Hideaki Sasaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP17405380A priority Critical patent/JPS5797094A/en
Priority to US06/328,796 priority patent/US4484873A/en
Publication of JPS5797094A publication Critical patent/JPS5797094A/en
Publication of JPS6122152B2 publication Critical patent/JPS6122152B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Description

【発明の詳細な説明】 本発明はベーンを有する回転圧縮機に関するも
ので、例えば自動車用空調装置に於ける冷媒圧縮
機として効率の良い回転圧縮機を提供するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary compressor having vanes, and provides a highly efficient rotary compressor as a refrigerant compressor in, for example, an automobile air conditioner.

従来より、ロータにベーンスリツトを形成し、
このベーンスリツト内をベーンが貫通するように
配設され、ロータの回転に伴いベーンの先端が、
ハウジング内面と摺接するような圧縮機は知られ
ていた(特開昭49―112215号公報)。
Conventionally, vane slits are formed in the rotor,
The vane is arranged so as to pass through this vane slit, and as the rotor rotates, the tip of the vane
A compressor that is in sliding contact with the inner surface of the housing has been known (Japanese Patent Application Laid-Open No. 112215/1983).

しかしながら、この従来の圧縮機ではハウジン
グの内面形状が、ロータ中心を極座標の中心と考
えて、r=−dcosθ+d+Rで表せるリマソン
曲線となつていた。ここでdは任意の定数、Rは
ロータ半径を表わす。
However, in this conventional compressor, the inner surface shape of the housing is a Limason curve that can be expressed as r=-dcosθ+d+R, considering the rotor center as the center of polar coordinates. Here, d represents an arbitrary constant, and R represents the rotor radius.

すなわち、この従来のもののハウジング内面の
形状変化は、第5図に示すような形状となつてい
る。そして、この従来の圧縮機では、低圧側と高
圧側はθ=0、すなわちハウジングとロータの接
するr=Rの点で分離され、この接触点のみの線
シールとなつていた。すなわちこの線シールによ
つて高圧側から低圧側へ冷媒等が動いていくのを
防いでいた。
That is, the shape change of the inner surface of the housing of this conventional one is as shown in FIG. In this conventional compressor, the low-pressure side and the high-pressure side are separated at θ=0, that is, at the point r=R where the housing and rotor touch, and there is a line seal only at this contact point. In other words, this line seal prevents refrigerant and the like from moving from the high pressure side to the low pressure side.

しかしながら、実際には接触地点でのロータ、
ハウジング間のクリアランスは、熱膨張、回転中
心ずれ等のため0.02から0.03mm程度設けられてい
る。このため高圧側から低圧側へこのクリアラン
スを介して冷媒等が漏れ、容積効率の低下をまね
いていた。第7図中、曲線r=−dcosθ+d+
Rで記載された曲線は、この接触点を示す。この
第7図に示されるように、従来のリマソン曲線で
成形されたハウジング内面では、ロータとの接触
点が極めて少なかつた。
However, in reality the rotor at the contact point,
The clearance between the housings is set at about 0.02 to 0.03 mm to account for thermal expansion, rotational center deviation, etc. For this reason, refrigerant and the like leak from the high-pressure side to the low-pressure side through this clearance, resulting in a decrease in volumetric efficiency. In Figure 7, the curve r=-dcosθ+d+
The curve marked R indicates this point of contact. As shown in FIG. 7, the inner surface of the housing formed by the conventional Limason curve has extremely few contact points with the rotor.

ここで、ベーンに加えられる加速度はベーン先
端が常にハウジング内面と接触しているため、ハ
ウジング内面形状を定めることにより得られる。
そして、第5図で示したような従来のリマソン形
状をしたハウジングでは、ベーンに第6図に示し
た加速度が加えられる。この第6図より明らかな
ように従来のものでは、ベーンの加速度に関して
は良好なものとなつていた。すなわち、ベーンの
加速度は簡単な関数で表されており、従つて、非
常に滑らかな軌跡となつていた。従つて、ベーン
の移動によつて発生する騒音は小さなものとする
ことができていた。
Here, the acceleration applied to the vane is obtained by determining the shape of the inner surface of the housing because the vane tip is always in contact with the inner surface of the housing.
In the conventional Limason-shaped housing as shown in FIG. 5, the vane is subjected to the acceleration shown in FIG. 6. As is clear from FIG. 6, the conventional vane had good acceleration in terms of vane acceleration. In other words, the vane acceleration was expressed by a simple function, and therefore had a very smooth trajectory. Therefore, the noise generated by the movement of the vanes can be kept small.

本発明は上記点に鑑みて案出されたもので、ハ
ウジング内面形状を特殊形状とすることにより、
ベーンの移動加速度を滑らかなものとしつつ、ハ
ウジング内面とロータとの間の接触面でのシール
を良好なものにすることを目的とする。すなわち
本発明はベーンに加えられる加速度を基本的には
正弦波曲線とし、ベーンに加えられる加速度に大
幅な変動を加えないようにしていた。さらに本発
明はハウジング内面のうちロータと接する部分で
の接触面を大きくできるようにする。
The present invention was devised in view of the above points, and by making the inner surface of the housing a special shape,
The purpose of the present invention is to provide a good seal at the contact surface between the inner surface of the housing and the rotor while making the movement acceleration of the vane smooth. That is, in the present invention, the acceleration applied to the vane is basically made into a sinusoidal curve, so that the acceleration applied to the vane does not vary significantly. Furthermore, the present invention allows for a larger contact surface at the portion of the inner surface of the housing that comes into contact with the rotor.

上述の目的を達成するため、本発明ではハウジ
ング内面形状を、ベーンの移動加速度が次の式で
表せれるようなものとなるような形状とした。す
なわち、ベーンの移動加速度r=C1(cosθ−
cos3θ)但し、C1は定数、θは回転角となるよ
うな形状とする。
In order to achieve the above object, in the present invention, the inner surface of the housing is shaped so that the moving acceleration of the vane can be expressed by the following equation. That is, the moving acceleration of the vane r=C 1 (cosθ−
cos3θ) However, the shape is such that C1 is a constant and θ is the rotation angle.

以下本発明の一実施例を図に基づいて説明す
る。第1図中1は本考案なる内面形状を有したハ
ウジングでこのハウジング1内にはロータ2が回
転自在に配設されている。そして、ロータ2には
その中心を貫通するロータスリツト2aが設けら
れ、ベーン3がこのロータスリツト2a内に摺動
可能に挿入されている。また、ベーン3はその両
先端を前記ハウジング1の内周面に摺接させてい
る。第2図に本発明に係るハウジング1の内面形
状を示す。ここでRはロータ半径、2dはベーン
の最大飛び出し量を表わす。このハウジング1の
内面形状はロータスリツト2aに対するベーン3
の相対的な摺動加速度¨rが次式の様になるように
決定してある。
An embodiment of the present invention will be described below based on the drawings. Reference numeral 1 in FIG. 1 denotes a housing having an inner surface according to the present invention, and a rotor 2 is rotatably disposed within the housing 1. The rotor 2 is provided with a rotor slit 2a passing through its center, and the vane 3 is slidably inserted into the rotor slit 2a. Further, both ends of the vane 3 are brought into sliding contact with the inner circumferential surface of the housing 1. FIG. 2 shows the inner surface shape of the housing 1 according to the present invention. Here, R represents the rotor radius, and 2d represents the maximum protrusion amount of the vane. The inner shape of this housing 1 is the vane 3 relative to the lotus slit 2a.
The relative sliding acceleration ¨r is determined as shown in the following equation.

¨r=C1(cosθ−cos3θ) =C1(cosωt−cos3ωt) θ:回転角 但しθ=OはA点、 C1:定数、ω:ロータ2の角速度、t:時
間 次にこの式を時間tについて積分してベーン3
のロータスリツト2a内での相対的な速度rを求
める。
¨r=C 1 (cosθ-cos3θ) = C1 (cosωt-cos3ωt) θ: Rotation angle However, θ=O is point A, C 1 : Constant, ω: Angular velocity of rotor 2, t: Time Next, use this formula as follows: Vane 3 is integrated with respect to time t.
Find the relative speed r within the rotor slit 2a.

r=C1(1/ωsinωt−1/3ωsin3ωt)+C2 ここでθ=0のときr=0だからC2=0 この式をもう一度時間tについて積分を行なつ
て、ベーン3先端の軌跡、即ちハウジング1の内
面形状rを決定する。
r=C 1 (1/ωsinωt−1/3ωsin3ωt)+C 2Here , when θ=0, r=0, so C 2 =0 Integrating this equation again with respect to time t, the trajectory of the tip of the vane 3, i.e. Determine the inner surface shape r of the housing 1.

r=−C1(1/ωcosωt−1/9ωcos3ωt
)+C3 この際θ=0のときr=R、θ=πのときR+
2dだから、 C1=9/8dω、C3=d+Rとなる。
r=-C 1 (1/ω 2 cosωt-1/9ω 2 cos3ωt
)+C 3In this case, when θ=0, r=R, and when θ=π, R+
2d, so C 1 =9/8dω 2 and C 3 =d+R.

よつて、ハウジング内面形状は r=−9/8dω(1/ωcosωt−1/9ωc
os3ωt) +d+R=−9/8d(cosθ−1/9cos3θ)+
d+R で表わされ、このハウジング1内面形状に沿つて
接触摺動するベーン3の摺動加速度は ¨r=9/8dω(cosθ−cos3θ) で表わされる。
Therefore, the inner shape of the housing is r=-9/8dω 2 (1/ω 2 cosωt-1/9ω 2 c
os3ωt) +d+R=-9/8d(cosθ-1/9cos3θ)+
The sliding acceleration of the vane 3 that contacts and slides along the inner surface shape of the housing 1 is expressed as ¨r=9/8dω 2 (cosθ−cos3θ).

これらの曲線を表わすと、第3図及び第4図の
如くなる。
These curves are shown in FIGS. 3 and 4.

ここで、第5、第6図は従来例の動径rのリマ
ソン曲線よりなる内面形状を有するハウジングの
内面形状そのハウジング内を接触摺動するベーン
の摺動加速度を示したものであるが、この第5図
と前記第3図を比較した場合その相違は一見顕著
ではない。しかしながら、第7図の如くθ=0付
近すなわちハウジング1内面とロータ2との接触
点A点付近を拡大してみると、動径rの変化の違
いが大きく表われる。即ち、本発明に係る圧縮機
と従来形状の圧縮機とを同等の体格(R=26mm、
d=δmm)とした場合において、ハウジング1と
ロータ2外径とのクリアランスが0.01mm以下とす
る範囲を比較すると、従来形状の圧縮機ではこの
クリアランスが0.01mm以下となる範囲が6゜しか
ないのに対し本発明のものでは28゜もの範囲とな
り、これよりも本例のものでは実質的にハウジン
グ1とロータ2との間で面シールが構成されるこ
とがわかる。そして、この面シールを構成するこ
とにより、高圧側から低圧側への冷媒等の洩れを
大幅に減少させることになりもつて容積効率を向
上させることができる。又ロータ2外周面にはロ
ータスリツト2aが開口している為ハウジング1
とロータ2との間が線シールとなる従来形状の場
合には、このロータスリツト2aがA点を通過す
る際、前記線シールさえも無くなり冷媒等の洩れ
を増大することになつてしまうのに対し、本発明
のものではロータスリツト2a開口面の幅に比べ
より長いシール長さが保障されている為、従来の
圧縮機のようなロータスリツト2a開口面による
冷媒洩れは発生しない。
Here, FIGS. 5 and 6 show the inner surface shape of a conventional housing having an inner surface shape formed by a Limason curve with a vector radius r, and the sliding acceleration of a vane that slides in contact with the inside of the housing. When comparing this FIG. 5 and the above-mentioned FIG. 3, the difference is not noticeable at first glance. However, when the vicinity of θ=0, that is, the vicinity of the contact point A between the inner surface of the housing 1 and the rotor 2 is enlarged as shown in FIG. 7, a large difference in the change in the vector radius r becomes apparent. That is, the compressor according to the present invention and the conventional compressor have the same size (R = 26 mm,
If we compare the range in which the clearance between the housing 1 and the outer diameter of the rotor 2 is 0.01 mm or less when d = δ mm), in a compressor with a conventional shape, the range in which this clearance is 0.01 mm or less is only 6 degrees. On the other hand, in the case of the present invention, the range is as much as 28 degrees, and it can be seen that in the case of the present example, a face seal is substantially formed between the housing 1 and the rotor 2. By configuring this face seal, leakage of refrigerant, etc. from the high pressure side to the low pressure side can be significantly reduced, and the volumetric efficiency can be improved. Also, since the rotor 2 has a rotor slit 2a open on its outer circumferential surface, the housing 1
In the case of the conventional shape in which there is a line seal between the rotor 2 and the rotor 2, when the rotor slit 2a passes through point A, even the line seal disappears, increasing the leakage of refrigerant, etc. On the other hand, in the present invention, since the seal length is guaranteed to be longer than the width of the opening surface of the rotor slit 2a, refrigerant leakage through the opening surface of the rotor slit 2a as in the conventional compressor does not occur.

しかも、本発明ではベーン3の加速度¨rがC1
(cosθ−cos3θ)となるようにしてハウジング1
内面形状を定めた為、上記接触点A点でのシール
効果以外に、低騒音の効果も充分に期待できる。
即ち、ロータ2の回転に伴ないベーン3の加速度
が有する周波数成分はcosθ(cosωt)と cos3θ(cos3ωt)即ちω/2πと3ω/2πで決まる
だけの 低い周波数成分であり、一般に騒音として問題に
なる高周波成分を持たないために低騒音の優れた
回転圧縮機を提供することができる。
Moreover, in the present invention, the acceleration ¨r of the vane 3 is C 1
Housing 1 so that (cosθ−cos3θ)
Since the inner surface shape is determined, in addition to the sealing effect at the contact point A, a low noise effect can also be expected.
That is, the frequency component of the acceleration of the vane 3 as the rotor 2 rotates is a low frequency component determined by cos θ (cos ωt) and cos 3 θ (cos 3 ωt), that is, ω/2π and 3ω/2π, and is generally a problem as noise. Since it does not have high frequency components, it is possible to provide an excellent rotary compressor with low noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明圧縮機の一実施例を示す断面
図、第2図は第1図図示圧縮機のハウジング内面
形状を示す説明図、第3図は第2図図示ハウジン
グの動径変化を示す説明図、第4図は第1図図示
圧縮機のベーンの加速度を示す説明図、第5図は
従来の圧縮機のハウジングの動径変化を示す説明
図、第6図は従来の圧縮機のベーンの加速度を示
す説明図、第7図は第1図図示圧縮機のハウジン
グ形状と従来の圧縮機のハウジング形状とを対比
して示す説明図である。 1……ハウジング、2……ロータ、3……ベー
ン。
Fig. 1 is a sectional view showing an embodiment of the compressor of the present invention, Fig. 2 is an explanatory view showing the inner surface shape of the housing of the compressor shown in Fig. 1, and Fig. 3 is an explanatory view showing the radial change of the housing shown in Fig. 2. FIG. 4 is an explanatory diagram showing the acceleration of the vane of the compressor shown in FIG. 1. FIG. 5 is an explanatory diagram showing the radial change of the housing of a conventional compressor. FIG. 7 is an explanatory diagram showing a comparison between the housing shape of the compressor shown in FIG. 1 and the housing shape of a conventional compressor. 1...housing, 2...rotor, 3...vane.

Claims (1)

【特許請求の範囲】 1 筒状のハウジングと、このハウジング内に偏
心して配設され外部より駆動力を受けて回転する
ロータと、このロータの直径方向に設けられたロ
ータスリツト内に摺動自在に配設されその両先端
が常時前記ハウジング内面と接触するベーンとを
備え、かつ、前記ベーンの前記ロータスリツトに
対する相対加速度rが ¨r=C1(cosθ−cos3θ) 但し、C1:定数、θ:回転角 となるよう構成したことを特徴とする回転圧縮
機。
[Claims] 1. A cylindrical housing, a rotor that is arranged eccentrically within the housing and rotates by receiving a driving force from the outside, and a rotor that is slidable in a rotor slit provided in the diametrical direction of the rotor. a vane disposed at the inner surface of the housing with both tips always in contact with the inner surface of the housing, and the relative acceleration r of the vane with respect to the rotor slit is ¨r=C 1 (cos θ − cos 3 θ) where C 1 is a constant; A rotary compressor characterized by being configured such that θ: rotation angle.
JP17405380A 1980-12-09 1980-12-09 Rotary compressor Granted JPS5797094A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17405380A JPS5797094A (en) 1980-12-09 1980-12-09 Rotary compressor
US06/328,796 US4484873A (en) 1980-12-09 1981-12-08 Through vane type rotary compressor with specific chamber configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17405380A JPS5797094A (en) 1980-12-09 1980-12-09 Rotary compressor

Publications (2)

Publication Number Publication Date
JPS5797094A JPS5797094A (en) 1982-06-16
JPS6122152B2 true JPS6122152B2 (en) 1986-05-30

Family

ID=15971789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17405380A Granted JPS5797094A (en) 1980-12-09 1980-12-09 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS5797094A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT413423B (en) * 1997-08-28 2006-02-15 Rechberger Michael ROTARY MACHINE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217242A (en) * 1975-07-31 1977-02-09 Matsushita Electric Works Ltd Heat insulating device
JPS54136406A (en) * 1978-04-14 1979-10-23 Amadera Kuuatsu Kougiyou Kk Vane system rotary compressor
JPS5696195A (en) * 1979-12-28 1981-08-04 Nippon Soken Inc Rotary vane compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217242A (en) * 1975-07-31 1977-02-09 Matsushita Electric Works Ltd Heat insulating device
JPS54136406A (en) * 1978-04-14 1979-10-23 Amadera Kuuatsu Kougiyou Kk Vane system rotary compressor
JPS5696195A (en) * 1979-12-28 1981-08-04 Nippon Soken Inc Rotary vane compressor

Also Published As

Publication number Publication date
JPS5797094A (en) 1982-06-16

Similar Documents

Publication Publication Date Title
US4484873A (en) Through vane type rotary compressor with specific chamber configuration
US20120031370A1 (en) Control of the vanes of a vane cell machine
JP2006291925A (en) Scroll type fluid machine
JPS6122152B2 (en)
KR920010734B1 (en) Scroll compressor
JPS6353364A (en) Noncontact centrifugal type sealing device for rotating mechanical section
JP2832735B2 (en) Capacity meter
CN110546385B (en) Gas compressor
JPH11343996A (en) Labyrinth seal structure of fluid machinery
US4507068A (en) Vane type rotary machine
US2397098A (en) Rotary pump
US3640651A (en) Inner vane for rotary devices
US2830543A (en) Fluid pressure transducer for converting rotary force to fluid pressure, or vice-versa
KR910000174B1 (en) Shaft seal for a compressor
US5562434A (en) Scroll compressor having optimized tip seal grooves
JPS61116089A (en) Scroll-type vacuum pump
KR0136844B1 (en) Scroll of a scroll compressor
JPS6154958B2 (en)
JPH0231240B2 (en)
GB2233393A (en) A rotary sliding vane pump
JPH07317674A (en) Unlubricated vane pump
JPH01125588A (en) Rotary compressor
JPS63230979A (en) Vane type compressor
JP2000130374A (en) Vane type fluid machine
JPS584791U (en) vane compressor