JPS61221518A - Ground fault detector for parallel two-channel system - Google Patents

Ground fault detector for parallel two-channel system

Info

Publication number
JPS61221518A
JPS61221518A JP5984985A JP5984985A JPS61221518A JP S61221518 A JPS61221518 A JP S61221518A JP 5984985 A JP5984985 A JP 5984985A JP 5984985 A JP5984985 A JP 5984985A JP S61221518 A JPS61221518 A JP S61221518A
Authority
JP
Japan
Prior art keywords
ground fault
zero
phase
current
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5984985A
Other languages
Japanese (ja)
Inventor
秀樹 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5984985A priority Critical patent/JPS61221518A/en
Publication of JPS61221518A publication Critical patent/JPS61221518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は平行二回輪−系統を保護する保護継電装置に於
いて、特に電子計算機等によりデジタル的に地絡事故を
検出する地絡検出装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a protective relay device for protecting a parallel two-wheel system, and in particular to a ground fault detection system that digitally detects a ground fault fault using a computer or the like. It is related to the device.

(発明の技術的背景) 第6図は従来の地絡検出系統の一例を示すものである。(Technical background of the invention) FIG. 6 shows an example of a conventional ground fault detection system.

同図においてPは電源でありその電源は母線BUS1よ
り送電側の各しゃ断器CB11゜CB21、送電線L1
.L2、負荷側しゃ断器CBI 2.CB22を介して
母線BLIS2に接続されている。8送N1!L1.L
2の送電側には零相変流器ZCT11.ZCT21が設
けられその2次側には地絡方向検出継電器67G11゜
67G21が夫々接続されている。一方上記母線BUS
lには接地変圧器GTRが接続されオープンデルタ接続
された2次巻線は上記各地絡方向検出継電器67G11
.67G21に夫々接続され地絡事故時に電圧信号VO
を供給する。又、この接地変圧器GTRの2次巻線には
本電力系統の地絡事故時における地絡電流■0の値を設
定する電流制限抵抗CLRが接続されている。同様に各
送電線L1.L2の負荷側にも零相変流器ZCT12、
ZCT22、地絡方向検出継電器67G12.67G2
2が設けられ夫々接続されていて、地絡方向検出継電器
67G12.67G22には零相変圧器GPTから零相
電圧v0が供給されている。又矢印DI、D2.D3.
D4は地絡検出継電器67G11.67G21.67G
12゜67G22の夫々地絡検出方向を示すものである
In the figure, P is a power supply, and the power supply is connected to each circuit breaker CB11°CB21 on the power transmission side from the bus BUS1, and the power transmission line L1.
.. L2, load side breaker CBI 2. It is connected to bus line BLIS2 via CB22. 8th send N1! L1. L
A zero-phase current transformer ZCT11. A ZCT 21 is provided, and ground fault direction detection relays 67G11 and 67G21 are connected to the secondary side thereof, respectively. On the other hand, the above bus line BUS
The grounding transformer GTR is connected to l, and the open delta connected secondary winding is connected to each of the above-mentioned fault direction detection relays 67G11.
.. 67G21 respectively, and the voltage signal VO is output in the event of a ground fault.
supply. Further, a current limiting resistor CLR is connected to the secondary winding of the grounding transformer GTR, which sets the value of the ground fault current 0 in the event of a ground fault in the power system. Similarly, each power transmission line L1. There is also a zero-phase current transformer ZCT12 on the load side of L2,
ZCT22, ground fault direction detection relay 67G12.67G2
2 are provided and connected to each other, and the zero-phase voltage v0 is supplied to the ground fault direction detection relays 67G12 and 67G22 from the zero-phase transformer GPT. Also, arrow DI, D2. D3.
D4 is ground fault detection relay 67G11.67G21.67G
12°67G22 respectively indicate the ground fault detection direction.

第7図は第6図の系統例における地絡検出回路(しゃ断
器トリップ回路)の構成を示すものである。図において
67G11a、67G12a。
FIG. 7 shows the configuration of the ground fault detection circuit (breaker trip circuit) in the system example of FIG. 6. In the figure, 67G11a and 67G12a.

67G21a、67G22aは前記地絡方向検出継電器
67G11.67G12.67G21゜67G22の動
作時に夫々閉じる接点である。
67G21a and 67G22a are contacts that close when the ground fault direction detection relay 67G11.67G12.67G21°67G22 is operated.

T1.T2.T3.T4はタイムディレー回路で信号が
入力されてから一定時間後に出力を発生するものである
。A1.A2.A3.A4は論理積回路で2つの信号が
同時に入力された時信号出力を行なう。OR1,OR2
,OR3,OR4は論理和回路で2つの信号のうちいず
れか一方又は両方の信号が入力された時しゃ断器CB1
1.CB12、CB21.CB22の夫々にトリップ信
号を出力するものである。つまり送電線の送電側と負荷
側の両端に設けられた地絡方向検出継電器67G11と
67G12の両者が動作した事を論理積回路AI、A3
により検出し、論理和回路OR1,OR2を介してしゃ
断器CB11.CB12を瞬時にトリップするものであ
る。同様にして地絡方向検出継電器67G21と67G
22が動作した事を条件にしゃ断器CB21.CB22
をトリップするようにしている。又、このバックアップ
として送電側、負荷側の一方のみが動作しているような
場合、例えば送電側の地絡方向検出継電器67G11の
み動作している場合はタイムディレー回路T1により一
定時間後に論理和回路OR1を介して送電側のしゃ断器
CB11をトリップするものである。かかる電力系統に
おいて送電線L1の図示11点で地絡事故が発生した場
合には接地変圧器GTRの2次側に零相電圧V□が発生
しこの2次巻線に接続された電流制限抵抗CしRにより
この零相電圧と同位相の地絡電流IOが、地絡点F1に
流れこの地絡電流■0は各送電線L1.L’2km夫々
零相電流IO1,102となって分流する。この各送電
線Li、L2に夫々分流する101.IO2は各送電線
L1.L2の両端に設けられた零相変流器ZCT11.
ZCTl 2、ZCT21.ZCT22の夫々2次電流
1011・ 1012・ 1021・ ’ 022とな
′1地絡方向検出継電器67G11.67G12.67
G21.67G22に供給される。この場合、地絡方向
検出継電器67G11.67G12.67G21は入力
される零相電流i。11.1o12゜i  と前記零相
電圧v0とが同位相であるため夫々動作する。その結果
第7図の地絡検出回路の構成の通り、地絡方向検出継電
器67G11゜67G12の動作によってその接点67
G11 a。
T1. T2. T3. T4 is a time delay circuit that generates an output after a certain period of time after a signal is input. A1. A2. A3. A4 is an AND circuit which outputs a signal when two signals are input simultaneously. OR1, OR2
, OR3, OR4 are logical sum circuits, and when one or both of the two signals is input, a circuit breaker CB1
1. CB12, CB21. It outputs a trip signal to each of the CBs 22. In other words, the AND circuit AI and A3 indicate that both ground fault direction detection relays 67G11 and 67G12 installed at both ends of the power transmission side and load side of the power transmission line have operated.
is detected by the circuit breaker CB11 . This instantly trips the CB12. Similarly, earth fault direction detection relays 67G21 and 67G
22 is activated, the circuit breaker CB21. CB22
I'm trying to make a trip. In addition, as a backup for this, when only one of the power transmission side and the load side is operating, for example, when only the ground fault direction detection relay 67G11 on the power transmission side is operating, the time delay circuit T1 activates the OR circuit after a certain period of time. This trips the circuit breaker CB11 on the power transmission side via OR1. In such a power system, if a ground fault occurs at the 11 points shown in the diagram on the power transmission line L1, a zero-phase voltage V□ will occur on the secondary side of the grounding transformer GTR, and the current limiting resistor connected to this secondary winding will Due to C and R, a ground fault current IO having the same phase as this zero-phase voltage flows to the ground fault point F1, and this ground fault current 0 flows to each power transmission line L1. L'2km becomes zero-sequence current IO1, 102, respectively, and is divided. The 101. IO2 is connected to each power transmission line L1. Zero-phase current transformer ZCT11 provided at both ends of L2.
ZCTl 2, ZCT21. ZCT22 secondary current 1011, 1012, 1021, '022 and '1 ground fault direction detection relay 67G11.67G12.67
G21.67 is supplied to G22. In this case, the ground fault direction detection relay 67G11.67G12.67G21 receives zero-sequence current i. Since 11.1o12゜i and the zero-phase voltage v0 are in the same phase, they operate respectively. As a result, as shown in the configuration of the ground fault detection circuit shown in FIG.
G11 a.

67G12aが閉じる事により、事故発生側の送電線L
1の両端しゃ断器CB11.CB12をトリップして電
力系統は地絡事故F1点から保護されることになる。尚
、送電線L2に地絡事故が発生しても同様にして保護さ
れるものである。
By closing 67G12a, the power transmission line L on the side where the accident occurred
1 both ends breaker CB11. By tripping CB12, the power system is protected from the ground fault F1 point. Note that even if a ground fault occurs in the power transmission line L2, protection is provided in the same way.

〔背景技術の問題点〕[Problems with background technology]

前記の場合、系統インピーダンスのアンバランス等によ
り流れる零相循環電流■、が’012゜i  に対して
は和として作用し”011゜’ 022には差として作
用するために、本来の地絡事故電流を零相循環電流の影
響により判別することができず、誤動作あるいは誤不動
作してしまう    ゛場合がある。
In the above case, the zero-sequence circulating current ■ flowing due to unbalanced system impedance, etc., acts as a sum for '012゜i and as a difference for '011゜' 022, which causes the original ground fault to occur. There are cases where the current cannot be determined due to the influence of zero-phase circulating current, resulting in malfunction or malfunction.

また前記の様に第6図の図示11点で地絡事故が発生す
ると、F1点に流れる零相電流■0は母線BUS1から
しゃ断器CB11を介して流れる零相電流101と母線
BUSIからしゃ断器CB21.CB22.0B12を
介して流れる零相電流102に分流するものである。こ
の分流零相電流101と102の分流値の比は母線BU
S1から事故点F1までの夫々分流ラインの系統インピ
ーダンス比により定まるものである。又、このインピー
ダンス比は送電線し1.L2のインピーダンスが一定で
あるから地絡事故の発生場所によって変化する。仮に第
6図の地絡事故点F1が零相変流器ZCT11に極めて
近い場合は送電線L1゜L2のインピーダンスは全て母
線BUSIからしゃ断器CB21.0B22.0B12
を介した事故点F1までの電流102の分流ラインのイ
ンピーダンスとなる。一方、母線BUS1からしゃ断器
csiiを介した事故点F1までのインピーダンスには
送電線L1.L2のインピーダンスは含まれない。つま
り母線eusiからしゃ断器CB11を介して流れる電
流I01がF1点に流れる地絡電流■0と同等となり分
流零相電流102はほとんど流れない。この為、送電側
の地絡方向検出継電器67G11は動作し負荷側の地絡
方向検出継電器67G12は不動作となる。この結果第
7図の地絡検出回路に於いては論理積回路A1の出力信
号が構成されず送電線L1側の地絡事故にもかかわらず
事故が瞬時保護しゃ断できずに、タイムディレー回路T
1により地絡方向検出継電器67G11の動作から一定
時間後に送電側のしゃ断器CBIIがしゃ断される。引
き続きしゃ断器CB11のしゃ断によりF1点に流れる
地絡電流■0は母線BLJS1からしゃ断器CB21.
CB22、CB12を介して流れ、l0=IO2となり
地絡方向検出継電器67G21.67G12が動作して
前記第7図の地絡検出回路のタイムディレー回路T2.
T3により一定時間後にしゃ断器CB21.0B12が
夫々しゃ断されてはじめて母線BUS2側への電源供給
が停止される。
Further, as mentioned above, when a ground fault occurs at the 11 points shown in Figure 6, the zero-sequence current ■0 flowing to point F1 is the zero-sequence current 101 flowing from the bus BUS1 via the breaker CB11, and the zero-sequence current 101 flowing from the bus BUS1 to the breaker CB11. CB21. The current is shunted to the zero-sequence current 102 flowing through the CB22.0B12. The ratio of the shunt values of the shunt zero-phase currents 101 and 102 is the bus line BU
It is determined by the system impedance ratio of each branch line from S1 to fault point F1. Also, this impedance ratio is 1. Since the impedance of L2 is constant, it changes depending on the location where the ground fault occurs. If the ground fault point F1 in Fig. 6 is extremely close to the zero-phase current transformer ZCT11, the impedance of the transmission line L1゜L2 will all be changed from the bus BUSI to the circuit breaker CB21.0B22.0B12.
This is the impedance of the shunt line for the current 102 to the fault point F1 via . On the other hand, the impedance from the bus line BUS1 to the fault point F1 via the circuit breaker CSII includes the power transmission line L1. The impedance of L2 is not included. In other words, the current I01 flowing from the bus line eusi via the breaker CB11 is equivalent to the ground fault current 0 flowing to the point F1, and almost no shunt zero-sequence current 102 flows. Therefore, the ground fault direction detection relay 67G11 on the power transmission side operates, and the ground fault direction detection relay 67G12 on the load side becomes inoperative. As a result, in the ground fault detection circuit shown in Fig. 7, the output signal of the AND circuit A1 is not configured, and even though there is a ground fault on the power transmission line L1 side, the fault cannot be instantaneously interrupted, and the time delay circuit T
1, the power transmission side breaker CBII is cut off after a certain period of time from the operation of the ground fault direction detection relay 67G11. Subsequently, the ground fault current ■0 flowing to point F1 due to the interruption of circuit breaker CB11 is transferred from bus line BLJS1 to circuit breaker CB21.
CB22 and CB12, l0=IO2, the ground fault direction detection relays 67G21, 67G12 operate, and the time delay circuit T2. of the ground fault detection circuit shown in FIG.
The power supply to the bus BUS2 side is stopped only after the circuit breakers CB21.0B12 are respectively cut off after a certain period of time by T3.

〔発明の目的〕[Purpose of the invention]

本発明は前記のような問題点を解決するためになされた
もので、その目的は保護装置の誤動作、誤不動作をなく
し、送電線の負荷側の保護装置だけで事故回線の判定を
可能にすることにより送電側の保護装置を省略し、送電
線上の事故発生場所によって各々の送電線に分流する零
相電流の比が変化しても送電線の地絡事故検出を確実に
行ない得るようにし、さらに装置の縮小化、省力化を可
能とする地絡検出装置を提供することである。
The present invention has been made to solve the above-mentioned problems, and its purpose is to eliminate malfunctions and malfunctions of protection devices, and to make it possible to determine faulty lines using only the protection devices on the load side of power transmission lines. By doing so, a protection device on the power transmission side can be omitted, and even if the ratio of zero-sequence currents distributed to each power transmission line changes depending on the location of the accident on the transmission line, it is possible to reliably detect a ground fault on the power transmission line. Another object of the present invention is to provide a ground fault detection device that can further downsize the device and save labor.

〔発明の概要〕[Summary of the invention]

本発明の地絡検出装置は、零相電流を各線間電圧の方向
成分に分解し、地絡事故発生前の前記零相電流の各成分
を零相循環電流の各成分として記憶し、地絡事故時の零
相電流の地絡事故相に対応した成分から記憶した地絡事
故前の地絡事故相に対応した零相循環電流の成分を差し
引くことにより零相循環1!流の影響を除去した地絡事
故電流の地絡事故相に対応した成分を得、その地絡事故
電流成分の方向を判別し、判別した地絡事故電流成分の
方向から地絡事故発生回線を判別することを特徴とする
ものである。
The ground fault detection device of the present invention decomposes a zero-sequence current into directional components of each line voltage, stores each component of the zero-sequence current before the occurrence of a ground fault accident as each component of a zero-sequence circulating current, and detects a ground fault. By subtracting the component of the zero-sequence circulating current corresponding to the ground-fault fault phase before the memorized ground-fault fault from the component corresponding to the ground-fault fault phase of the zero-sequence current at the time of the fault, zero-sequence circulation 1! Obtain the component of the ground fault current that corresponds to the ground fault phase from which the influence of the ground fault current has been removed, determine the direction of the ground fault current component, and identify the line where the ground fault fault occurred based on the direction of the determined ground fault current component. It is characterized by discrimination.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明を適用した地絡検出の系統構成例を示す
もので、第6図と同一部分には同一符号を付してその説
明を省略し、ここでは異なる部分についてのみ述べる。
FIG. 1 shows an example of a system configuration for ground fault detection to which the present invention is applied. The same parts as those in FIG. 6 are given the same reference numerals, and the explanation thereof will be omitted, and only the different parts will be described here.

つまり第1図は第6図における各送電線両端に設けられ
た地絡方向検出継電器67G11〜67G22及び各送
電線送電側に設けられた零相変流器ZCT11.ZCT
21、接地変圧器GTRを省略し、これに代えて地絡検
出装置GFDを負荷側にのみ設けて、零相変流器ZCT
12゜ZCT22の2次出力である零相電流’012゜
i  及び零相変圧器GPTの2次出力である線問電圧
 ■a−b、 b−c、■  と零相電圧V。
In other words, FIG. 1 shows the ground fault direction detection relays 67G11 to 67G22 provided at both ends of each power transmission line in FIG. 6 and the zero-phase current transformer ZCT11. ZCT
21. Omit the grounding transformer GTR, and instead provide a ground fault detection device GFD only on the load side, and use the zero-phase current transformer ZCT.
The zero-sequence current '012゜i which is the secondary output of 12°ZCT22, the line voltage (a-b, b-c, and ■) which is the secondary output of the zero-phase transformer GPT, and the zero-sequence voltage V.

■c−a を入力するように構成したものである。■c-a It is configured to input.

第2図は前記地絡検出装置GFDの構成を示す機能ブロ
ック図である。図において1は本装置のサンプリング周
期を与えるクロックで、このクロック1からのパルス1
1をきっかけにして下記の処理が行なわれる。第3図は
その処理動作を示したものである。以下第2図、第3図
を参照して説明する。
FIG. 2 is a functional block diagram showing the configuration of the ground fault detection device GFD. In the figure, 1 is a clock that provides the sampling period of this device, and pulse 1 from this clock 1
1, the following processing is performed. FIG. 3 shows the processing operation. This will be explained below with reference to FIGS. 2 and 3.

まず、クロックからパルス11が発せられると、判別手
段2、抽出手段3,4はそれぞれ各線間電圧、零相電圧
、零相電流を入力する(102)。
First, when the pulse 11 is emitted from the clock, the determining means 2 and the extracting means 3 and 4 input each line voltage, zero-sequence voltage, and zero-sequence current (102).

抽出手段3はi。1の各線間電圧方向成分を抽出するも
ので、零相電流i  と線間電圧va−b。
The extraction means 3 is i. 1, which extracts each line voltage direction component, zero-sequence current i and line voltage va-b.

vb−co ■  を入力し、零相電流i  を線間C
−a                   012電
圧va−b、 b−c、vc−aの方向成分に分解し、
■ 各分解した成分と各線l11M!圧の位相差がOoのと
き正符号を、1800のとき負符号を付した大きさと符
号を持った各々’ 01a−b ” 01b−C’’ 
01C−aに変換する(104)。例えば零相電流i 
 と各線間電圧の関係が第4図に示すように■a−bと
vb−cの間の位相を持つのであれば、零相電流i  
はi′ 012   01a−bで表わされる大きさと正符号を
持ったi   と11 01a−b    01b−cで表わされる大きさと正
符号を持ったi   とi′01b−c    01C
−a で表わされる大きさと負符号を持ったi   と1C−
a に分解される。
Input vb-co ■ and change the zero-sequence current i to the line C
-a 012 Decomposed into directional components of voltage va-b, b-c, vc-a,
■ Each decomposed component and each line l11M! ' 01a-b ''01b-C'' with a positive sign when the pressure phase difference is Oo and a negative sign when it is 1800.
01C-a (104). For example, zero-sequence current i
If the relationship between and each line voltage has a phase between a-b and vb-c as shown in Figure 4, then the zero-sequence current i
is i' 012 01a-b with magnitude and positive sign and 11 01a-b 01b-c with magnitude and positive sign i'01b-c 01C
i with magnitude represented by -a and negative sign and 1C-
It is decomposed into a.

抽出手段4は、1  の各線間電圧方向成分を抽出する
もので、零相電流i  と各線間電圧を人力し、抽出手
段3と同様な処理を行ない零相電流i  を’ 02a
−b ・’ 02b−c ・’ 02cmaに分解する
(104)。
The extraction means 4 extracts each line voltage direction component of 1. It manually inputs the zero-sequence current i and each line-to-line voltage, performs the same processing as the extraction means 3, and extracts the zero-sequence current i '02a.
-b・'02b-c・'02cma (104).

判別手段2は上記線間電圧■a−b 、vb−c 、’
The determining means 2 uses the line voltages ■a-b, vb-c,'
.

vc−aと零相電圧v0に基づいて地絡事故発生と地絡
相を判別する(106,110)。地絡相の判別は、線
間電圧va−b 、■b−c 、■c−aの位相と零相
電圧V。の位相とを比較することによって行なう。即ち
、第5図に示すように、零相電圧V□の位相が、a、b
、cのいずれの範囲にあるかに応じて、地絡相がC相、
b相、C相であるとの判断をする。このような方法で地
絡相の判別ができるのは次の理由による。即ち、健全時
のa。
The occurrence of a ground fault accident and the ground fault phase are determined based on vc-a and zero-phase voltage v0 (106, 110). The ground fault phase can be determined by the phases of the line voltages va-b, b-c, and c-a and the zero-sequence voltage V. This is done by comparing the phase of That is, as shown in FIG. 5, the phase of the zero-phase voltage V□ is a, b
, c, the ground fault phase is the C phase,
It is determined that the phase is B phase or C phase. The reason why the ground fault phase can be determined using this method is as follows. That is, a when healthy.

b、cの各相電圧V a 、V b、V cは、第5図
のa−b   b−c、■c−aより、時計方向に30
゜■    、 ■ 回転した位1 v a  、v b” −v c  に
ある。従って、その位置v  ”、v  ”、v、”を
中心とa       b してそれぞれ両方向に60°ずつの範囲内にあれば、そ
れぞれ零相電圧V。は健全時の相電圧v  ” 、 V
b ” 、 vC” k−1)モ近<、マタ地絡ニよる
位相変化が60°以上に及ぶことは実際にはまずあり得
ないから、a、b、cのいずれの範囲にあるかに応じて
a、b、Cの相に地絡が発生したと判定してもまず間違
いはないのである。
Each phase voltage V a , V b , V c of b, c is 30° clockwise from a-b b-c, c-a in Fig. 5.
゜■ , ■ It is at the rotated position 1 v a , v b '' - v c . Therefore, within a range of 60 degrees in both directions with the center a b at the position v '', v '', v,'' If so, the zero-sequence voltage V. is the phase voltage v”, V
b ”, vC” k-1) Since it is virtually impossible for the phase change due to a near ground fault to exceed 60 degrees, it is difficult to determine whether the phase change is in the range a, b, or c. Accordingly, there is no error in determining that a ground fault has occurred in phases a, b, and c.

判別手段2は事故発生を判別したときはパルス出力21
と地絡相を示すデータ22を除去手段6に出力し、事故
発生が判別されなかったときパルス出力23を記憶手段
5に出力する。記憶手段5は、判別手段2からのパルス
23で動作し、即ち地絡事故が発生していないときに動
作し、各サンプリング周期毎に抽出手段3.4の出力、
即ち抽出手段3,4で分解された零相電流成分を零相循
環電流の各線間電圧成分’ fl 1a−b、’ j)
 1b−c。
When the determination means 2 determines that an accident has occurred, it outputs a pulse 21.
and data 22 indicating the ground fault phase are outputted to the removal means 6, and when the occurrence of an accident is not determined, a pulse output 23 is outputted to the storage means 5. The storage means 5 operates on the pulse 23 from the discriminating means 2, that is, when no ground fault has occurred, and stores the output of the extraction means 3.4 at each sampling period.
That is, the zero-sequence current components decomposed by the extraction means 3 and 4 are divided into the line voltage components of the zero-sequence circulating current.
1b-c.

’ j 1cma及び’ M 2a−b−’ fJ2b
−c−’ j! 2cmaとして記憶する(108)。
' j 1 cma and ' M 2a-b-' fJ2b
-c-' j! It is stored as 2 cma (108).

除去手段6は零相循環電流の影響を除去するためのもの
で、除去手段6は判別手段2からのパルス人力21で動
作し、っまり地絡事故発生時に動作し、判別手段2がら
入力した地絡相22をもとにして、抽出手段3.4から
出力さる零相電流成分の地絡相に対応する成分から、1
サンプリング周期前に記憶手段5で記憶した零相循環電
流成分の地絡相に対応する成分を差し引いて、零相循環
電流の影響を除去した地絡事故電流の地絡相に対応した
地絡事故電流成分’f1及び’ f2を判定出力手段7
に出力する(112)。例えば地絡相がC相であれば、
’flはi。1.−すから’ 11a−bを差し引いた
ものに成り、’ f2は’ 02a−bから’ 412
a−bを差し引いたものになる。またb相であれば’f
1は’ 01b−cがら’ j Ib−6を差し引いた
ものになり=f2は’ 02b−Cから’ II 2b
−cを差し引いたものになる。
The removing means 6 is for removing the influence of the zero-phase circulating current, and the removing means 6 is operated by the pulse human power 21 from the determining means 2. Based on the ground fault phase 22, 1 is extracted from the component corresponding to the ground fault phase of the zero-sequence current component output from the extraction means 3.4.
A ground fault fault corresponding to the ground fault phase of the ground fault current obtained by subtracting the component corresponding to the ground fault phase of the zero-sequence circulating current component stored in the storage means 5 before the sampling period to remove the influence of the zero-sequence circulating current. Output means 7 for determining current components 'f1 and' f2
(112). For example, if the ground fault phase is C phase,
'fl is i. 1. - from '11a-b,' f2 is '02a-b from' 412
It is obtained by subtracting a-b. Also, if it is in phase b, 'f
1 is '01b-c minus' j Ib-6 = f2 is '02b-C to' II 2b
-c is subtracted.

同様にC相であれば、’ flは’ 01e−aからi
ρ1cmaを差し引いたものになり=f2は’ 02c
maから’ 12cmaを差し引いたもになる。
Similarly, if it is C phase, 'fl is '01e-a to i
ρ1cma is subtracted = f2 is ' 02c
It is calculated by subtracting 12 cm from ma.

判定出力手段7は除去手段6からの地絡相に対応した地
絡事故電流成分i 、i がら地絡事故fl    f
2 発生回線を判別しく114)、判別した回線をしゃ断す
る信号を出力する(116,118)。例えば’flが
正でかつ’ f2が負ならば地絡事故発生回線をLlと
判別し、’f1が負でかつ’ f2が正ならば地絡事故
発生回線をし2と判別し、前者の場合CB11.0B1
2へのトリップ信号01゜02を出力しく116)、後
者の場合CB21゜CB22へのトリップ信号03,0
4を出力する(118)。
The judgment output means 7 detects the ground fault current components i and i corresponding to the ground fault phase from the removal means 6.
2. Determine the line where the occurrence occurs (114), and output a signal to cut off the determined line (116, 118). For example, if 'fl is positive and' f2 is negative, the line where the ground fault occurred is determined to be Ll, and if 'f1 is negative and' f2 is positive, the line where the ground fault occurred is determined to be L1, and the former Case CB11.0B1
116), in the latter case, the trip signals 03,0 to CB21°CB22 should be output.
4 is output (118).

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、零相循環電流の影響を除
去した本来の地絡事故電流をもとに地絡事故判定を行な
うこととしたので、保護装置の誤動作、誤不動作がなく
なる。また送電線の負荷側の保護装置だけで事故回線の
判定ができるので、送電側の保護装置を省略することが
できる。さらに送電線上の事故発生場所によって各々の
送電線に分流する零相電流の比が変化しても、送電線の
地絡事故検出を確実に行なうことができる。さらにまた
装置の縮小化、省力化が可能となる。
As described above, according to the present invention, since the ground fault fault judgment is made based on the original ground fault fault current from which the influence of the zero-sequence circulating current has been removed, malfunction or malfunction of the protective device is eliminated. . Furthermore, since faulty lines can be determined only by the protection device on the load side of the power transmission line, the protection device on the power transmission side can be omitted. Furthermore, even if the ratio of zero-sequence currents that are divided into each power transmission line changes depending on the location on the power transmission line where the accident occurs, it is possible to reliably detect a ground fault accident in the power transmission line. Furthermore, it is possible to downsize the device and save labor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例による地絡検出系統図、第2図
は本発明の一実施例を示すブロック図、第3図は本発明
の一実施例における処理動作を示すフローチャート、第
4図は零相電流と各線間電圧の関係を示すベクトル図、
第5図は地絡相と線間電圧の位相関係を示すベクトル図
、第6図は従来の地絡検出系統図、第7図は従来の地絡
検出回路を示す図である。 1・・・り0ツク、2・・・判別手段、3.4・・・抽
出手段、5・・・記憶手段、6・・・除去手段、7・・
・判定出力手段。 出願人代理人  猪  股    清 第2図 第4図 第5図 第e1図
FIG. 1 is a ground fault detection system diagram according to an embodiment of the present invention, FIG. 2 is a block diagram showing an embodiment of the present invention, FIG. 3 is a flowchart showing processing operations in an embodiment of the present invention, and FIG. The figure is a vector diagram showing the relationship between zero-sequence current and each line voltage,
FIG. 5 is a vector diagram showing the phase relationship between the ground fault phase and line voltage, FIG. 6 is a conventional ground fault detection system diagram, and FIG. 7 is a diagram showing a conventional ground fault detection circuit. DESCRIPTION OF SYMBOLS 1... Ri0tsuku, 2... Discrimination means, 3.4... Extraction means, 5... Storage means, 6... Removal means, 7...
・Judgment output means. Applicant's agent Kiyoshi Inomata Figure 2 Figure 4 Figure 5 Figure e1

Claims (1)

【特許請求の範囲】[Claims] 各回線の負荷側に零相変流器及び零相変圧器を備えた系
統の地絡検出装置に於いて、各線間電圧と零相電圧及び
各零相変流器からの零相電流を用いて零相電流を各線間
電圧の方向成分に分解する手段と、零相電圧により地絡
事故発生を判別する手段と、地絡事故発生前の前記零相
電流の各成分を零相循環電流の各成分として記憶する手
段と、地絡事故発生時に零相電圧と各線間電圧から地絡
事故相を判別する手段と、地絡事故時の零相電流の地絡
事故相に対応した成分から記憶した地絡事故前の地絡事
故相に対応した零相循環電流の成分を差し引くことによ
り零相循環電流の影響を除去した地絡事故電流の地絡事
故相に対応した成分を得る手段と、その地絡事故電流成
分の方向を判別する手段と、判別した地絡事故電流成分
の方向から地絡事故発生回線を判別する手段とを備えた
平行二回線系統の地絡検出装置。
In a ground fault detection device for a system equipped with a zero-phase current transformer and a zero-phase transformer on the load side of each line, each line voltage, zero-phase voltage, and zero-phase current from each zero-phase current transformer are used. means for decomposing the zero-sequence current into directional components of each line voltage; means for determining the occurrence of a ground fault based on the zero-sequence voltage; A means for storing each component, a means for determining the ground fault phase from the zero-sequence voltage and each line voltage when a ground fault occurs, and a means for storing the components of the zero-sequence current corresponding to the ground fault phase at the time of a ground fault. means for obtaining a component of the ground fault fault current corresponding to the ground fault fault phase from which the influence of the zero-sequence circulating current has been removed by subtracting the component of the zero-sequence circulating current corresponding to the ground fault fault phase before the ground fault fault; A ground fault detection device for a parallel two-line system, comprising means for determining the direction of the ground fault current component and means for determining the line in which the ground fault has occurred from the determined direction of the ground fault current component.
JP5984985A 1985-03-25 1985-03-25 Ground fault detector for parallel two-channel system Pending JPS61221518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5984985A JPS61221518A (en) 1985-03-25 1985-03-25 Ground fault detector for parallel two-channel system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5984985A JPS61221518A (en) 1985-03-25 1985-03-25 Ground fault detector for parallel two-channel system

Publications (1)

Publication Number Publication Date
JPS61221518A true JPS61221518A (en) 1986-10-01

Family

ID=13125054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5984985A Pending JPS61221518A (en) 1985-03-25 1985-03-25 Ground fault detector for parallel two-channel system

Country Status (1)

Country Link
JP (1) JPS61221518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234826A (en) * 1987-03-18 1988-09-30 日新電機株式会社 Protective device of power system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234826A (en) * 1987-03-18 1988-09-30 日新電機株式会社 Protective device of power system

Similar Documents

Publication Publication Date Title
US6442010B1 (en) Differential protective relay for electrical buses with improved immunity to saturation of current transformers
JPS61221518A (en) Ground fault detector for parallel two-channel system
JPH01190215A (en) Phase selector
JP3028179B2 (en) Bidirectional protective relay system and bidirectional protective distance relay in electric line
JPH0442726A (en) Ground fault indicator for distribution line
JPH0510516Y2 (en)
JPS6285636A (en) Grounding protecting system
JP2009022063A (en) Power transmission line protection system, and protection relay device
JP2916148B2 (en) Line selection relay
JPS62110432A (en) Protective relay
JPH02266817A (en) Power system-protective relay
JP2001177977A (en) Digital protective relay
JPH0112510Y2 (en)
JPH0243411B2 (en)
JP3940492B2 (en) Digital type protective relay
JPS6026414A (en) Ground-fault direction protecting relaying device
JPS5932973B2 (en) Multi-line ground fault protection device
JPS62272818A (en) Bus-bar protective relay
JPH0210654B2 (en)
JPH04236124A (en) Method for detecting small ground fault of high-voltage distribution line
JP2005051860A (en) Protection relay system
JPS63186522A (en) Grounding protective relay
JPS60167625A (en) Excitation rush current detecting method
JPH0125295B2 (en)
JPH0322822A (en) Digital bus protective relay