JPS6122149B2 - - Google Patents

Info

Publication number
JPS6122149B2
JPS6122149B2 JP51153255A JP15325576A JPS6122149B2 JP S6122149 B2 JPS6122149 B2 JP S6122149B2 JP 51153255 A JP51153255 A JP 51153255A JP 15325576 A JP15325576 A JP 15325576A JP S6122149 B2 JPS6122149 B2 JP S6122149B2
Authority
JP
Japan
Prior art keywords
water level
pumps
pump
repetition period
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51153255A
Other languages
Japanese (ja)
Other versions
JPS5377302A (en
Inventor
Shinzo Iyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamoto Pump Mfg Co Ltd
Original Assignee
Kawamoto Pump Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamoto Pump Mfg Co Ltd filed Critical Kawamoto Pump Mfg Co Ltd
Priority to JP15325576A priority Critical patent/JPS5377302A/en
Publication of JPS5377302A publication Critical patent/JPS5377302A/en
Publication of JPS6122149B2 publication Critical patent/JPS6122149B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、水槽の水位変動に応じて上記水槽に
給水する複数台のポンプの運転台数を自動的に選
択するポンプの運転台数制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for controlling the number of operating pumps that automatically selects the number of operating pumps that supply water to an aquarium in accordance with fluctuations in the water level of the aquarium.

〔発明の技術的背景〕[Technical background of the invention]

各種の建築物、特に中高層建築物等において
は、一般に地下などに設けられる1次水槽と、屋
上などに設けられる2次水槽と、上記1次水槽か
ら2次水槽に給水するための複数台のポンプを備
えており、これらポンプの運転台数を増減するこ
とにより2次水槽に対する給水量を可変制御する
ようにした給水系が多く用いられている。この種
の給水系においてポンプの運転台数を自動的に選
択制御する場合、従来は2次水槽にポンプ台数に
対応する複数段の水位を設定し、水槽水位が最下
段未満のときには全ポンプを運転するとともに、
水位が一段上昇するごとにポンプを1台づつ停止
し、最上段以上になつたときには全部を停止さ
せ、また反対に、水位が低下する場合には、水位
が1段低下するごとにポンプを1台づつを起動す
るようにしていた。このような従来方法において
は、ポンプ台数が多くなるほど多段の設定のため
に2次水槽が大容量となり、かつ検出端を含む制
御装置の構造が複雑となるので、設備費用が高額
になり、かつ保守上にも不利な的が多い。しかも
高水位に体応するポンプほど稼動時間が長くなる
ため、駆動機構を含むポンプ装置の寿命が不均等
になるという難点がある。
In various buildings, especially mid-to-high-rise buildings, there are generally a primary water tank installed underground, a secondary water tank installed on the rooftop, and multiple water tanks to supply water from the primary tank to the secondary tank. Water supply systems that are equipped with pumps and that variably control the amount of water supplied to a secondary water tank by increasing or decreasing the number of these pumps in operation are often used. When automatically selecting and controlling the number of operating pumps in this type of water supply system, conventionally, multiple levels of water levels corresponding to the number of pumps are set in the secondary water tank, and all pumps are operated when the water tank water level is below the lowest level. At the same time,
Each time the water level rises, one pump is stopped, and when the water level reaches the top level, all pumps are stopped. Conversely, when the water level drops, one pump is stopped each time the water level drops one step. I was trying to start each one one by one. In such conventional methods, as the number of pumps increases, the capacity of the secondary water tank increases due to multi-stage settings, and the structure of the control device including the detection end becomes complicated, resulting in high equipment costs and There are many targets that are disadvantageous in terms of maintenance. Moreover, the longer the pump is able to handle a high water level, the longer it takes to operate, resulting in an uneven lifespan of the pump device including the drive mechanism.

これに対し、一定の繰り返し周期ごとに水槽の
水位を検出し、所定の高水位を越える場合には運
転中のポンプを1台停止させ、また所定の低水位
を下まわる場合には停止中のポンプを1台起動さ
せるようなポンプの運転方法が考えられる。この
ようなポンプの運転方法についてさらに説明する
と、 一般に2次水槽の単位時間当り流出水量QC
不定であり、また各ポンプの単位時間当り吐出量
qが同一であるとすれば水槽に対する単位時間当
り給水量n.qはポンプの運転台数nにより段階的
に変動する。したがつてn.q=Qcの関係が成立す
る台数nを設定し得るような場合は殆んどなく、
ポンプを1台づつ増減する場合は一般に n.q′>Qc>(n−1).q の関係が成立しているときこの給水系が準安定状
態にあるといえる。このような準安定状態におい
ては、水槽の断面積が一定であるとすれば、n台
運転の場合の水位上昇率が(n.q−Qc)に比例
し、(n−1)台運転の場合の水位降下率が{QC
−(n−1・q}に比例する。したがつてn台運
転の時間t0および(n−1)台運転の時間t1を、 ∫t0 (n・q−Qc)・dt =∫t1 {Qc−(n−1)・q}・dt……(1) が成立するように設定すれば平均水位を一定に維
持することができ、また時間t0,t1を短かくする
ほど水位変動幅を小さくすることができる。しか
し、上述したように単位時間当りの流出量Qc
一般に不定であるから、時間t0,t1を予め設定し
ておくことは不可能である。
In contrast, the water level in the aquarium is detected at regular repeating intervals, and if the water level exceeds a predetermined high water level, one pump in operation is stopped, and if the water level falls below a predetermined low water level, one of the pumps in operation is stopped. A possible pump operating method is to start one pump. To further explain how to operate such a pump, in general, the amount of water flowing out of the secondary water tank per unit time Q C is undefined, and if the discharge amount q per unit time of each pump is the same, then the amount of water flowing out per unit time from the water tank is The amount of water supplied per unit nq varies in stages depending on the number n of pumps in operation. Therefore, there are almost no cases where it is possible to set the number n for which the relationship nq = Q c holds;
When increasing or decreasing the number of pumps one by one, generally nq'> Q c > (n-1). When the relationship q holds true, this water supply system can be said to be in a metastable state. In such a quasi-stable state, if the cross-sectional area of the water tank is constant, the water level rise rate when n units are operated is proportional to (nq - Q c ), and when (n-1) units are operated The rate of water level decline is {Q C
-(n-1・q}. Therefore, the time t 0 for n units operation and the time t 1 for (n-1) units operation are ∫ t0 0 (n・q−Q c )・dt = If the setting is made so that ∫ t1 0 {Q c - (n-1)・q}・dt...(1) holds true, the average water level can be maintained constant, and the times t 0 and t 1 can be shortened. In this way, the range of water level fluctuation can be made smaller. However, as mentioned above, the outflow amount Q c per unit time is generally indefinite, so it is impossible to set the times t 0 and t 1 in advance. It is.

そこで、所定の高、低両水位を基準とし、ポン
プの運転台数nを所定の繰返し周期Tごとに1台
づつの割合で増減することにより、上記高、低両
水位において上記式(1)が最大誤差T.qの範囲内で
近似的に成立するようにすることができる。
Therefore, by using the predetermined high and low water levels as a reference, and increasing or decreasing the number of operating pumps n by one per predetermined repetition period T, the above formula (1) can be established at both the high and low water levels. It can be made to approximately hold within the range of the maximum error Tq.

このようなポンプの運転台数制御方法によれ
ば、所定の繰り返し周期Tを短かく設定すればポ
ンプの起動、停止の即応性を高めることができ、
かつポンプの起動、停止の順番を、最初に停止ま
たは起動したものから始めるようにすれば、特定
のポンプのみを稼動するような片寄り運転が防止
できることになる。
According to such a method of controlling the number of operating pumps, by setting the predetermined repetition period T short, it is possible to improve the responsiveness of starting and stopping the pumps,
In addition, if the order of starting and stopping the pumps is made to start from the one that is stopped or started first, it is possible to prevent unbalanced operation in which only a specific pump is operated.

〔背景技術の問題点〕[Problems with background technology]

しかしながら上記のように、繰り返し周期Tを
短かくしてポンプの起動、停止の応答性を高めた
場合、水槽の水位が高水位および低水位に近づい
た場合水面の波動(ノイズ)を拾つてポンプが起
動、停止され、いわゆるチヤタリング等の誤作動
をする惧れがある。またこのようなチヤタリング
等の誤動作を防止するため周期を長くすると、逆
にポンプ起動、停止の応答性が遅くなる欠点を生
じる。
However, as mentioned above, if the repetition period T is shortened to improve the responsiveness of starting and stopping the pump, when the water level of the aquarium approaches the high water level or low water level, the pump will pick up the waves (noise) on the water surface and start the pump. , and there is a risk of malfunctions such as so-called chattering. Furthermore, if the cycle is lengthened in order to prevent such malfunctions such as chattering, there is a drawback that the responsiveness of starting and stopping the pump becomes slow.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情にもとづきなされたもの
で、その目的とするところは、水槽の水位変動に
順応して適正な運転台数を自動的に選択でき、ポ
ンプの起動、停止の即応性を高めるとともに、波
動等により誤作動することのないポンプに運転台
数制御方法を提供しようとするものである。
The present invention has been made based on the above-mentioned circumstances, and its purpose is to automatically select the appropriate number of pumps to operate in response to fluctuations in the water level of the aquarium, improve the responsiveness of starting and stopping pumps, and This paper attempts to provide a method for controlling the number of operating pumps that will not malfunction due to waves or the like.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するため、前述した所
定の繰返し周期ごとにその繰返し周期をこえない
範囲でサンプリング時間を設定し、上記サンプリ
ング時間内で、上記高水位および低水位に対応す
る各水位検出手段の出力信号をそれぞれ時間積分
した各積分値と、予め設定したしきい値とをそれ
ぞれ比較して、上記水槽の水位を判別し、かつ上
記サンプリング時間内で上記各水位検出手段の出
力信号を連続する2繰返し周期についてそれぞれ
記憶する記憶手段を設け、上記2繰返し周期にお
いて上記水槽の水位が上記水位以上に転じた場合
には上記比較判別に拘らず上記記憶手段により運
転中のポンプを1台停止させ、かつ上記低水位以
下に転じた場合には同じく上記比較判別に拘らず
上記記憶手段により停止中のポンプを1台起動さ
せるようにしたことを特徴とする。
In order to achieve the above object, the present invention sets a sampling time within a range that does not exceed the above-mentioned predetermined repetition period for each predetermined repetition period, and detects each water level corresponding to the high water level and low water level within the above sampling time. The water level of the water tank is determined by comparing each integral value obtained by time-integrating the output signal of the means with a preset threshold value, and the output signal of each of the water level detection means is detected within the sampling time. A storage means is provided to store each of two successive repetition periods, and when the water level of the water tank changes to above the water level in the two repetition periods, the storage means stores only one pump in operation regardless of the comparison and discrimination. When the pump is stopped and the water level changes to below the above-mentioned low water level, one of the stopped pumps is started by the above-mentioned storage means, regardless of the above-mentioned comparative determination.

上記記憶手段を設けることにより、この記憶手
段で水位の変動方向を見極めるようにし、このこ
とから周期時間を短かくしてもチヤタリング等の
誤作動が防止され、周期が短かくなる分応答性の
向上を可能とするものである。
By providing the above storage means, the direction of water level fluctuation can be determined using this storage means, and as a result, malfunctions such as chattering can be prevented even if the cycle time is shortened, and responsiveness can be improved as the cycle time is shortened. It is possible.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の一実施例について説明す
る。第1図において、1は1次水槽、2は2次水
槽、3は流入管、4は流出管、5および6は高水
位および低水位検出器、P1,P2……PNは給水用
のポンプである。上記2次水槽(以下単に水槽と
いう)2には高水位Hおよび低水位Lが設定され
ており、高水位H以上の領域を過給域、低水位L
未満の領域を不足域、これらの中間領域を中間域
と呼ぶことにする。上記検出器5,6は、上記
高、低両水位H,Lにそれぞれ位置された検出端
7,8を備え、水槽2の水位aがこれら検出端
7,8以上であるとき所定の出力信号(たとえば
ON信号)を発生するように構成されている。上
記ポンプP1〜PNは、それぞれ独立して単独運転
可能に電動機等の駆動源に連結されている。
Hereinafter, the present invention will be described with reference to an illustrated embodiment. In Fig. 1, 1 is the primary water tank, 2 is the secondary water tank, 3 is the inflow pipe, 4 is the outflow pipe, 5 and 6 are high water level and low water level detectors, P 1 , P 2 ...P N is the water supply It is a pump for A high water level H and a low water level L are set in the secondary water tank (hereinafter simply referred to as water tank) 2, and the area above the high water level H is defined as a supercharging area, and the low water level L
The area below this will be called the insufficient area, and the area between these will be called the intermediate area. The detectors 5 and 6 are equipped with detection ends 7 and 8 located at the high and low water levels H and L, respectively, and when the water level a of the water tank 2 is equal to or higher than these detection ends 7 and 8, a predetermined output signal is output. (for example
ON signal). The pumps P 1 to P N are each connected to a drive source such as an electric motor so that they can operate independently.

上記検出器5,6の各出力は、第2図に示すよ
うに、処理装置10に含まれた判別回路11,1
2および記憶器13,14を介して変台ロジツク
回路15に導かれ、上記変台ロジツク回路15の
出力は演算器16および分配器17を介して上記
ポンプP1〜PNの各制御部(図示略)に導かれて
いる。また上記処理装置10には、クロツク18
からのクロツクパルス信号がタイミング設定器1
9を介して供給され、所定の繰返し周期Tごとに
所定のサンプリング時間t(tT)が設定され
るように構成されている。上記演算器16および
分配器17には運転条件判定回路20が接続され
ている。この条件判定回路20には、自動/手動
別の制御モード情報、故障または定期点検等のた
め休止中のポンプの識別情報などが入力されてお
り、要すれば上記1次水槽1の水位情報その他、
上記水槽2の水位以外に、ポンプの運転に影響を
与える所定の各種情報が入力される。各ポンプの
起動、停止を手動制御する場合には、条件判定回
路20からの信号により演算器16の出力信号が
遮断され、分配器17を介し、または介さずに各
ポンプの制御部の制御が行なわれる。また休止中
のポンプがある場合には、条件判定回路20から
の信号により、運転可能なポンプのみが選択され
るように構成されている。
As shown in FIG.
2 and memory devices 13 and 14 to a changeover logic circuit 15, and the output of the changeover logic circuit 15 is sent to each control section ( (not shown). The processing device 10 also includes a clock 18.
The clock pulse signal from the timing setter 1
9, and a predetermined sampling time t(tT) is set for each predetermined repetition period T. An operating condition determination circuit 20 is connected to the arithmetic unit 16 and distributor 17. The condition determination circuit 20 is inputted with automatic/manual control mode information, identification information of pumps that are out of service due to failure or periodic inspection, etc., and if necessary, water level information of the primary water tank 1, etc. ,
In addition to the water level of the water tank 2, various predetermined information that affects the operation of the pump is input. When manually controlling the start and stop of each pump, the output signal of the calculator 16 is cut off by the signal from the condition determination circuit 20, and the control section of each pump is controlled with or without the distributor 17. It is done. Furthermore, if there is a pump that is inactive, only the operable pumps are selected based on a signal from the condition determination circuit 20.

上記一方の判定回路11は、図示しないが、上
記周期Tごとにサンプリング時間t内で検出器5
が水位「有」の出力信号が供給された時間を積算
する積分器と、この積分器の積算値を、たとえば
サンプリング時間tの1/2等に設定されたしきい
値と比較する比較器とを備えている。また他方の
判別回路12は、図示しないが上記一方の判別回
路11とほぼ同様に、周期Tごとにサンプリング
時間t内で検出器6が水位「無」を出力した時間
を積分する積分器と、この積分器の積分値と、上
記と同様なしきい値とを比較する比較器を備えて
いる。上記記憶器13はたとえばシフトレジスタ
などを備え、検出器5が水位「有」または「無」
出力信号を出した瞬間があつたことを最近の2繰
返し周期について記憶するように構成されてい
る。また記憶器14は記憶器13とほぼ同様に構
成され、検出器6が水位「無」または「有」の出
力信号を出した瞬間があつたことを最近の2繰返
し周期について記憶するように構成されている。
これら各記憶器13,14はそれぞれの記憶内容
を変台ロジツク回路15へ送出している。
Although not shown, the one judgment circuit 11 detects the detector 5 within the sampling time t every period T.
an integrator that integrates the time during which an output signal indicating that the water level is "present" is supplied, and a comparator that compares the integrated value of this integrator with a threshold value set to, for example, 1/2 of the sampling time t. It is equipped with Although not shown, the other discrimination circuit 12 includes an integrator that integrates the time during which the water level is "absent" from the detector 6 within the sampling time t for each period T, in substantially the same way as the one discrimination circuit 11 described above. A comparator is provided to compare the integrated value of this integrator with a threshold value similar to that described above. The storage unit 13 includes, for example, a shift register, and the detector 5 indicates whether the water level is "present" or "absent".
It is configured to memorize the moment at which the output signal was issued for the most recent two repetition cycles. Further, the memory 14 is configured in substantially the same manner as the memory 13, and is configured to memorize the moment when the detector 6 outputs an output signal indicating that the water level is "absent" or "present" for two recent repeat cycles. has been done.
Each of these storage devices 13 and 14 sends out their respective stored contents to a variable logic circuit 15.

上記変台ロジツク回路15は、判別回路11,
12および記憶器13,14の各出力信号に応じ
て水位を判定し、演算器16に減算、加算または
現状維持等の指令信号を送出する。
The above-mentioned changeable logic circuit 15 includes a discriminating circuit 11,
The water level is determined according to each output signal of the memory device 12 and the memory devices 13 and 14, and a command signal for subtraction, addition, or maintaining the current state is sent to the arithmetic unit 16.

演算器16は、変台ロジツク回路15および運
転条件判定回路20の出力信号に応じて1繰返し
周期Tごとに1台づつの割合でポンプの運転台数
を増台、減台または現状維持の指令信号を送出す
る。
The arithmetic unit 16 generates a command signal to increase or decrease the number of pumps in operation at a rate of one pump per repetition period T, or to maintain the status quo, according to the output signals of the variable logic circuit 15 and the operating condition determination circuit 20. Send out.

分配器17は運転中の各ポンプの起動順序と、
待機中の各ポンプの停止順序とを記憶する記憶器
を備え、増台する場合には上記停止順序に従い、
減台する場合には上記起動順序に従つて、それぞ
れ起動および停止させるポンプを選択するように
構成されている。
The distributor 17 determines the starting order of each pump during operation,
It is equipped with a storage device that stores the stop order of each pump on standby, and when adding more pumps, the above stop order is followed.
When the number of pumps is reduced, the pumps to be started and stopped are selected according to the above-mentioned starting order.

なお、上述のように起動順序および停止順序を
記憶する代りに、全ポンプの個別総稼動時間を記
憶させておき、これら個別総稼動時間の多少に応
じて起動、停止を選別するようにしてもよい。
In addition, instead of storing the start order and stop order as described above, the individual total operating times of all pumps may be stored, and starting and stopping may be selected depending on the individual total operating times. good.

また、図面には省略したが、たとえば上記1次
水槽1に設けられる水位検出器、上記水槽2に設
けられる異常水位検出器、これら検出器および上
記検出器5,6等と連係する水位表示器、異常警
報器、その他の各種機器および付属施設等は、そ
れぞれ必要に応じて設けられる。
Although not shown in the drawings, for example, a water level detector provided in the primary water tank 1, an abnormal water level detector provided in the water tank 2, and a water level indicator linked to these detectors and the detectors 5, 6, etc. , abnormality alarms, other various equipment, and auxiliary facilities will be installed as necessary.

このような構成によりポンプの運転台数を制御
する方法について説明する。
A method of controlling the number of operating pumps using such a configuration will be explained.

いま、水槽2の水位aが第3図に示す周期に
おけるように高水位Hと低水位Lの中間域にあ
り、ポンプP1〜PNのうちn台が運転状態にある
ものとする。この状態においては、水位aが上位
検出端7に達していないので、検出器5の出力信
号bは連続して水位「無」であり、判別回路11
における積算値(第1積算値という)dが各繰返
し周期Tごとに高水位に対するしきい値(第1し
きい値という)v1未満であるから、判別回路11
の出力信号も水位「無」である。またこのとき、
記憶器13にあつては、繰返し周期の状態を水
位「無」と記憶する。一方下位検出端8は水面下
にあるので検出器6の出力信号cは連続して水位
「有」であり、判別回路12における積算値(第
2積算値という)eは繰返し周期Tごとに低水位
に対するしきい値(第2しきい値という)v2以下
であるから、判別回路12の出力信号も水位
「有」である。また記憶器14にあつても周期
の状態を水位「有」と記憶する。したがつて変台
ロジツク回路15は、判別回路11および記憶器
13の各出力信号が上述のように水位「無」であ
り、かつ判別回路12および記憶器14の各出力
信号が水位「有」である場合には、水槽2の水位
aが上記中間域にあるものと判定し、演算器16
に対し加算および減算のいずれの指令信号をも送
出しない。したがつてn台のポンプはそのまま運
転を継続している。
It is now assumed that the water level a of the water tank 2 is in the intermediate range between the high water level H and the low water level L as shown in the cycle shown in FIG. 3, and n units of pumps P 1 to P N are in operation. In this state, since the water level a has not reached the upper detection terminal 7, the output signal b of the detector 5 is continuously "absent" at the water level, and the discrimination circuit 11
Since the integrated value (referred to as the first integrated value) d is less than the threshold value (referred to as the first threshold value) v 1 for the high water level for each repetition period T, the discrimination circuit 11
The output signal of the water level is also "no". Also at this time,
In the storage device 13, the state of the repetition period is stored as water level "absent". On the other hand, since the lower detection end 8 is under the water surface, the output signal c of the detector 6 is continuously "present" at the water level, and the integrated value (referred to as the second integrated value) e in the discrimination circuit 12 decreases every repetition period T. Since the threshold value (referred to as the second threshold value) for the water level is less than v2 , the output signal of the discrimination circuit 12 also indicates that the water level is "present". Further, even in the storage device 14, the state of the cycle is stored as water level "present". Therefore, in the changeable logic circuit 15, each output signal of the discrimination circuit 11 and the memory 13 indicates that the water level is "absent" as described above, and each output signal of the discrimination circuit 12 and the memory 14 indicates that the water level is "present". If so, it is determined that the water level a of the water tank 2 is in the above intermediate range, and the arithmetic unit 16
Neither addition nor subtraction command signals are sent to. Therefore, n pumps continue to operate as they are.

流出管4からの流出量が減少して水位aが上昇
し、水面が検出端7に近づくと、水面には一般に
波動が存在しているので、検出端7は間欠的に水
面に接し始め、水面の上昇に伴なつてサンプリン
グ時間t内における合計接触時間が長くなる。こ
のようにしてたとえば周期において、第1積算
値dは第1しきい値v1に達していないが、高水位
検出器5の検出記録は水位「有」として出現す
る。このとき、前の周期における記憶器13の
記憶は水位「無」であつたので、変台ロジツク回
路15は判別回路11の水位「無」の判定に拘ら
ず、水位が過給域に移行したと判定し、演算器1
6に減算指令信号を送出する。これにより演算
器16および分配器17が運転中のn台のポンプ
のうち最初に起動された1台を選択して停止さ
せ、運転台数を(n−1)台にする。
When the amount of outflow from the outflow pipe 4 decreases and the water level a rises, and the water surface approaches the detection end 7, the detection end 7 begins to come into contact with the water surface intermittently, since waves generally exist on the water surface. As the water level rises, the total contact time within the sampling time t becomes longer. In this way, for example, in a period, the first integrated value d does not reach the first threshold value v1 , but the detection record of the high water level detector 5 appears as a water level "present". At this time, since the water level stored in the memory device 13 in the previous cycle was "absent", the change logic circuit 15 determines that the water level has shifted to the supercharging region regardless of the water level "absent" judgment of the discriminating circuit 11. It is determined that the calculation unit 1
A subtraction command signal is sent to 6. As a result, the arithmetic unit 16 and the distributor 17 select and stop the first one of the n pumps in operation, and the number of pumps in operation becomes (n-1).

周期において第1積算値dが第1しきい値v1
以上になると、判別回路11の出力信号が水位
「有」となる。記憶器13の出力信号は上記周期
のとき水位「有」でありかつ同期のとき水位
「有」のままであるから、変台ロジツク回路15
は水位が連続して過給域にあると判定して減算指
令信号を送出し、さらに次の1台を停止させ
る。
In the period, the first integrated value d is the first threshold value v 1
When the water level reaches the above level, the output signal of the discrimination circuit 11 becomes "present". Since the output signal of the memory device 13 indicates that the water level is "present" during the above-mentioned cycle and remains "present" during synchronization, the output signal of the converter logic circuit 15
determines that the water level is continuously in the supercharging range, sends a subtraction command signal, and stops the next one.

このようなポンプの減台により水槽水面が上昇
を停止するかまたは降下しても、上記高水位Hよ
り上方に位置している間は、各繰返し周期Tごと
に上述同様な減台操作が自動的に行なわれ、最終
的には全ポンプの運転が停止されることになる。
また、上述のような減台操作が行なわれた結果、
たとえば周期Vにおいて水槽水面が高水位Hより
降下すれば、判別回路11の出力信号が水位
「無」となり、記憶器13は水位「有」の次に水
位「無」を記憶し、この場合はポンプの運転台数
nは増減が行なわれず、たとえば(n−2)に維
持される。
Even if the aquarium water level stops rising or falls due to such a pump reduction, as long as it is located above the above-mentioned high water level H, the same above-mentioned removal operation will be performed automatically at each repetition period T. Eventually, all pumps would be shut down.
In addition, as a result of the above-mentioned reduction operation,
For example, if the aquarium water level falls below the high water level H in cycle V, the output signal of the discrimination circuit 11 becomes water level "absent", and the memory 13 stores the water level "absent" after the water level "present", and in this case, The number n of pumps in operation is not increased or decreased, and is maintained at (n-2), for example.

上述のような状態から水位がさらに低下してた
とえば第3図に示す周期において低水位Lを下
方に通過したときには、検出器6の出力信号cが
水位「無」になつてからの第2積算値eが第2し
きい値v2未満であつても、記憶器14は前回の記
憶が水位「有」、つまり中間域であつたため、今
回の周期において水位「無」の記憶が生じ、こ
れにより変台ロジツク回路15では水位aが不足
域に移行したと判定して演算器16に加算指令信
号gを送出する。これにより演算器16および分
算器17が、停止中のポンプのうち最後に起動し
たポンプの次位にあるポンプまたは最初に停止し
たポンプを1台起動させる。
When the water level further decreases from the above state and passes below the low water level L in the period shown in FIG. 3, for example, the second integration is performed after the output signal c of the detector 6 becomes "no" Even if the value e is less than the second threshold value v2 , the memory 14 stores the water level as "absent" in the current cycle because the previous memory was that the water level was "present", that is, in the intermediate range. As a result, the changeable logic circuit 15 determines that the water level a has moved into the insufficient range, and sends an addition command signal g to the arithmetic unit 16. As a result, the calculator 16 and the divider 17 start one of the stopped pumps that is next to the last started pump or the first stopped pump.

周期においては、水位「無」の積算値eが第
2しきい値v2を越えるので、判別回路12は水位
「無」を判定し、かつ記憶器14は連続して水位
「無」を記憶するため変台ロジツク回路15が不
足域の判定をし、さらに停止中のポンプを1台起
動させるための加算指令gを送出する。
During the cycle, the integrated value e of the water level "absent" exceeds the second threshold value v2 , so the discrimination circuit 12 determines the water level "absent", and the memory 14 continuously stores the water level "absent". In order to do this, the changeable logic circuit 15 determines the shortage area, and further sends an addition command g to start one of the stopped pumps.

このような運転台図の増加は水位が不足域にあ
る間続けられ、この状態が続けば運転可能な全ポ
ンプが運転状態となる。また、運転台数の増加に
より水位が上昇し、周期のように低水位Lを上
方に通過して、第2積算値eが再び第2しきい値
v2以下となれば演算器16が増台指令信号を出す
ことがなく、ポンプの運転台数は不変に維持され
る。すなわち水槽の水位が上記不足減にある間は
ポンプの運転台数が1周期ごとに1台づつ漸増さ
れ、水位が上記中間域に上昇すれば運転台数は不
変に維持される。
This increase in the cab diagram continues while the water level is in the shortage region, and if this state continues, all operable pumps become operational. In addition, the water level rises due to the increase in the number of operating vehicles, passes the low water level L upwards like a cycle, and the second integrated value e returns to the second threshold value.
If v2 or less, the computing unit 16 will not issue an increase command signal, and the number of pumps in operation will remain unchanged. That is, while the water level of the water tank is in the above-mentioned shortage or decrease, the number of pumps in operation is gradually increased by one in each cycle, and when the water level rises to the above-mentioned intermediate range, the number of pumps in operation is maintained unchanged.

上述したように高、低両水位H,Lを基準とし
1繰返し周期に1台の割合でポンプ台数の増減が
行なわれるので、ポンプ全台数の多少に拘りなく
適正運転台数を得ることができ、その合計吐出量
すなわち水槽2への流入量が流出量に最も近い状
態となるようにすることができる。また、検出器
5,6の検出信号が存在する時間をサンプリング
時間ごとにそれぞれ積算してしきい値と比較する
ようにしたので、水面波動などがあつてもチヤタ
リングを生ずることがなく、かつ水面が上記高水
位Hおよび低水位L通過するとき通過方向による
ヒシテリシス現象を判なうことがないので、水位
変動に即応した運転台数の自動制御が行なわれ
る。
As mentioned above, since the number of pumps is increased or decreased by one pump per repetition period based on both the high and low water levels H and L, the appropriate number of operating pumps can be obtained regardless of the total number of pumps. The total discharge amount, that is, the amount of inflow into the water tank 2 can be made to be closest to the amount of outflow. In addition, since the time during which the detection signals of detectors 5 and 6 are present is integrated at each sampling time and compared with the threshold value, there is no chattering even if there are water surface waves, and the water surface When the water passes through the high water level H and the low water level L, the hysteresis phenomenon due to the passing direction cannot be determined, so the number of operating vehicles is automatically controlled in response to water level fluctuations.

上述した記憶器13,14を備えない場合には
水位aが中間域から過給域に移行する場合、たと
えば第3図に示す周期におけるように、第1積
算値dが第1しきい値値v1未満であれば、判別回
路11の出力信号が水位「無」の状態であり、演
算器16は減算指令信号fを送出しないことにな
る。また水位aが中間域から不足域に移行する場
合にも、つまり周期においても上述同様にして
加算指令信号gが送出されない場合がある。この
ような応答遅れは、繰返し周期Tを短かく設定す
ることにより対応できるが、繰返し周期Tを短か
くすると水面の波動等(ノイズ)を拾つてポンプ
が起動、停止されるので好ましくない。
In the case where the above-mentioned memory devices 13 and 14 are not provided, when the water level a shifts from the intermediate region to the supercharging region, the first integrated value d becomes the first threshold value, for example, as in the cycle shown in FIG. If v is less than 1 , the output signal of the discrimination circuit 11 is in a water level "absent" state, and the arithmetic unit 16 does not send out the subtraction command signal f. Further, when the water level a shifts from the intermediate range to the insufficient range, that is, even in the period, the addition command signal g may not be sent out in the same manner as described above. Such a response delay can be dealt with by setting the repetition period T short, but if the repetition period T is shortened, it is not preferable because the pump will be started and stopped by picking up waves, etc. (noise) on the water surface.

しかしながら記憶器13,14を設けた場合、
水位aが中間域から過給域に移行する場合には、
上記記憶器13の記憶内容により、検出器5の出
力信号がたとえば1つの周期においては1回も水
位「有」と記憶されておらず、つぎの周期におい
て1回でも水位「有」の記憶がされた場合には、
判別回路11の出力信号が水位「無」であつても
変台ロジツク回路15においては水位が過給域に
移行したと判定し、演算器16に減算指令信号
を送出するようにしている。また水位aが中間域
から不足域に移行する場合には、上記記憶器14
の記憶内容により、検出器6の出力信号がたとえ
ば1つの周期においては1回も水位「無」と記憶
されておらず、つぎの周期において1回でも水位
「無」の記憶がされた場合には、判別回路12の
出力信号が水位「有」であつても変台ロジツク回
路15においては水位が不足域に移行したと判定
し、演算器16に加算指令信号gを送出するよう
にする。
However, when the memory devices 13 and 14 are provided,
When the water level a moves from the intermediate area to the supercharging area,
Due to the memory contents of the memory device 13, the output signal of the detector 5 may not be stored as water level "present" even once in one cycle, but may be stored as water level "present" even once in the next cycle. In the event that
Even if the output signal of the discrimination circuit 11 is the water level "absent", the changeable logic circuit 15 determines that the water level has shifted to the supercharging range, and sends a subtraction command signal to the calculator 16. Further, when the water level a shifts from the intermediate area to the shortage area, the storage device 14
According to the memory contents, if the output signal of the detector 6 is not stored as water level "absent" even once in one period, but is stored as water level "absent" even once in the next period, Even if the output signal of the discriminating circuit 12 indicates that the water level is "present," the changing logic circuit 15 determines that the water level has moved into the insufficient region, and sends an addition command signal g to the arithmetic unit 16.

上述のように記憶器13,14の記憶内容によ
り、判別回路11,12の出力に優先して変台制
御を行なうようにしたから、上記記憶器13,1
4の出力信号にもとづき演算器16による加算ま
たは減算が行われる。つまり、周期の場合は、
周期を待つことなく減台が行われ、かつ周期
の場合も周期に至る前に増台が行われる。この
ためポンプの運転台数増減の即応性が向上する。
As described above, since the changing control is performed with priority over the outputs of the discrimination circuits 11 and 12 depending on the storage contents of the memories 13 and 14, the storage contents of the memories 13 and 14 are
Addition or subtraction is performed by the arithmetic unit 16 based on the output signal of 4. In other words, for the period,
The number of machines is reduced without waiting for a cycle, and even in the case of a cycle, the number of machines is added before the cycle is reached. This improves responsiveness to increases and decreases in the number of pumps in operation.

このように、記憶器13,14は、高水位Hお
よび低水位Lに対して水面の変動具合を監視し、
高水位Hおよび低水位Lに対して変動がない場合
は変台ロジツク回路15は機能しないよう制御し
ている。いずれにしても、上記記憶器13,14
を設けることにより、繰返し周期Tを比較的長く
設定して水面の波動による影響を受けることのな
いようにし、かつ給水系の即応性が損なわれるこ
とがなくなる。
In this way, the memory devices 13 and 14 monitor the fluctuation of the water level with respect to the high water level H and the low water level L,
If there is no variation with respect to the high water level H and the low water level L, the variable platform logic circuit 15 is controlled so as not to function. In any case, the storage devices 13, 14
By providing this, the repetition period T is set to be relatively long so that it is not affected by waves on the water surface, and the responsiveness of the water supply system is not impaired.

なお、以上においては水位が中間域から過給域
または不足域に移行する場合について述べたが、
これらの逆の場合にも判別回路11,12の出力
より優先して上述とほぼ同様に記憶器13,14
の記憶内容により変台制御を行なうようにしても
よい。
In addition, although the case where the water level moves from the intermediate region to the supercharging region or the deficient region has been described above,
In the reverse case as well, the memory devices 13 and 14 are given priority over the outputs of the discrimination circuits 11 and 12 in the same manner as described above.
The platform changing control may be performed based on the stored contents.

上述のように構成された装置においては、所定
の繰返し周期Tごとに所定のサンプリング時間t
を設定し、このサンプリング時間内における水位
信号検出時間の積算値に基づいてポンプの台数制
御を行なうようにした処理装置10を設けたの
で、水面波動等に基づくチヤタリングなどを生ず
ることがなく、またヒシテリシス現象を伴なうこ
ともなく、ポンプの起動、停止を上記繰返し周期
ごとに1台づつ行なうようにしたことと相まつ
て、水槽水位の変動に順応して適正な運転台数を
自動的に設定することができる。また水位信号を
つぎの1繰返し周期まで記憶する記憶器13,1
4を設けたので、給水系の即応性を向上させるこ
とができる。さらに、各ポンプの個別稼動時間ま
たは、運転中のポンプの起動順序および待機中の
ポンプの停止順序等を記憶可能な分配器17を設
けることにより、総数N台のポンプP1,P2…PN
のそれぞれの最大起動頻度を1/NTとすること
ができ、かつ稼動時間の配分を適正化することが
できる。しかも、上記水位検出器5,6、クロツ
ク18、タイミング設定器19および処理装置1
0等は、ポンプの台数とは無関係に構成すること
ができるから、上記処理装置10が主として電子
部品から構成されることと相まつて、装置の標準
化、小型化に資するところが極めて大である。ま
た制御用水位検出器は高低一対のみでよいから装
備工事を簡単かつ容易に行なうことができ、各部
の保守に要する手数も少なくてすむなど、多くの
優れた効果を奏することができる。
In the apparatus configured as described above, a predetermined sampling time t is set every predetermined repetition period T.
is set, and the processing device 10 is provided to control the number of pumps based on the integrated value of the water level signal detection time within this sampling time, so that chattering due to water surface waves etc. does not occur, and Coupled with the fact that the pumps are started and stopped one by one at each repeating cycle without causing hysteresis, the appropriate number of pumps to be operated is automatically set in response to fluctuations in the aquarium water level. can do. Furthermore, a memory device 13,1 stores the water level signal up to the next one repetition period.
4, the responsiveness of the water supply system can be improved. Furthermore, by providing a distributor 17 that can store the individual operating time of each pump, the starting order of pumps in operation, the stopping order of pumps in standby, etc., a total of N pumps P 1 , P 2 . . . P N
The maximum activation frequency of each can be set to 1/NT, and the allocation of operating time can be optimized. Moreover, the water level detectors 5 and 6, the clock 18, the timing setter 19 and the processing device 1
0 etc. can be configured regardless of the number of pumps, and together with the fact that the processing device 10 is mainly composed of electronic components, it greatly contributes to standardization and miniaturization of the device. Furthermore, since only a pair of high and low water level detectors are required, the installation work can be carried out simply and easily, and the amount of effort required for maintenance of each part can be reduced, and many other excellent effects can be achieved.

なお、本発明は上記実施例のみに限定されるも
のでなく、その要旨とするところの範囲内で種々
の偏更をなし得ることはいうまでもない。
It goes without saying that the present invention is not limited to the above-mentioned embodiments only, and that various modifications can be made within the scope of the gist thereof.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、上述したように所定の繰返し
周期ごとに所定のサンプリング時間を設定し、こ
のサンプリング時間内で高低両水位に対応する水
位検出手段の出力信号を時間積分するとともに、
これら積分値と予め設定したしきい値との差異に
応じて上記繰返し周期ごをに1台づつの割合でポ
ンプの起動および停止を自動制御する場合に、記
憶手段を設けて上記積分値の大きさに拘らず2繰
返し周期において上記水槽の水位が高水位以上お
よび低水位以下に転じた場合にポンプの起動およ
び停止を自動制御するようにしたので、水槽水位
の変動に順応して適正な運転台数を自動的に設定
でき、ポンプ台数の多少に拘らずその制御装置の
構造が簡単ですみ、さらに繰返し周期を短かくす
ることなくポンプ起動、停止の即応性を高めるこ
とができて、波動による誤作動も防止することが
できる。
According to the present invention, as described above, a predetermined sampling time is set for each predetermined repetition period, and within this sampling time, the output signals of the water level detection means corresponding to both high and low water levels are time-integrated, and
When automatically controlling the start and stop of pumps at a rate of one pump per repetition period according to the difference between these integral values and a preset threshold value, a storage means is provided to determine the magnitude of the integral value. Regardless of this, the pump is automatically started and stopped when the water level in the tank changes to above the high water level or below the low water level in two repeat cycles, so that proper operation can be achieved in response to fluctuations in the water tank water level. The number of pumps can be automatically set, the structure of the control device is simple regardless of the number of pumps, and the quick response of pump start and stop can be improved without shortening the repetition cycle. Malfunctions can also be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は配置
図、第2図は制御回路のブロツク図、第3図は動
作を説明するためのタイミングチヤートである。 1……1次水槽、2……2次水槽、5,6……
水位検出器、H……高水位、L……低水位、P1
N……ポンプ、10……処理装置、11,12
……判別回路、13,14……記憶器、15……
変台ロジツク回路、16……演算器、17……分
配器、18……クロツク、19……タイミング設
定器。
The drawings show one embodiment of the present invention; FIG. 1 is a layout diagram, FIG. 2 is a block diagram of a control circuit, and FIG. 3 is a timing chart for explaining the operation. 1... Primary water tank, 2... Secondary water tank, 5, 6...
Water level detector, H...High water level, L...Low water level, P 1 ~
P N ... Pump, 10 ... Processing device, 11, 12
...Discrimination circuit, 13, 14...Memory device, 15...
Variable logic circuit, 16... Arithmetic unit, 17... Distributor, 18... Clock, 19... Timing setter.

Claims (1)

【特許請求の範囲】[Claims] 1 水槽およびこの水槽に給水する複数台のポン
プを有する給水系であつて、上記水槽の所定の高
水位および低水位をそれぞれ検出する水位検出手
段を設けるとともに、所定の繰返し周期を設定
し、上記高水位検出手段が上記所定の高水位を検
出した場合には運転中のポンプを上記繰返し周期
ごとに1台づつ停止させるとともに上記低水位検
出手段が上記所定の低水位を検出した場合には停
止中のポンプを上記繰返し周期ごとに1台づつ起
動させるようにしたポンプの運転台数制御方法に
おいて、上記所定の繰返し周期ごとにその繰返し
周期をこえない範囲でサンプリング時間を設定
し、上記サンプリング時間内で、上記高水位およ
び低水位に対応する各水位検出手段の出力信号を
それぞれ時間積分した各積分値と、予め設定した
しきい値とをそれぞれ比較して上記水槽の水位を
判別し、かつ上記サンプリング時間内で上記各水
位検出手段の出力信号を連続する2繰返し周期に
ついてそれぞれ記憶する記憶手段を設け、上記2
繰返し周期において上記水槽の水位が上記高水位
以上に転じた場合には上記比較判別に拘らず上記
記憶手段の出力により運転中のポンプを1台停止
させ、かつ上記低水位以下に転じた場合には上記
比較判別に拘らず上記記憶手段の出力により停止
中のポンプを1台起動させるようにしたことを特
徴とするポンプの運転台数制御方法。
1 A water supply system having an aquarium and a plurality of pumps that supply water to the aquarium, which is provided with water level detection means for detecting a predetermined high water level and a predetermined low water level of the aquarium, respectively, and which sets a predetermined repetition period, When the high water level detection means detects the predetermined high water level, the pumps in operation are stopped one by one at each repetition period, and when the low water level detection means detects the predetermined low water level, the pumps are stopped. In a method for controlling the number of operating pumps in which the pumps in the pump are started one by one at each repetition period, a sampling time is set within a range that does not exceed the repetition period for each predetermined repetition period, and within the sampling period. The water level of the aquarium is determined by comparing each integral value obtained by time-integrating the output signal of each water level detection means corresponding to the high water level and the low water level with a preset threshold, and A storage means is provided for storing the output signals of each of the water level detection means for two consecutive repetition periods within the sampling time,
If the water level of the water tank changes to the above-mentioned high water level or higher in the repetition period, one pump in operation is stopped by the output of the above-mentioned storage means, regardless of the above-mentioned comparative judgment, and if the water level changes to the above-mentioned low water level or below, A method for controlling the number of pumps in operation, characterized in that, regardless of the comparison and discrimination, one stopped pump is started by the output of the storage means.
JP15325576A 1976-12-20 1976-12-20 Method of controlling number of operating pumps Granted JPS5377302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15325576A JPS5377302A (en) 1976-12-20 1976-12-20 Method of controlling number of operating pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15325576A JPS5377302A (en) 1976-12-20 1976-12-20 Method of controlling number of operating pumps

Publications (2)

Publication Number Publication Date
JPS5377302A JPS5377302A (en) 1978-07-08
JPS6122149B2 true JPS6122149B2 (en) 1986-05-30

Family

ID=15558449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15325576A Granted JPS5377302A (en) 1976-12-20 1976-12-20 Method of controlling number of operating pumps

Country Status (1)

Country Link
JP (1) JPS5377302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216112A (en) * 1990-02-22 1992-08-06 Samsung Electron Co Ltd Power supply circuit for preventing overvoltage and overheat

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185692A (en) * 1985-02-13 1986-08-19 Kobe Steel Ltd Capacity control of compressor
JP6096443B2 (en) * 2012-09-11 2017-03-15 株式会社日立産機システム Water supply equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216112A (en) * 1990-02-22 1992-08-06 Samsung Electron Co Ltd Power supply circuit for preventing overvoltage and overheat

Also Published As

Publication number Publication date
JPS5377302A (en) 1978-07-08

Similar Documents

Publication Publication Date Title
KR101752163B1 (en) Fluid compression system and control device therefor
US20130222068A1 (en) Oscillation circuit, integrated circuit, and abnormality detection method
JP2001214477A (en) Liquid supply equipment for running water
CN109558291B (en) System and method for detecting capacitance value of power supply unit
WO2008119932A1 (en) Sewage pump blockage detection
JPS6122149B2 (en)
KR100895392B1 (en) Zero-flow discrimination and control for the booster pump applied inverters
CN108036559B (en) Control method and control device suitable for parallel unit of full-variable-frequency compressor
JP2018040341A (en) Pump control device and pump control method
JPH11287188A (en) Control method and control device for operation of compressor
JPH07200014A (en) Operation control method for pump
JP2007078002A (en) Storage tank handling control method and its system
JPH05133344A (en) Method and device for controlling operational set quantity of pump
JP2933249B2 (en) Water supply device and its pump control method
JPS59200094A (en) Liquid supply system
JPH09119376A (en) Water supply device for water system and method for operating pump thereof
WO2023153048A1 (en) Power conversion device
JPH09329084A (en) Water supply system for water line
JPH09119377A (en) Water supply device for water system and method for operating pump thereof
JP2592647B2 (en) Pressure type sewer system
JP2652579B2 (en) Automatic water supply pump control device
JPH10246186A (en) Aqueduct water feed device and its pump control method
JPH1068388A (en) Liquid feeding device for service water line and pump control method
SU1208309A1 (en) Arrangement for controlling compressors
JPH0554275A (en) Voltage drop warning device for lead storage battery