JPS61221390A - Coating type lead dioxide electrode - Google Patents

Coating type lead dioxide electrode

Info

Publication number
JPS61221390A
JPS61221390A JP60060982A JP6098285A JPS61221390A JP S61221390 A JPS61221390 A JP S61221390A JP 60060982 A JP60060982 A JP 60060982A JP 6098285 A JP6098285 A JP 6098285A JP S61221390 A JPS61221390 A JP S61221390A
Authority
JP
Japan
Prior art keywords
lead dioxide
plate
electrode
blanked
punched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60060982A
Other languages
Japanese (ja)
Other versions
JPS6331559B2 (en
Inventor
Kaoru Hirakata
平形 薫
Shinichi Shimoda
慎一 下田
Yasuyuki Nishikawa
西川 康之
Reiichi Itai
板井 玲一
Osamu Sasabe
笹部 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP60060982A priority Critical patent/JPS61221390A/en
Publication of JPS61221390A publication Critical patent/JPS61221390A/en
Publication of JPS6331559B2 publication Critical patent/JPS6331559B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To improve adhesiveness, strength, dimensional stability and electricity conduction capacity and to facilitate production by coating lead dioxide via intermediate layers on a blanked plate which is specified in the diameter and thickness of the blanked parts. CONSTITUTION:The blanked plate of which the max. diameter of the blanked parts and the shortest spaces between the adjacent blanked parts are respectively 1.5-12mm and 1.5-7.0mm and the thickness is 1.0-7.0mm is prepd. The intermediate layers 2 consisting of an acid resistant and conductive platinum group (alloy), etc. are coated on the plate 1. The lead dioxide layer 3 is coated to about 0.3-8mm thickness over the entire surface of the layers 2 to form electrodes. The coating type lead dioxide electrodes exhibit substantial durability against a corrosive electrolyte. There is no need for a welding stage in production and the increase of the size to some extent is possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は塩素酸塩、過塩素酸塩、過沃素酸塩、過硫酸塩
などの電解製造用の陽極として、また、金属の電解採取
、廃液の電解処理、電気メツキ用、特にクロムメッキに
おけるケイフッ化浴用陽極として用いられる被覆型二酸
化鉛電極に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention can be used as an anode for the electrolytic production of chlorates, perchlorates, periodates, persulfates, etc. This invention relates to a coated lead dioxide electrode used as an anode for electrolytic treatment of waste liquids, electroplating, and especially fluorosilicide baths in chrome plating.

〔従来の技術〕[Conventional technology]

工業電解に用いられる電極としては、その性能、耐久性
と共に電極形態および機械的強度、加工性、経済性など
が十分満足できるものでなくてはならない。近年、チタ
ンなどの基体上に白金族金属化合物を被覆した金属電極
が出現し、そのすぐれた性能と同時に強度、寸法安定性
のよいという利点の故に、食塩電解工業その他に著しい
進歩をもたらした。
Electrodes used in industrial electrolysis must be sufficiently satisfactory in terms of performance, durability, electrode form, mechanical strength, workability, economic efficiency, etc. In recent years, metal electrodes in which a platinum group metal compound is coated on a substrate such as titanium have appeared, and due to their excellent performance as well as the advantages of good strength and dimensional stability, they have brought about significant advances in the salt electrolysis industry and elsewhere.

一方、従来から認められてきた二酸化鉛電極は白金につ
ぐ高酸素過電圧をもち、かつ特異な電極触媒能を有する
すぐれた安価な電極である。しかし、本格的な実用化に
至らないのは、この電極の機械的強さと加工性の不足、
寸法安定性の欠如などが原因となっている。
On the other hand, the lead dioxide electrode, which has been recognized in the past, is an excellent and inexpensive electrode that has a high oxygen overvoltage second only to platinum and has a unique electrocatalytic ability. However, the reason why this electrode has not been put into full-scale practical use is the lack of mechanical strength and workability of this electrode.
This is caused by a lack of dimensional stability.

板状の二酸化鉛電極の製法としては、従来、硝酸鉛浴な
どから凹面陽極電着し、抜き取る方法によっているが、
内部歪が存在するため脆弱で大型化しに<<、形状も制
限された。そのため、黒鉛板、チタン板に直接二酸化鉛
を電着する試みがなされたが、クラックの発生、密着不
良などにより剥離、脱落をおこし成功していない。最近
では、チタン金網を芯材として電着する方法がある。し
かし、密着性は向上するが強度的に弱く曲がり易いので
クラックを生じ易く、電流もあまり流せず大型化は無理
であった。
Conventionally, plate-shaped lead dioxide electrodes have been produced by electrodepositing concave anodic electrodes from a lead nitrate bath, etc., and then extracting the electrodes.
Due to the presence of internal strain, it was brittle and large, and its shape was also limited. For this reason, attempts have been made to electrodeposit lead dioxide directly onto graphite plates and titanium plates, but these attempts have not been successful due to cracks, poor adhesion, etc., resulting in peeling and falling off. Recently, there is a method of electrodepositing titanium wire mesh as a core material. However, although adhesion is improved, it is weak in strength and bends easily, so cracks are likely to occur, and it is difficult to pass much current, making it impossible to increase the size.

これらの欠点を改良すべく基体のチタン板上にチタンの
エキスノやンドメタル(vf公昭58−30957)や
パンチングメタル、金網(特公昭58−31396)を
押え板と共に溶接し、中間層を介して二酸化鉛を電着す
る方法が試みられた。この方法により密着性、機械的強
度、寸法安定性は著しく向上した。
In order to improve these drawbacks, we welded titanium extractor metal (VF Publication No. 58-30957), punching metal, and wire mesh (Special Publication No. 58-31396) to the titanium plate as a base together with a holding plate, and then applied carbon dioxide through the intermediate layer. A method of electrodepositing lead was tried. This method significantly improved adhesion, mechanical strength, and dimensional stability.

しかし、押え板や電極の周縁部分はチタンが露出してい
るため、チタン基体の耐食性がない電解液、たとえばク
ロムメッキのケイフッ化浴のような系では押え板や露出
部分が腐食され剥離、脱落が起きることがあった。また
、電極の製造工程が繁雑になって工数を要し、高価な電
極となる欠点があった・ 〔発明が解決しようとする問題点〕 本発明者らは、二酸化鉛電極の密着性、機械的強度、寸
法安定性を良好に保持しながら、かつ、基体金属が腐食
される電解液であっても使用でき、ある程度の大型化も
可能で製造も容易な電極を得るべく、種々検討を加えた
結果、ついにこれを完成したものである。
However, since the titanium is exposed around the periphery of the holding plate and electrodes, electrolytes that do not have the corrosion resistance of the titanium base, such as silica fluoride baths for chrome plating, will corrode the holding plate and exposed parts, causing them to peel off and fall off. sometimes occurred. In addition, the manufacturing process of the electrode becomes complicated and requires many man-hours, resulting in an expensive electrode. [Problems to be solved by the invention] The present inventors have developed We conducted various studies in order to obtain an electrode that maintains good physical strength and dimensional stability, can be used even with electrolytes that corrode the base metal, can be made large to a certain extent, and is easy to manufacture. As a result, this was finally completed.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、打抜部最大径および隣接し丸打抜部
の最短間隔がそれぞれ1.5〜12mと1.5〜7. 
Owmの範囲を有し、かつ板厚が1.0〜7.0喘の範
囲から成る打抜板と、前記打抜板上に被覆された中間層
と、前記中間層上に電着された二酸化鉛とから成る被覆
型二酸化鉛電極である。
That is, in the present invention, the maximum diameter of the punched part and the shortest distance between adjacent round punched parts are 1.5 to 12 m and 1.5 to 7.0 m, respectively.
a punched plate having a thickness in the range of 1.0 to 7.0 mm, an intermediate layer coated on the punched plate, and an intermediate layer electrodeposited on the intermediate layer. This is a coated lead dioxide electrode made of lead dioxide.

つぎに本発明を図面に基いて説明する。第1図および第
3図は本発明の電極の断面図であり、打抜板1、耐酸化
性で導電性の中間層2、二酸化鉛層3から成っている。
Next, the present invention will be explained based on the drawings. 1 and 3 are cross-sectional views of an electrode according to the invention, consisting of a stamped plate 1, an oxidation-resistant and electrically conductive intermediate layer 2, and a lead dioxide layer 3. FIG.

打抜板1をトリクレンなどの溶剤、またはアルカ1.I
 Kより脱脂し、ついでフッ酸、あるいは熱シュウ酸に
よシエッチングし表面を粗面化したのち中間層2を介し
て二酸化鉛層3を陽極電着くよシ全面に形成させる。本
発明に使用する打抜板1の材質としては、鉄、鉄合金、
ニッケル、クロム、アルミニウム、チタン、タンタル、
ゾルコニウム、ニオブまたはこれらを主体とした合金で
あり、大きさは縦横1.000〜1.500■くらいま
で可能であシ、平板状のほか円筒状も適用できる。また
打抜部4の形状は丸型が一般的であるが、楕円型、四角
型、十字型、これらの混合型など多様であり任意の形状
のもので良い。
The punching plate 1 is coated with a solvent such as trichlene or alkali 1. I
After degreasing with K and then etching with hydrofluoric acid or hot oxalic acid to roughen the surface, a lead dioxide layer 3 is formed on the entire surface by anode electrodeposition via the intermediate layer 2. The material of the punched plate 1 used in the present invention includes iron, iron alloy,
Nickel, chromium, aluminum, titanium, tantalum,
It is made of zorconium, niobium, or an alloy mainly composed of these, and can have a size of about 1.000 to 1.500 cm in length and width, and can be shaped into a cylindrical shape as well as a flat plate. Further, the shape of the punched portion 4 is generally round, but it may be of any other shape such as an ellipse, a square, a cross, or a mixture thereof.

次に打抜部4の形状として一般的な丸型を例に、第2図
によυ本発明の詳細な説明する。隣接した打抜部4の最
短間隔Llは1.5〜7.0■の範囲が好適である。1
.5mよシ小さいと板の強度が不足し、電極を取扱う際
々どにたわんで電着した二酸化鉛層にクラックが発生し
剥離する。また、7.0箇よシ大きいと平坦部が広くな
りすぎて二酸化鉛層の密着性が低下する。打抜部最大径
L2は1.5〜12露の範囲が良<、1.5■よシ小さ
いと二酸化鉛の電着の際に基体表面上に生ずる酸素気泡
が打抜部4に溜るためピンホールを含んだ二酸化鉛層が
形成される。このような電極をクロムメッキのケイフッ
化浴中で陽極として使用すると打抜部4の基体が腐食し
、二酸化鉛層が脱落する。また、12mより大きいと対
極の電流分布上好ましくない。板厚についても1.0鵡
〜7.Ofiの範囲が良く、1.0露より薄いと強度的
に弱く、大電流通電を行なう場合の発熱の問題が残り、
7+IIIIより厚いと電着の際に酸素気泡が取りきれ
ず、二酸化鉛層にピンホールが生じる。
Next, the present invention will be described in detail with reference to FIG. 2, taking a general round shape as the shape of the punched portion 4 as an example. The shortest distance Ll between adjacent punched parts 4 is preferably in the range of 1.5 to 7.0 cm. 1
.. If the length is smaller than 5 m, the strength of the plate will be insufficient, and when the electrode is handled, it will bend and the electrodeposited lead dioxide layer will crack and peel off. Moreover, if it is larger than 7.0, the flat part becomes too wide and the adhesion of the lead dioxide layer decreases. The maximum diameter L2 of the punched part should preferably be in the range of 1.5 to 12 mm. If it is smaller than 1.5 mm, oxygen bubbles generated on the substrate surface during electrodeposition of lead dioxide will accumulate in the punched part 4. A lead dioxide layer containing pinholes is formed. If such an electrode is used as an anode in a fluorosilicide bath for chromium plating, the base of the punched portion 4 will corrode and the lead dioxide layer will fall off. Moreover, if it is larger than 12 m, it is not preferable in view of the current distribution of the counter electrode. The plate thickness is also 1.0 to 7. The range of Ofi is good, and if it is thinner than 1.0 dew, the strength is weak, and the problem of heat generation remains when carrying out large current.
If it is thicker than 7+III, oxygen bubbles cannot be removed during electrodeposition and pinholes will occur in the lead dioxide layer.

中間層2は打抜板1の表面の酸化防止のために介在させ
るが、耐酸化性、導電性の白金族金属、それらの合金ま
たはそれらの酸化物、銀、二酸化マンガン、酸化コバル
ト、酸化モリブデンの少な゛くとも1種より成る。用い
る白金族金属としては白金、イリジウム、ロジウム、パ
ラジウム、ルテニウムなどで、電気メッキあるいはこれ
らの該尚金属の塩化物をアルコールに溶かし、打抜板上
に塗布したあと熱分解法によって被覆が調製される。
The intermediate layer 2 is interposed to prevent oxidation of the surface of the punched plate 1, and is made of oxidation-resistant and conductive platinum group metals, alloys thereof, or oxides thereof, silver, manganese dioxide, cobalt oxide, molybdenum oxide. It consists of at least one type. The platinum group metals used are platinum, iridium, rhodium, palladium, ruthenium, etc., and the coating is prepared by electroplating or by dissolving the chlorides of these metals in alcohol and coating them on a punched plate, and then using a pyrolysis method. Ru.

銀、二酸化マンガン、酸化コバルト、酸化モリブデンは
これらの金属の硝酸塩を水、またはアルコールに溶かし
て同様に被覆を形成させる。打抜板として鉄、ステンレ
ス鋼などを用いる場合は、熱分解法によると白金族金属
の塩化物含有塗布液を熱分解する過程で塩酸が生成する
ため基体が腐食し、中間層の密着性が不足して二酸化鉛
の電着が良好でなくなるので、硫酸塩、硝酸塩または有
機金属塩を含有する塗布液によるか、電気メッキによる
被覆が望ましい。また、中間層の厚みは0.5〜5μ程
度で十分である。
Silver, manganese dioxide, cobalt oxide, and molybdenum oxide are similarly coated by dissolving the nitrates of these metals in water or alcohol. When using iron, stainless steel, etc. as the punched plate, the thermal decomposition method produces hydrochloric acid during the thermal decomposition process of the platinum group metal chloride-containing coating solution, which corrodes the substrate and impairs the adhesion of the intermediate layer. If the lead dioxide is insufficient, the electrodeposition of lead dioxide will be poor, so coating with a coating solution containing sulfate, nitrate or organic metal salt or by electroplating is desirable. Further, a thickness of about 0.5 to 5 μm is sufficient for the intermediate layer.

本発明の二酸化鉛層は陽極電着により打抜板の表面に施
された中間層上に全面被覆されるが、電着液は鉛塩およ
び銅塩とから成り、鉛塩としては硝酸鉛、スルファミン
酸鉛、酢酸鉛などを使い、銅塩としてはおもに硝酸銅を
用いる。電着液中の鉛および銅としての濃度は、それぞ
れ100〜210g/l、4〜209/lであり、液温
度は60〜80℃、−は3.5〜4.5に保たれる。陽
極電流密度は1〜5A/dmで陰極としてはステンレス
鋼を用いて電解を行なう。この間液性をpH3,5〜4
.5に保つために、−酸化鉛、炭酸鉛、水酸化鉛などを
加えて調節する。これらの条件をはずれると島状電着や
こぶ状電着を生じやすくなり内部歪も増大し、被覆にク
ラックや電着物の剥離を起こしやすくなり好ましくない
The lead dioxide layer of the present invention is entirely coated on the intermediate layer applied to the surface of the punched plate by anodic electrodeposition, and the electrodeposition liquid consists of lead salt and copper salt, and the lead salt includes lead nitrate, lead nitrate, Lead sulfamate, lead acetate, etc. are used, and copper nitrate is mainly used as the copper salt. The concentrations of lead and copper in the electrodeposition solution are 100 to 210 g/l and 4 to 209/l, respectively, and the liquid temperature is maintained at 60 to 80° C. and -3.5 to 4.5. The anode current density is 1 to 5 A/dm, and stainless steel is used as the cathode for electrolysis. During this time, adjust the liquid to pH 3.5-4.
.. To maintain the temperature at 5, adjust by adding lead oxide, lead carbonate, lead hydroxide, etc. If these conditions are not met, island-like electrodepositions or lump-like electrodepositions tend to occur, internal strain increases, cracks in the coating and peeling of the electrodeposit material tend to occur, which is not preferable.

二酸化鉛の被覆の厚みは、必要に応じて0.3〜8聾と
するが、これは電着時間の長短により調整される。第3
図は二酸化鉛の被覆を打抜部4を埋めつくさないように
して製作した電極の一例である。このようにして電着は
終了するが、クラ、りやピンホールなどはできず、基体
表面に応じて均一な被覆が得られると共に、構造上、打
抜部を被覆した二酸化鉛ががルトのような役割をはだし
、かつ、内部歪を逃がすことにより良好な密着性が得ら
れる。
The thickness of the lead dioxide coating is set to 0.3 to 8 thick as required, but this is adjusted by the length of the electrodeposition time. Third
The figure shows an example of an electrode manufactured by not filling the punched portion 4 with lead dioxide coating. Electrodeposition is completed in this way, but there are no cracks, holes or pinholes, and a uniform coating is obtained depending on the surface of the substrate. Good adhesion can be obtained by fulfilling the important role and releasing internal strain.

〔実施例〕〔Example〕

つぎに本発明の態様を実施例で示すが、その主旨はこれ
らの例によって何ら制約されるものではない。
Next, embodiments of the present invention will be illustrated by examples, but the gist thereof is not limited in any way by these examples.

実施例1 縦12011II11横50m、厚さ3+a+のチタン
板に穴径3m、打抜部間隔3mの丸型の打抜きを並列状
に行ない電極基体を作製した。この電極基体をトリクレ
ン洗浄によシ脱脂を行なったのち5チふっ酸溶液に浸漬
して表面処理を施した。次に塩化白金3重量部、塩化イ
リジウム1重量部、イソプロピルアルコール36重量部
から成る塗布液を塗布し、乾燥したのち500℃で加熱
処理し、0.7μの中間層を形成させた。この電極基体
を陽極とし、ステンレス鋼板を陰極として硝酸鉛と硝酸
鋼とから成る電着液中で30時間陽極電着し、約3.0
m厚の二酸化鉛の被覆を得た。このときの鉛および銅イ
オンの濃度は200 fi/lおよび6.5g/lでお
υ、陽極電流密度は2.5 A/dm2、平均の液温度
は65℃、液性はpH4,2前後に保った。二酸化鉛被
覆は全面にほぼ均一に電着され、表面にクラックはなく
平坦度もすぐれていた。
Example 1 A titanium plate measuring 12011II11 in length and 50m in width and 3+a+ in thickness was punched in parallel with round shapes having a hole diameter of 3m and a punching part interval of 3m to produce an electrode substrate. This electrode substrate was degreased by trichlene cleaning, and then surface-treated by immersing it in a 5-thihydrofluoric acid solution. Next, a coating solution consisting of 3 parts by weight of platinum chloride, 1 part by weight of iridium chloride, and 36 parts by weight of isopropyl alcohol was applied, dried, and then heat-treated at 500° C. to form an intermediate layer of 0.7 μm. Using this electrode substrate as an anode and a stainless steel plate as a cathode, electrodeposition was carried out for 30 hours in an electrodeposition solution consisting of lead nitrate and steel nitrate.
A lead dioxide coating of m thickness was obtained. At this time, the concentration of lead and copper ions was 200 fi/l and 6.5 g/l, the anode current density was 2.5 A/dm2, the average liquid temperature was 65°C, and the liquid pH was around 4.2. I kept it. The lead dioxide coating was electrodeposited almost uniformly over the entire surface, with no cracks on the surface and excellent flatness.

実施例2 縦120燗、横50+w、厚さ3.2Wの鉄板に穴径5
m、打抜部間隔3fiの丸型の打抜きを千鳥(60度)
に行ない電極基体を製作した。この電極基体をトリクレ
ン洗浄によシ脱脂を行ない工業用35%塩酸中に1時間
浸漬して表面をエツチングした。次に0.5Mの硝酸銀
水溶液を塗布し、乾燥したのち450℃で30分間のく
り返し焼成を行ない2μの中間層を形成させ実施例1と
同様に12時間電着を行なりた。得られた二酸化鉛電極
の被覆厚みは1.0mで、打抜き部、平面部にtミぼ均
一に電着された。
Example 2 Hole diameter 5 on an iron plate with length 120, width 50+W, thickness 3.2W
m, round punching with a punching part interval of 3fi in a staggered manner (60 degrees)
An electrode substrate was fabricated. This electrode substrate was degreased by trichlene cleaning, and the surface was etched by immersing it in industrial 35% hydrochloric acid for 1 hour. Next, a 0.5M silver nitrate aqueous solution was applied, dried, and then repeatedly baked at 450° C. for 30 minutes to form a 2 μm intermediate layer, followed by electrodeposition for 12 hours in the same manner as in Example 1. The coating thickness of the obtained lead dioxide electrode was 1.0 m, and it was electrodeposited uniformly on the punched part and the flat part.

比較例1 本発明の電極の効果を知るため、縦120m。Comparative example 1 120m in length to learn about the effects of the electrodes of the present invention.

横50m厚さ3flのチタン板を基体とし、実施例1と
同じ条件で前処理、中間層被覆、そして二酸化鉛被覆を
行ない、被覆表面にガムテープを接着させ、ロールで加
圧したのちテープを引きはがし、密着性を観察した。結
果を第1表に示した。
A titanium plate with a width of 50 m and a thickness of 3 fl was used as a base, pretreatment, intermediate layer coating, and lead dioxide coating were performed under the same conditions as in Example 1. Gum tape was adhered to the coated surface, pressure was applied with a roll, and the tape was pulled. It was peeled off and adhesion was observed. The results are shown in Table 1.

第  1  表 実施例3 実施例1で製作した電極を陽極とし、ステンレス鋼板を
陰極として、つぎに示した電解条件で過塩素酸塩の電解
製造を行なった。
Table 1 Example 3 Using the electrode produced in Example 1 as an anode and a stainless steel plate as a cathode, perchlorate was electrolytically produced under the following electrolytic conditions.

電解条件 陽  極・・・・・・実施例1で製作した電極陰  極
・・・・・・ステンレス鋼板(50x130x3讃 2
枚) 電解液−−−−−−NNaC403soo/l、 Na
F 2ji/l極間距離・・・・・・ 5m 従来の二酸化鉛電極においては、15〜30闘の極間距
離が必要であったが、本電極では5電で摺電圧は02〜
0.5v低減し、平均電流効率88チにおいて所要電力
は5〜10チ節約された。本電極は6ケ月以上の長期に
わたり、安定した操業を続け、この間形状の変化、クラ
ックの発生、剥離など見られなかった。
Electrolysis conditions Anode: Electrode manufactured in Example 1 Cathode: Stainless steel plate (50x130x3
) Electrolyte---NNaC403soo/l, Na
F 2ji/l distance between electrodes...5m Conventional lead dioxide electrodes require a distance between electrodes of 15 to 30 meters, but with this electrode, the sliding voltage is 0.2 to 0.2 meters at 5 meters.
With a reduction of 0.5v and an average current efficiency of 88ch, the required power was saved by 5-10ch. This electrode continued to operate stably for over 6 months, and no changes in shape, cracking, or peeling were observed during this period.

実施例4 実施例1と同じ方法で製作した電極を陽極とし、ステン
レス鋼板を陰極として、下記条件で無電解メッキ廃液の
COD低減電解処理を行なった。
Example 4 Using an electrode manufactured in the same manner as in Example 1 as an anode and a stainless steel plate as a cathode, electroless plating waste liquid was subjected to COD reduction electrolytic treatment under the following conditions.

電解条件 陽  極・・・・・・本発明の電極 陰  極・・・・・・ステンレス鋼板 電解液・・・・・・無電解メッキ廃液 COD  −−−48,000ppm (スタート)電
流密度・・・・・・10 A / dm2温   度・
・・・・・ 60℃ 電解開始時に48,000 ppmあったCODは24
時間電解後約800 ppmまで低減することができた
Electrolytic conditions Anode... Electrode of the present invention Cathode... Stainless steel plate electrolyte... Electroless plating waste liquid COD --- 48,000 ppm (Start) Current density... ...10 A/dm2 temperature
...60℃ COD was 48,000 ppm at the start of electrolysis, but it was 24
After time electrolysis, the amount could be reduced to about 800 ppm.

同じ条件でパッチ電解処理を10回行なったが、安定し
た結果が得られた。電解後の電極は剥離もなく、形状の
変化も認められなかった。
Patch electrolysis treatment was performed 10 times under the same conditions, and stable results were obtained. There was no peeling of the electrode after electrolysis, and no change in shape was observed.

実施例5 実施例2で製作した電極を陽極として軟鋼上にクロムめ
っきを行なった。めっき浴組成は下記のとおりであり、
電流密度50A/dm2、槽温度60℃でめっきを行な
った。また比較のため、チタン板上にエキスバンド板を
スポット溶接し、その周縁部に押え板をスポット溶接し
補強したのち、押え板を除いた部分のみ中間層を介して
二酸化鉛を被覆した電極(比較電極と略す)に関しても
同じ条件でめっきを行なった。
Example 5 Chromium plating was performed on mild steel using the electrode manufactured in Example 2 as an anode. The plating bath composition is as follows:
Plating was carried out at a current density of 50 A/dm2 and a bath temperature of 60°C. For comparison, an expanded plate was spot welded onto a titanium plate, and a presser plate was spot welded to its periphery for reinforcement.The electrode was coated with lead dioxide through an intermediate layer only in the area excluding the presser plate. Plating was also carried out under the same conditions for the reference electrode (abbreviated as reference electrode).

めっき液組成 無水クロム酸        250 g/lケイふり
化ナトリウム      10 g/l硫   酸  
                1  、!iI/1
4ケ月の電解中、本発明の電極は電圧上昇もなくまた形
状の変化、剥離もなく、表面状態も良好であり二酸化鉛
の特徴を十分発揮し、安定した性能を示した。しかし比
較電極は、1ケ月経過後には露出している押え板や基板
のチタンが腐食されてしまい、二酸化鉛の溶出は微少で
あるのにもがかわらず、電解不能となった。
Plating solution composition Chromic anhydride 250 g/l Sodium silicate 10 g/l Sulfuric acid
1,! iI/1
During electrolysis for four months, the electrode of the present invention showed no voltage increase, no change in shape, no peeling, and had a good surface condition, fully exhibited the characteristics of lead dioxide, and exhibited stable performance. However, after one month had passed, the exposed titanium of the holding plate and substrate of the reference electrode had corroded, and even though the elution of lead dioxide was minute, it was no longer possible to carry out electrolysis.

〔効果〕〔effect〕

本発明の被覆型二酸化鉛電極は強度のある打抜板を基体
とし、中間層を介して二酸化鉛を全面に被覆しており、
良好な密着性、強度、寸法安定性と通電容量の向上がは
かられるとともに、製造上、溶接工程が不要となった。
The coated lead dioxide electrode of the present invention has a strong punched plate as a base, and the entire surface is coated with lead dioxide through an intermediate layer.
In addition to improving adhesion, strength, dimensional stability, and current carrying capacity, it also eliminates the need for a welding process in manufacturing.

また、腐食性電解液にも十分な耐久性が示された。It also showed sufficient durability against corrosive electrolytes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、および第3図は本発明の電極の断面図、第2図
は打抜部の端部間隔を示す図である。 1・・・打抜板、2・・・中間層、3・・・二酸化鉛層
、4・・・打抜部、L!・・・隣接した打抜部の最短間
隔、C2・・・打抜部最大径。 特許出願人 旧本カーリット株式会社 第1(口 第2国 莞3)圓
1 and 3 are cross-sectional views of the electrode of the present invention, and FIG. 2 is a diagram showing the distance between the ends of the punched parts. DESCRIPTION OF SYMBOLS 1... Punching board, 2... Intermediate layer, 3... Lead dioxide layer, 4... Punching part, L! ...The shortest interval between adjacent punched parts, C2...The maximum diameter of the punched parts. Patent Applicant: Former Hon Carlit Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1 打抜部最大径および隣接した打抜部の最短間隔がそ
れぞれ1.5〜12mmと1.5〜7.0mmの範囲を
有し、かつ板厚が1.0〜7.0mmの範囲から成る打
抜板と、前記打抜板上に被覆された中間層と、前記中間
層上に電着された二酸化鉛とから成ることを特徴とする
被覆型二酸化鉛電極。
1 The maximum diameter of the punched part and the shortest distance between adjacent punched parts are in the range of 1.5 to 12 mm and 1.5 to 7.0 mm, respectively, and the plate thickness is in the range of 1.0 to 7.0 mm. 1. A coated lead dioxide electrode comprising: a punched plate, an intermediate layer coated on the punched plate, and lead dioxide electrodeposited on the intermediate layer.
JP60060982A 1985-03-27 1985-03-27 Coating type lead dioxide electrode Granted JPS61221390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60060982A JPS61221390A (en) 1985-03-27 1985-03-27 Coating type lead dioxide electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60060982A JPS61221390A (en) 1985-03-27 1985-03-27 Coating type lead dioxide electrode

Publications (2)

Publication Number Publication Date
JPS61221390A true JPS61221390A (en) 1986-10-01
JPS6331559B2 JPS6331559B2 (en) 1988-06-24

Family

ID=13158142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60060982A Granted JPS61221390A (en) 1985-03-27 1985-03-27 Coating type lead dioxide electrode

Country Status (1)

Country Link
JP (1) JPS61221390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256431A (en) * 2010-06-09 2011-12-22 Ihi Corp Apparatus for producing perchlorate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256431A (en) * 2010-06-09 2011-12-22 Ihi Corp Apparatus for producing perchlorate

Also Published As

Publication number Publication date
JPS6331559B2 (en) 1988-06-24

Similar Documents

Publication Publication Date Title
JP4771130B2 (en) Oxygen generating electrode
JP6877650B2 (en) Method of manufacturing electrode catalyst
JPS5830957B2 (en) Lead dioxide coated electrode
US4203810A (en) Electrolytic process employing electrodes having coatings which comprise platinum
US3461058A (en) Method of producing a composite electrode
US3503799A (en) Method of preparing an electrode coated with a platinum metal
JPS61221390A (en) Coating type lead dioxide electrode
US3763002A (en) Method of forming protective coatings by electrolysis
JPS63137193A (en) Stainless steel contact material for electronic parts and its production
JPH01275797A (en) Lead dioxide electrode for chromium plating
US5391280A (en) Electrolytic electrode and method of production thereof
JPS5831396B2 (en) Lead dioxide coated anode
JP3537255B2 (en) Electrode for electrolysis
US4177129A (en) Plated metallic cathode
JPS6058312B2 (en) Lead dioxide coated electrode for electrolysis
JPH02294494A (en) Anode for generating oxygen
JPH09279381A (en) Electrolytic electrode
US3373092A (en) Electrodeposition of platinum group metals on titanium
JP2938164B2 (en) Electrode for electrolysis and method for producing the same
JPH0260759B2 (en)
JPH0417573Y2 (en)
JPH0124228B2 (en)
JP2699701B2 (en) Plating method for tungsten or tungsten alloy
SU798195A1 (en) Method of making electrode for electrochemical processes
JPH03215700A (en) Lead dioxide-coated electrode