JPS61221312A - Method and apparatus for producing metallic powder by impact atomization - Google Patents

Method and apparatus for producing metallic powder by impact atomization

Info

Publication number
JPS61221312A
JPS61221312A JP6087685A JP6087685A JPS61221312A JP S61221312 A JPS61221312 A JP S61221312A JP 6087685 A JP6087685 A JP 6087685A JP 6087685 A JP6087685 A JP 6087685A JP S61221312 A JPS61221312 A JP S61221312A
Authority
JP
Japan
Prior art keywords
striking
impeller
impact
molten metal
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6087685A
Other languages
Japanese (ja)
Inventor
Minoru Nitta
稔 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6087685A priority Critical patent/JPS61221312A/en
Publication of JPS61221312A publication Critical patent/JPS61221312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce fine-grained metallic powder having high quality by subjecting the downward flow of a molten metal to impact diagonal shearing in downward air flow thereby grinding and atomizing the molten metal under the impact. CONSTITUTION:The pouring flow 2 of the molten metal dropping from a tundish 1 is subjected to the impact diagonal shearing by striking vanes 5 projected on the outside periphery of a striking impeller 4 rotating at a high speed in an arrow rotating direction 19 in the downward air flow 16 shown by the arrow to form molten metal drops or metallic powder 17. The above-mentioned striking vanes 5 are made into the helical cone shape projected on the outside periphery of the impeller 4 rotating around a revolving shaft 14 at 5-85 deg. helix angle alpha with respect to the shaft 14 and are provided with ventilating parts 18 so as not to disturb the downward air flow 16. The scattering direction of the molten drops which are ground is thereby controlled and the metallic powder having good quality is obtd. The much finer formation of the molten drops is also possible by disposing the impeller constituted similarly to the above-mentioned impeller 4 so as to face each other and bringing the molten drops obtd. in the above-mentioned manner into collision against such impellers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融金属を衝撃粉砕霧化する金属粉末の製造
方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method and apparatus for producing metal powder in which molten metal is atomized by impact pulverization.

〔従来の技術〕[Conventional technology]

従来、溶融金属から直接粉末を製造する方法としては、 (1)噴霧媒に水や油のごとき高速(高圧)液体を用い
る液体アトマイズ法、 (2)噴霧媒にN2.Arのごとき高速(高圧)気体を
用いるガスアトマイズ法、 (3)溶融金属をガスで霧吹きするスブレイアトマイズ
法、 (4)高圧ガスを吸蔵させた溶融金属を真空中に放出し
て吸蔵ガスの放出膨張によって噴霧する真空アトマイズ
法、 (5)円板、椀状ドラム等の高速回転体に溶融金属を注
入して遠心力によって飛散する。あるいはアーク放電、
電子ビーム、プラズマ、レーザー等を熱源として母材を
溶解しながら回転して遠心力によって飛散する遠心アト
マイズ法、 など種々の方法がある。
Conventionally, methods for producing powder directly from molten metal include (1) liquid atomization using a high-speed (high-pressure) liquid such as water or oil as the atomizing medium; (2) N2. Gas atomization method that uses high-velocity (high-pressure) gas such as Ar, (3) Sublay atomization method that atomizes molten metal with gas, (4) Release of molten metal that has occluded high-pressure gas into a vacuum to release the occluded gas. Vacuum atomization method in which the metal is atomized by expansion; (5) Molten metal is injected into a high-speed rotating body such as a disk or bowl-shaped drum and is dispersed by centrifugal force. Or arc discharge,
There are various methods such as centrifugal atomization, which uses an electron beam, plasma, laser, etc. as a heat source to melt the base material while rotating and scattering it due to centrifugal force.

近年、粉末冶金用、塗料顔料用、電磁用、触媒用または
溶射、肉盛用などの原料粉末として、非晶質の金属粉末
あるいは合金元素を著しく過飽和に固溶させた微細組織
を有する急冷凝固した高清沙な金属粉末を、低コストで
製造することが要望されている。ところが前記のごとき
金属粉末の製造方法では下記の問題点があり、これらの
要求を満足できない。
In recent years, rapid solidification with a microstructure in which amorphous metal powder or alloying elements are dissolved in a highly supersaturated solid solution has been used as raw material powder for powder metallurgy, paint pigments, electromagnetic applications, catalysts, thermal spraying, overlay applications, etc. There is a need to produce high-quality metal powder at low cost. However, the method for producing metal powder as described above has the following problems and cannot satisfy these requirements.

すなわち、 (1)液体アトマイズ法は液体による汚染が生ずる。That is, (1) In the liquid atomization method, contamination due to liquid occurs.

(2)ガスアトマイズ法では噴射ガス速度に限界がある
ことから、平均粒径で504m以下の微粉の製造が困難
であり、また製造された粒子はサテライトビルドアップ
を形成したり、噴霧ガスを捕捉する等の問題がある。
(2) In the gas atomization method, there is a limit to the injection gas velocity, so it is difficult to produce fine powder with an average particle size of 504 m or less, and the particles produced may form satellite build-ups or trap the spray gas. There are other problems.

(3)スプレィアトマイズ法ではスプレィノズルの材質
の点から高融点金属には適用することが困難である。
(3) The spray atomization method is difficult to apply to high melting point metals due to the material of the spray nozzle.

(4)真空アトマイズ法では、溶融金属と吸蔵ガスの種
類が限定され、粒子の冷却速度が102°K / S 
e C程度と遅く、また吸蔵ガスを捕捉する問題がある
(4) In the vacuum atomization method, the types of molten metal and storage gas are limited, and the cooling rate of particles is 102°K/S.
It is slow at about eC and has the problem of trapping storage gas.

(5)回転ディスクを用いた遠心アトマイズ法では、円
板あるいは椀状ディスクと溶融金属との間に滑りが生じ
、遠心力が回転ディスクの半径に半比例するという原理
トの理由から平均粒径で100μm程度の粉末しか得ら
れていない、また母材回転遠心アトマイズ法では母材の
加工および回転機構上の制約を受け、平均粒径で200
〜400ILm程度の粉末しか得られておらず、この他
にも母材の成分偏析等の問題もある。
(5) In the centrifugal atomization method using a rotating disk, slipping occurs between the disk or bowl-shaped disk and the molten metal, and the average particle size is In addition, the base material rotating centrifugal atomization method is limited by the processing of the base material and the rotation mechanism, so the average particle size is only about 100 μm.
Only about 400 ILm of powder has been obtained, and there are other problems such as component segregation in the base material.

以上の各方法に対し、突起や凹部を設けた歯車状または
羽根車状あるいは棒やハンマー状の打撃腕等の羽根車等
の衝撃力を作用させ、溶融金属の注入流を粉砕する回転
衝撃噴霧法によれば、溶融金属に与えられる衝撃エネル
ギーは羽根車の質量と回転速度の2乗に比例して増加す
るので、装置の大型化による量産が回走である。また回
転速度の増加による微粒化が可能となるから、微粒化に
ともなって105〜108°に/SeC程度の冷却速度
を達成できるようになる。
For each of the above methods, rotary impact spraying involves applying an impact force such as a gear-shaped or impeller-shaped impeller with protrusions or recesses, or an impeller such as a rod or hammer-shaped striking arm to crush the injected flow of molten metal. According to the law, the impact energy applied to the molten metal increases in proportion to the mass of the impeller and the square of the rotational speed, so mass production by increasing the size of the equipment is the key. Further, since it becomes possible to atomize the particles by increasing the rotational speed, it becomes possible to achieve a cooling rate of about 105 to 108°/SeC as a result of the atomization.

この回転衝撃噴霧法は、古くはビー拳アイ・オウψニス
・リポート(B、1.O,S。
This rotational impact spraying method was used in the old days of Bee Ken Eye O ψ Nis Report (B, 1. O, S).

Report No、706 、 No、1223)に
記載のデー・ペー・デー(D、P、G、)(回転円板)
法があり、近年ではパウダー メタラージ−インターナ
ショナル(Powder Metallurgy I 
nt、。
Report No. 706, No. 1223) (D, P, G,) (rotating disk)
In recent years, Powder Metallurgy International (Powder Metallurgy I
nt,.

Vol、l 1.1979.PI3)、特開昭58−1
53707号公報、特公昭58−35563号公報およ
び特開昭58−197206号公報に見ることができる
Vol, l 1.1979. PI3), JP-A-58-1
It can be found in Japanese Patent Publication No. 53707, Japanese Patent Publication No. 58-35563, and Japanese Patent Application Laid-open No. 197206/1983.

(a)回転円板法は第8図に示すごとく、溶融金属の注
入流を円錐状の水流で囲みながら落下させ、水平円板り
に立設した刃を水平方向に回転させて打撃粉砕する方法
であるが、水による汚染が生じ清浄な金属粉末を製造で
きない。
(a) As shown in Figure 8, in the rotating disk method, the molten metal is dropped while being surrounded by a cone-shaped water stream, and a blade installed on a horizontal disk is rotated in the horizontal direction to crush it by impact. However, it is not possible to produce clean metal powder due to water contamination.

(b)前記パウダー メタラージ−インターナショナル
および特開昭58−153707号公報に記載された方
法は、第9図および第10図にそれぞれ示すごとく、平
歯車状の凸起回転体を水平方向に回転させて、溶融金属
を回転方向から落下注入させ衝撃粉砕するものである。
(b) The method described in Powder Metallurgy International and JP-A-58-153707 rotates a convex rotating body in the form of a spur gear in the horizontal direction, as shown in FIGS. 9 and 10, respectively. In this method, molten metal is dropped and injected from the direction of rotation and is crushed by impact.

よって周速を速くするに従って水平方向に放出される気
流の流速と風量が増し、この気流が溶融金属の落下注入
流を飛散するようになる。
Therefore, as the circumferential speed increases, the velocity and volume of the airflow released in the horizontal direction increases, and this airflow scatters the falling injection flow of molten metal.

(c)特公昭5B−35563号公報および特開昭58
−197206号公報に記載の方法は第11図および第
12図にそれぞれ示すごとく。
(c) Japanese Patent Publication No. 5B-35563 and Japanese Unexamined Patent Publication No. 1983
The method described in Japanese Patent No. 197206 is shown in FIGS. 11 and 12, respectively.

水下回転軸をもつ衝撃体を縦方向に回転させ、−溶耐金
属を鉛直方向から落下注入させ衝撃粉砕するものである
。この場合は、#′I撃体の回転により回転円筒の半径
方向に放出される気流が溶融金属の注入流をまともに飛
散するから、その設置はα空槽内に限定される。
An impact body with an underwater rotating shaft is rotated vertically, and melt-resistant metal is injected vertically and crushed by impact. In this case, the air flow released in the radial direction of the rotating cylinder due to the rotation of the #'I bombardment body scatters the injection flow of molten metal, so its installation is limited to the α-vacuum tank.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

回転衝撃噴霧法により金属粉末を製造する場合の主たる
パラメータは、打撃羽根をもつ羽根車に関するものとし
て、打撃羽根の半径、打!!!羽根の玉量、打撃羽根の
形状と数、打撃羽根の回転数(周速)、打撃羽根の材質
などがあるが、前述の回転衝撃噴霧法およびその装置で
は次のような問題がある。
The main parameters when producing metal powder by rotary impact atomization are the radius of the striking vanes, the striking! ! ! There are various factors such as the amount of balls in the blade, the shape and number of the striking blades, the rotational speed (peripheral speed) of the striking blades, and the material of the striking blades, but the above-mentioned rotary impact spraying method and its apparatus have the following problems.

(イ)打撃羽根の回転により、回転円筒の半径方向に遠
心力が作用し気流が生ずる。この気流が溶融金属の注入
流に向かって放出されると、溶融金属の注入流が回転羽
根車に到達する以前に気流により飛散されてしまうとい
う問題点がある。とくに、羽根車の半径や回転数を大き
くした場合や衝撃噴霧の前段階で他の気流などによる予
備噴霧を併用する場合は深刻な問題となる。従って、前
記公知の方法および装置では、打撃羽根の突起の高さや
四部の深さ、あるいは打撃腕の長さを極力短くして気流
の発生を抑制している。また、羽根車を水平方向に回転
させ気流を径方向である水平方向に放出させ、溶融金属
を鉛直方向から注入して気流による飛散を避けている。
(a) Rotation of the striking blades causes centrifugal force to act in the radial direction of the rotating cylinder, creating airflow. If this airflow is discharged toward the molten metal injection stream, there is a problem in that the molten metal injection stream is blown away by the airflow before reaching the rotary impeller. In particular, this becomes a serious problem when the radius or rotational speed of the impeller is increased, or when pre-spraying using other airflows is used in advance of impact spraying. Therefore, in the known method and device, the height of the protrusion of the striking blade, the depth of the four parts, or the length of the striking arm are made as short as possible to suppress the generation of air current. In addition, the impeller is rotated horizontally to emit airflow in the radial direction, which is the horizontal direction, and molten metal is injected from the vertical direction to avoid scattering due to the airflow.

さらには真空中に設けられる。Furthermore, it is provided in a vacuum.

(ロ)前記公知の回転衝撃噴霧法および装置では、粉砕
した溶滴の飛散が広範囲で、溶融金属を注入する鉛直方
向への飛散が多く、捕集槽(雰囲気維持槽)の天井ある
いは溶融金属注入装置の底に付着して注入流を乱したり
粉末の回収歩留を減少させるのみならず、付着物のはげ
落ちが打撃羽根を破損する。また、この回転方向への飛
散滴は粗粒である。
(b) In the above-mentioned known rotary impact spraying method and device, the crushed droplets are scattered over a wide range, often in the vertical direction where the molten metal is injected, and the molten metal is scattered on the ceiling of the collection tank (atmosphere maintenance tank). Not only does it adhere to the bottom of the injection device and disturb the injection flow and reduce the recovery yield of powder, but the adhering material flakes off and damages the striking blades. Further, the scattered droplets in this direction of rotation are coarse particles.

(ハ)前記公知の回転衝撃噴霧法および装置は、突起を
有する1つの羽根車で構成されている。
(c) The known rotary impact spraying method and device are comprised of one impeller having a protrusion.

従って、ひとたび衝撃粉砕された溶融金属滴は。Thus, once a molten metal droplet is impact-shattered.

まだ溶融状態であるにもかかわらず飛散してしまい再び
衝撃粉砕を受けることがない。
Even though it is still in a molten state, it scatters and is not subjected to impact pulverization again.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記(イ)、(ロ)、(ハ)の問題を解決する
ために、基本的には、 A)下向空気流を生成させ、その中で溶融金属の落下流
を処理する。
In order to solve the above-mentioned problems (a), (b), and (c), the present invention basically consists of: A) generating a downward air flow and treating the falling flow of molten metal therein;

B)溶融金属の落下流に対して傾きを持った羽根車によ
って落下流を斜切りする。
B) The falling flow of molten metal is obliquely cut by an impeller that is inclined to the falling flow.

ことによって解決を図り、さらに C)再粉砕する第2の打撃羽根を設けてさらに粉砕効果
を七げる。
C) A second blowing blade for re-pulverization is provided to further improve the crushing effect.

こととした。I decided to do so.

第8〜12図記載の従来方法および装置において、回転
打撃羽根の引起こす気流が溶湯金属注入流を飛散させる
という問題に対しては、打撃羽根の長手方向を、その回
転軌跡の径線に対し接線方向に捩ることにより打撃羽根
によって生じる空気流を下向きに向けることによって、
解決することができる。
In the conventional method and apparatus shown in FIGS. 8 to 12, in order to solve the problem that the airflow caused by the rotating striking blade scatters the molten metal injection flow, the longitudinal direction of the striking blade is set relative to the axis of its rotation locus. By directing the airflow produced by the striking vanes downwards by twisting tangentially,
It can be solved.

回転打撃噴霧法では、溶融金属流を回転打撃羽根の前面
でα横から水平に打撃粉砕するのが最も効率的である。
In the rotary percussion spray method, it is most efficient to impact and crush the molten metal stream horizontally from the α side in front of the rotary percussion blade.

ところが、このような打撃羽根では回転速度を速くする
ほど、溶融金属注入流に向い合っている打撃羽根のL面
および前上辺で該溶融金属を粉砕噴霧する機会が増え、
該溶融金属注入方向への飛散を生じるとともに、その飛
散溶滴は粗粒であるという問題が生じる。そこで本発明
は溶融金属の落下流を斜切りすることとした。すなわち
、打撃羽根を上記の如く、はすば状に捩ると共に打撃羽
根の外周に軸方向の傾斜を設げ1回転軸に対して捩れ角
をもつはすば傘歯状の打撃羽根とし、その外縁部斜面部
に溶融金属の落下流を供給するようにした。これにより
上記注入方向への飛散はなくなり、粉砕噴霧した溶滴の
飛散方向を下向きにすることができる。さらに打撃羽根
に並設した第2の回転打撃羽根で再粉砕することにより
粉砕効率を高めた。
However, with such a striking blade, the faster the rotation speed is, the more opportunities there are to crush and spray the molten metal on the L side and front upper side of the striking blade facing the molten metal injection flow.
A problem arises in that the molten metal is scattered in the direction in which the molten metal is injected, and the scattered droplets are coarse particles. Therefore, in the present invention, the falling flow of molten metal is obliquely cut. That is, as described above, the striking blades are twisted into a helical shape, and the outer periphery of the striking blades is inclined in the axial direction, so that the striking blades are shaped like helical bevel teeth and have a twist angle with respect to the axis of rotation. A falling flow of molten metal was supplied to the sloped area of the outer edge. As a result, scattering in the injection direction is eliminated, and the scattering direction of the crushed and sprayed droplets can be directed downward. Furthermore, the crushing efficiency was increased by re-pulverizing the powder using a second rotating blowing blade installed in parallel with the blowing blade.

また吸込気流が該通気部を通って素早く放出されるよう
に打撃羽根に通気部を設けた。
Also, a vent was provided in the striking blade so that the suction airflow could be quickly discharged through the vent.

〔作用〕[Effect]

本発明によれば溶融金属の注入流が打撃羽根の回転によ
り放出されたり、気流によって飛散されたりすることな
く衝撃粉砕される。しかも衝撃粉砕した溶滴が鉛直方向
あるいは溶融金属の注入方向へ飛散するのを防1卜する
ことができる。さらには複数個の羽根車を用い再粉砕す
るので微粒化することができる。
According to the present invention, the injection flow of molten metal is pulverized by impact without being discharged by the rotation of the striking blade or being scattered by the air current. Furthermore, it is possible to prevent the impact-pulverized droplets from scattering in the vertical direction or in the injection direction of the molten metal. Furthermore, since it is re-pulverized using a plurality of impellers, it can be made into fine particles.

また打撃羽根に通気部を設けることによって吸込気流を
速やかに通過させるので、衝撃粉砕効率が向丘するばか
りではなく、打撃羽根の気流冷却の便進と、打撃羽根へ
の風圧(風損)の減少が計れるから回転動力源を低出力
化できる。
In addition, by providing a ventilation section in the striking blade, the suction airflow passes through quickly, which not only improves the impact crushing efficiency, but also improves the airflow cooling of the striking blade and reduces the wind pressure (windage loss) on the striking blade. can be measured, so the output of the rotary power source can be reduced.

〔実施例〕〔Example〕

実施例1 第1図は本発明方法の実施に用いる打撃羽根車4の1例
であって、(a)は平面図、(b)は斜視図である。打
撃羽根5は羽根車4から突設され、打撃前面6、打撃周
縁部7、打撃背面lO1打撃上面11および打撃底面1
3により構成される。この打撃羽根5を回転させたとき
、その打撃羽根5の打撃周縁部7もしくは打撃周縁部の
延長線8の回転軌跡が実質的に円錐形を形成するように
、打撃周縁部7を回転軸14に対して任意の角度で傾斜
させる。以下、この角度を傾斜角βと称する。傾斜角β
は上記仮想円錐の頂角の172の全角にほぼ相当する。
Embodiment 1 FIG. 1 shows an example of a striking impeller 4 used in carrying out the method of the present invention, in which (a) is a plan view and (b) is a perspective view. The striking blade 5 projects from the impeller 4 and includes a striking front surface 6, a striking peripheral part 7, a striking rear surface lO1, a striking top surface 11, and a striking bottom surface 1.
Consisting of 3. When the striking blade 5 is rotated, the striking peripheral part 7 is connected to the rotation axis 14 such that the rotation locus of the striking peripheral part 7 of the striking blade 5 or the extension line 8 of the striking peripheral part substantially forms a conical shape. tilt at any angle. Hereinafter, this angle will be referred to as an inclination angle β. Tilt angle β
approximately corresponds to 172 full angles of the apex angle of the virtual cone.

また、打撃羽根5の打撃底面13を、その回転位相が遅
れるようにひねって羽根車を構成する。
Moreover, the impeller is constructed by twisting the striking bottom surface 13 of the striking blade 5 so that its rotational phase is delayed.

具体的な打撃羽根5としては、その打撃羽根を回転させ
たときその打撃周縁部7もしくはその打撃周縁部の延長
8が実質的に円錐形であり、打撃周縁部の中心9から回
転軸14に向って下した垂線15に直交する面に投影し
たとき長手方向を1つ有するものであって、この長手方
向が回転軸14に対してはすば状にひねられており、打
撃底面13が打撃上面11に対して位相が遅れて回転す
るように構成する。
Specifically, the striking blade 5 is such that when the striking blade is rotated, the striking peripheral edge 7 or the extension 8 of the striking peripheral edge is substantially conical, and the striking blade extends from the center 9 of the striking peripheral edge to the rotation axis 14. It has one longitudinal direction when projected onto a plane perpendicular to the perpendicular line 15, which is twisted in a helical shape with respect to the rotating shaft 14, and the striking bottom surface 13 is It is configured to rotate with a phase delay relative to the upper surface 11.

この打撃羽根5が回転軸に対してはすば状にひねられて
いる角度を捩れ角αと呼称する。
The angle at which the striking blade 5 is twisted in a helical shape with respect to the rotation axis is called a twist angle α.

F記のように、打撃周縁部もしくは打撃周縁部の延長線
の回転軌跡が円錐形を形成するように該打撃周縁部を傾
斜させ、かつ、打撃底面が打撃上面に対して位相が遅れ
て回転するようにその打撃前面をひねって打撃羽根を設
けることにより、打撃羽根車4は位相が先行して回転す
る打撃上面または周縁部から気流を吸い込み、位相が遅
れて回転する打撃底面から回転軸方向へほぼ下向きに気
流を放出する。よって、溶融金属を打撃羽根周縁部に注
入することにより、吸い込み気流に乗って来る溶融金属
注入流を回転する打撃羽根の周縁部で効果的に斜切り粉
砕噴霧することができる。このとき、溶融金属の注入軸
3が打撃羽根周縁部に対して入射する角をθとすれば打
撃羽根周縁部で粉砕噴霧した溶滴は入射角θと対称の反
射角θaでもって打撃羽根周縁部の回転方向の接線を中
心にして同心円錐状に飛散する。これにより鉛直方向あ
るいは溶融金属の注入軸方向への溶滴の飛散を減少する
ことができるばかりでなく全く防1トすることもできる
。入射角θは限定されない。
As shown in F, the striking periphery is inclined so that the rotation locus of the striking periphery or an extension of the striking periphery forms a conical shape, and the striking bottom surface rotates with a lag in phase with respect to the striking top surface. By twisting the striking front surface and providing a striking vane, the striking impeller 4 sucks in airflow from the striking top surface or peripheral part, which rotates with the phase leading, and from the striking bottom surface, which rotates with the phase delayed, in the direction of the rotation axis. The airflow is released almost downward. Therefore, by injecting the molten metal into the peripheral edge of the striking blade, the molten metal injected flow riding on the suction airflow can be effectively obliquely cut and pulverized and sprayed at the peripheral edge of the rotating striking blade. At this time, if the angle at which the injection shaft 3 of the molten metal is incident on the periphery of the striking blade is θ, the droplets crushed and sprayed at the periphery of the striking blade will reach the periphery of the striking blade with a reflection angle θa that is symmetrical to the incident angle θ. It scatters in a concentric conical shape centered on the tangent to the direction of rotation of the part. This not only reduces the scattering of droplets in the vertical direction or in the direction of the injection axis of the molten metal, but also completely prevents it. The incident angle θ is not limited.

貨って入射角0と互いにほぼ全角をなす打撃羽根5の傾
斜角βを限定する必要はない、また、その打撃羽根5の
周縁部を第2図に示すように前面から背面に向って回転
半径が短くなるように面取りするか、または薄肉にする
ことによって打撃羽根の周縁部の外周面を線状に形成す
れば、外周面とで粉砕噴霧することを回避し、斜切り作
用のみによる粉砕とすることができる。
Therefore, it is not necessary to limit the inclination angle β of the striking blade 5, which makes almost a full angle with respect to the incident angle 0, and the peripheral edge of the striking blade 5 can be rotated from the front side to the back side as shown in FIG. If the outer circumferential surface of the peripheral edge of the striking blade is formed into a linear shape by chamfering the radius to shorten it or making it thinner, it is possible to avoid crushing and spraying with the outer circumferential surface, and to reduce the crushing by only the diagonal cutting action. It can be done.

なお、打撃羽根周縁部の形状は、必ずしも直線状である
必要はなく、多少凹凸があってもよく、あるいは弓形、
円弧形であっても良く、要するに打撃周縁部もしくはそ
の概略延長線の回転軌跡が大略円錐状であれば良い。
Note that the shape of the peripheral edge of the striking blade does not necessarily have to be straight, and may be somewhat uneven, or arcuate, or curved.
It may be arcuate, as long as the rotation locus of the striking peripheral edge or its approximate extension line is approximately conical.

また、打撃羽根5の捩れ角αが5度未満のとき、打撃羽
根の半径方向へ遠心力作用により気流が放出されるよう
になり、仮想回転円錐形成面のL空間で溶融金属注入流
が飛散を受けるようになる。これに対し、捩れ角αが8
5度を越えると、打撃羽根の周縁部あるいは打撃背面で
専ら粉砕されることになり、粉砕金属粒が粗粒化する。
Furthermore, when the torsion angle α of the striking blade 5 is less than 5 degrees, airflow is released in the radial direction of the striking blade due to centrifugal force, and the molten metal injection flow is scattered in the L space of the virtual rotating cone forming surface. will begin to receive On the other hand, the twist angle α is 8
If the angle exceeds 5 degrees, the pulverized metal particles will be crushed exclusively at the peripheral edge of the striking blade or the back surface of the striking blade, and the pulverized metal particles will become coarse.

−よって、打撃前面あるいは打撃周縁部により効率良く
横衝撃するためには、捩れ角αを5〜85度の範囲とす
る。
- Therefore, in order to more efficiently apply a lateral impact to the front of the impact or the periphery of the impact, the torsion angle α should be in the range of 5 to 85 degrees.

次に、打撃羽根5を有する1個の羽根車4を用いる本発
明の実施例(以下シングル方式という)について説明す
る。
Next, an embodiment of the present invention using one impeller 4 having a striking blade 5 (hereinafter referred to as a single type) will be described.

第3図は1個の羽根車4を用いた本発明を好適に実施す
ることのできる実施例装置の主要部の概念図である。
FIG. 3 is a conceptual diagram of the main parts of an embodiment of a device that can suitably carry out the present invention using one impeller 4.

第3図において、1個以上の打撃羽根5を有する1個の
羽根車番が、軸受で支持され駆動装置により回転自在に
設けられ、雰囲気の維持あるいは集粉のため図示しない
ハウジング(噴霧槽)で包囲される。また必要に応じて
溶融金属の供給装置、例えばタンディツシュ1もハウジ
ングで包囲される。
In FIG. 3, one impeller having one or more striking blades 5 is supported by a bearing and rotatably provided by a drive device, and is provided with a housing (not shown) for maintaining the atmosphere or collecting powder. surrounded by. Further, if necessary, a molten metal supply device, such as a tundish 1, is also surrounded by the housing.

ここで、打撃羽根5の回転周縁部が截頭円錐を形成する
ように、回転軸14に対し任意の傾斜角βで、かつ、截
頭円錐の回転半径の長い打撃底面13の位相が遅れて回
転するように5〜85度の捩れ角αをもつ打撃羽根を設
けて羽根車4を構成した。
Here, the phase of the striking bottom surface 13, which has an arbitrary inclination angle β with respect to the rotation axis 14 and has a long rotation radius of the truncated cone, is delayed so that the rotation peripheral edge of the striking blade 5 forms a truncated cone. The impeller 4 was constructed by providing a striking blade having a twist angle α of 5 to 85 degrees so as to rotate.

この羽根114を回転させると、打撃羽根5の截頭円錐
の回転半径の短い打撃E面llと打撃周縁部7とが先行
回転して気流16を吸入し、これを打撃底面13から下
方へ放出する。この、回転打撃羽ff15の打撃周縁部
に向って溶融金属を注入するとその流れ2は、気流16
によって回転する打撃羽根5の打撃周縁部に導かれ、横
衝撃を受けて斜切りされ粉砕噴霧され、溶融金属滴ある
いは金属粉末17となって飛散する。
When the blade 114 is rotated, the impact surface ll of the truncated cone of the impact blade 5 having a short rotation radius and the impact peripheral portion 7 rotate in advance to suck in the airflow 16 and discharge it downward from the impact bottom surface 13. do. When the molten metal is injected toward the striking peripheral part of the rotating striking vane ff15, the flow 2 becomes the airflow 16.
The metal is guided to the striking periphery of the rotating striking blade 5, is subjected to a lateral impact, is cut obliquely, is pulverized and sprayed, and is scattered as molten metal droplets or metal powder 17.

この時、打撃羽根5はその周縁部が截頭円錐を形成する
ように任意の傾斜角βで設けられているため、打撃周縁
部7で粉砕噴霧された溶融金属滴あるいは金属粉末17
は、打撃周縁部7に対し溶融金属の注入方向の入射角0
と対称の反射角Oaの方向をもって打撃周縁部7の衝突
衝撃粉砕点から回転の接線を中心にした同心円錐状に飛
散し、回転方向あるいは溶融金属の注入軸3の方向へ飛
散するのを減少あるいは防(トすることができる。
At this time, since the striking blade 5 is provided with an arbitrary inclination angle β so that its peripheral edge forms a truncated cone, the molten metal droplets or metal powder 17 crushed and sprayed at the striking peripheral edge 7
is an incident angle of 0 in the injection direction of the molten metal with respect to the striking peripheral portion 7.
The molten metal is scattered in a concentric conical shape centered on the tangent of rotation from the collision impact pulverization point of the impact peripheral edge 7 with the direction of the reflection angle Oa symmetrical to , thereby reducing the scattering in the direction of rotation or in the direction of the injection axis 3 of the molten metal. Or it can be prevented.

次に第3図に示す1個の羽根車を下記の条件で水平方向
に回転させ、280℃のSnの溶湯を2mmφのノズル
で回転方向から自然落下注入して衝撃粉砕した実施例に
ついて述べる。
Next, an example will be described in which one impeller shown in FIG. 3 was rotated in the horizontal direction under the following conditions, and molten Sn at 280° C. was injected gravity-dropped from the direction of rotation using a 2 mmφ nozzle and pulverized by impact.

打撃羽根の数:8(45度ごとの等間隔)打撃羽根の傾
斜角:2度、5度、25度、45度、75度、85度、 打撃羽根の捩れ角:0度、5度、20度、30度、45
度、65度、85度、 90度、 回転軸から打撃羽根の衝撃粉砕点までの距離(回転衝撃
半径):160mm 打撃羽根の衝撃粉砕点の回転周速(回転衝撃周速):1
00m/sec 打撃羽根の材質:軟鋼 打撃羽根の風圧を受ける面の通気孔:有(面積が羽根面
の172)または無し 打撃羽根の衝撃粉砕点から噴霧チャンバーの天井までの
回転距離:300mm 第5図に打撃羽根の傾斜角と溶融金属注入量に対する天
井付着列の関係を示す、第6図に打撃羽根の捩れ角と篩
分は粒度分布から求めたメジアン径の関係を示す、第5
図および第6図から明らかなように、打撃羽根の傾斜角
が大きくなるほど噴霧チャンバーの天井への付着量が減
少し、傾斜角が75度以上のとき天井へ全く付着しない
、これにより、溶融金属注入方向に対し、打撃羽根の傾
斜角を変えることによって衝撃粉砕後の溶滴あるいは金
属粉末の飛散方向を制御できることが判る。また、打撃
羽根の捩れ角が5〜85度のとぎ衝撃粉砕が効果的に行
なわれ、さらに打撃羽根に通気孔を設けることによって
一段と微粒化することが判る。
Number of blowing blades: 8 (equally spaced every 45 degrees) Inclination angle of hitting blades: 2 degrees, 5 degrees, 25 degrees, 45 degrees, 75 degrees, 85 degrees, Twisting angle of hitting blades: 0 degrees, 5 degrees, 20 degrees, 30 degrees, 45
degree, 65 degrees, 85 degrees, 90 degrees, Distance from the rotation axis to the impact crushing point of the striking blade (rotational impact radius): 160 mm Rotational circumferential speed of the impact crushing point of the striking blade (rotational impact circumferential speed): 1
00m/sec Material of the blowing blade: Mild steel Ventilation holes on the surface of the blowing blade that receives wind pressure: Yes (area is 172 mm on the blade surface) or not Rotating distance from the impact crushing point of the hitting blade to the ceiling of the spray chamber: 300 mm 5th Figure 6 shows the relationship between the inclination angle of the blowing blade and the ceiling adhesion row with respect to the amount of molten metal injected.
As is clear from the figure and Fig. 6, as the inclination angle of the striking blade increases, the amount of adhesion to the ceiling of the spray chamber decreases, and when the inclination angle is 75 degrees or more, no adhesion to the ceiling occurs. It can be seen that by changing the inclination angle of the striking blade with respect to the injection direction, the scattering direction of droplets or metal powder after impact pulverization can be controlled. It is also seen that the sharpening impact pulverization is effectively carried out when the torsion angle of the striking blades is 5 to 85 degrees, and further atomization is achieved by providing ventilation holes in the striking blades.

実施例2 第1の打撃羽根車と第2の打撃羽根車をηいに対向させ
て並設し、それらの羽根車の間で溶融金属を界返し衝撃
粉砕することにより一段と微粒化することができる。具
体的には、2個の羽根車が用いられる。すなわち、前記
のごとき打撃羽根が傾斜角と涙れ角とを備え、その打撃
周縁部もしくは打撃周縁部の延長線の外周の回転軌跡が
実質的に円錐形である第1の打撃羽根車と、打撃羽根の
外周の回転軌跡が円柱形であり、回転軸に対して5〜8
5度の捩れ角を持つ第2の打撃羽根車とを用い、第1の
打撃羽根車の打撃羽根周縁部と第2の打撃羽根車の打撃
羽根周縁部とを対向させて配置し、互いに同一方向ある
いは反対方向へ回転させる。こうして第1の打撃羽根車
の回転円錐形成面に溶融金属を注入して第1の打撃羽根
車の第1の打撃羽根周縁部で斜切りすると、横衝撃を受
けて粉砕噴霧され、入射角θと対称方向の反射角θaを
もって接線方向へ飛散し、この飛散溶滴が、対向して回
転する第2の打撃羽根車の打撃羽根周縁部で効率良く再
度粉砕噴霧される。第2の打撃羽根車の打撃羽根の捩れ
角は、前記と同じ理由で5〜85度が好適である。第2
の打撃羽根車20の打撃羽根21の捩れ角αおよび回転
方向19は、打撃羽根車4の気流15の放出方向に合わ
せて決められる。
Example 2 A first percussion impeller and a second percussion impeller are arranged side by side facing each other, and the molten metal can be further atomized by impact pulverization between the impellers. can. Specifically, two impellers are used. That is, a first striking impeller in which the above-mentioned striking vanes have an inclination angle and a weeping angle, and the rotation locus of the outer periphery of the striking peripheral edge or an extension of the striking peripheral edge is substantially conical; The rotation locus of the outer periphery of the striking blade is cylindrical, and the angle of rotation is 5 to 8 with respect to the rotation axis.
A second striking impeller having a twist angle of 5 degrees is used, and the striking impeller's circumferential edge of the first striking impeller and the striking impeller's circumferential edge of the second striking impeller are arranged to face each other, and the striking impeller is identical to each other. rotate in one direction or the other. In this way, when molten metal is injected into the rotating cone forming surface of the first striking impeller and cut obliquely at the peripheral edge of the first striking impeller of the first striking impeller, it is pulverized and sprayed by a lateral impact, and the incident angle θ The scattered droplets are scattered in the tangential direction with a reflection angle θa symmetrical to , and these scattered droplets are efficiently crushed and sprayed again at the peripheral edge of the striking impeller of the second striking impeller rotating oppositely. The torsion angle of the striking blades of the second striking impeller is preferably 5 to 85 degrees for the same reason as described above. Second
The twist angle α and rotation direction 19 of the striking impeller 21 of the striking impeller 20 are determined according to the discharge direction of the airflow 15 of the striking impeller 4.

第4図は打撃羽根車と衝撃羽根車とを、それらの打撃羽
根が対向するように配置した本発明を実施する装置の主
要部の概念図の1例である。
FIG. 4 is an example of a conceptual diagram of a main part of an apparatus for carrying out the present invention, in which a percussion impeller and an impact impeller are arranged so that the percussion blades face each other.

第4図に示す第1の打撃羽根車4と第2の打撃羽根車2
0を第1表の如く構成し、それらの打撃羽根を間隔5m
mで互いに向い合せて配置して、水平の同一方向に回転
させ(以下、ツイン方式と記す)、280℃のSnおよ
び1600℃のステンレス鋼(SUS304)の溶湯を
4mmφのノズルで第1の打撃羽根車の周縁部に向けて
回転方向から注入して衝撃粉砕した。なお、溶融金属の
注入位置は、第1の打撃羽根車と第2の打撃羽根車のそ
れぞれの回転軸心を結ぶ線から、打撃羽根車の回転打撃
半径が160mmで、かつ回転方向に対して20度後方
の点とした。
A first striking impeller 4 and a second striking impeller 2 shown in FIG.
0 as shown in Table 1, and the striking blades are arranged at intervals of 5 m.
280°C Sn and 1600°C molten stainless steel (SUS304) were first struck with a 4mmφ nozzle. It was injected from the direction of rotation toward the periphery of the impeller and pulverized by impact. In addition, the injection position of the molten metal is determined from the line connecting the respective rotational axes of the first striking impeller and the second striking impeller when the rotation impact radius of the striking impeller is 160 mm and with respect to the rotation direction. The point was set 20 degrees behind.

第7図に打撃羽根の回転衝撃周速と篩分は粒度分析から
求めたメジアン径の関係を示す。
FIG. 7 shows the relationship between the rotational impact circumferential speed of the striking blade and the median diameter of the sieve fraction determined from particle size analysis.

第  1  表 第7図から明らかなように、金属粉末は打撃羽根の回転
衝撃周速に反比例して微粒化し、同一周速においてツイ
ン方式はシングル方式に比べ一段と微粒化することが判
る。
As is clear from Table 1 and Figure 7, the metal powder is atomized in inverse proportion to the rotational impact circumferential speed of the striking blade, and it can be seen that the twin method is more atomized than the single method at the same peripheral speed.

第1および第2の羽根車の打撃羽根5と21を中抜きし
て通気m18を設けることにより、該羽根が回転で受け
る風圧(風損)や遠心力の減少を図ることができ、気流
冷却を促進でき、回転動力を有利なものとすることがで
きる。
By hollowing out the striking blades 5 and 21 of the first and second impellers and providing ventilation m18, it is possible to reduce the wind pressure (windage loss) and centrifugal force that the blades receive during rotation, and airflow cooling. can be promoted, and rotational power can be made advantageous.

なお、互いに向い合う羽根車の打撃羽根の回転円筒面間
の距離は、羽根車に設ける打撃羽根の半径、形状、設置
数および羽根車の配置等から適宜選択するが、装置の構
成上からOy5〜100mm程度の範囲がよいが、向い
合う打撃羽根が互いに衝突しない条件を設定して2重複
するように配置することもできる。また、各羽根車(打
撃羽根も含む)の半径および形状を同一とし、同一回転
数(同一周速)とする場合の他に、それらをすべて%な
る条件で溶融金属を粉砕することもできる。
The distance between the rotating cylindrical surfaces of the striking blades of the impellers facing each other is appropriately selected from the radius, shape, number of installed impellers, and arrangement of the impellers provided on the impeller. A range of approximately 100 mm is preferable, but it is also possible to arrange two overlapping blades under the condition that the facing blades do not collide with each other. Further, in addition to the case where the radius and shape of each impeller (including the striking blades) are the same and the number of revolutions (same circumferential speed) is the same, it is also possible to crush the molten metal under the condition that all of them are %.

第7図にも示されるように、回転衝撃噴霧装置により製
造された金属粉末は、打撃羽根の周速が大きいほど微粒
化し、また打撃羽根の数が多いほど(打撃羽根のピー、
チが小さいほど)打撃羽根の短辺と長辺(長手方向)と
の比が大きいほど、溶融金属の注入流の径が小さいほど
微粉化する傾向を示し、同時に急速冷却される。この溶
融金属の流れは耐火物製等のノズルから重力で落下する
柱状流であってもよいし、また他の方法例えば、ガスア
トマイズ等により前もって噴霧された分散滴であっても
よい。
As shown in FIG. 7, the metal powder produced by the rotary impact atomizer becomes more atomized as the circumferential speed of the impact blades increases, and as the number of impact blades increases (the
The smaller the ratio of the short side to the long side (longitudinal direction) of the striking blade, and the smaller the diameter of the molten metal injection stream, the more likely it is to be pulverized, and at the same time it is rapidly cooled. This flow of molten metal may be a columnar flow that falls by gravity from a nozzle made of refractory material, or may be dispersed droplets that have been previously atomized by other methods such as gas atomization.

また、雰囲気は自由に選ぶことができ、酸素源を含まな
い雰囲気にすることにより非酸化粉末を得ることができ
るし、真空または減圧雰囲気中で本発明のように構成し
た打撃羽根を適用して金属粉末を得ることもでさる。さ
らに、打撃羽根は、羽根車と一体に形成してもよくある
いは着脱自在にすることもでき、その材質は金属、セラ
ミックス、黒鉛またはそれらの複合材を適宜選択するこ
とができる。打撃羽根は、ターボ形の送風機、圧1ii
Anあるいはプロペラに見るごとく、その形状が例えば
反力形あるいは三日月形の羽根であってもよく、直線的
にあるいは湾曲して取り付けられ、その周縁部の回転軌
跡は截頭円錐状のみならず、円錐状、双曲体状であって
もよい。回転軸は、鉛直方向に限られるものではなく、
水平あるいは鉛直と水平の間で任意に傾けて設けること
ができる。
Further, the atmosphere can be freely selected, and non-oxidized powder can be obtained by creating an atmosphere that does not contain an oxygen source, or by applying the striking blade constructed as in the present invention in a vacuum or reduced pressure atmosphere. It is also possible to obtain metal powder. Further, the striking blades may be formed integrally with the impeller or may be detachable, and the material thereof may be appropriately selected from metal, ceramics, graphite, or a composite material thereof. The blowing blade is a turbo type blower, pressure 1ii
As seen in propellers, the shape of the blades may be, for example, reaction-shaped or crescent-shaped, and they are installed linearly or curved, and the rotation locus of the peripheral edge is not only truncated, but also shaped like a truncated cone. It may be conical or hyperbolic. The axis of rotation is not limited to the vertical direction;
It can be installed horizontally or at any angle between vertical and horizontal.

〔発明の効果〕〔Effect of the invention〕

本発明の金属粉末の製造方法およびその製造装置は以り
のように構成されているので、微粒化による急速冷却に
よって、非晶質の金属粉末あるいは合金元素を過飽和固
溶した微細組織等の特殊な組織を持つ高品質の金属粉末
を製造することができる。
The method for producing metal powder and the apparatus for producing the same according to the present invention are configured as described above, so that by rapid cooling through atomization, special structures such as amorphous metal powder or a fine structure with supersaturated solid solution of alloying elements are formed. It is possible to produce high quality metal powder with a unique structure.

また、打撃周縁部がほぼ円錐形を形成するように傾斜し
た打撃羽根で溶融金属注入流を斜切り衝撃粉砕すること
により、粉砕溶滴の飛散方向を制御することができ、ざ
らに該溶滴を対向して設けた第2の羽根車の打撃羽根へ
効率良く衝突させることができるため、一段と微粒化を
達成することができる。さらに、打撃羽根に通気部を設
けることにより水冷の他に気流冷却を促進し、かつ風損
を軽減できるのでこの面からも装置の大型化、動力の減
少、および粉末の量産化ができるなどの効果を奏する。
In addition, by impact-pulverizing the molten metal injection stream with oblique cutting impact using the impact blades whose impact periphery forms a substantially conical shape, the scattering direction of the crushed droplets can be controlled, and the droplets can be roughly Since the particles can be efficiently collided with the striking blades of the second impeller disposed opposite to each other, further atomization can be achieved. Furthermore, by providing a ventilation section in the striking blade, it is possible to promote airflow cooling in addition to water cooling and reduce wind damage, which also makes it possible to increase the size of equipment, reduce power, and mass-produce powder. be effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例の羽根車であって
、それぞれ(a)平面図、(b)斜視図、第3図はシン
グル方式の本発明の実施例の装置の主要部の概念図、第
4図はツイン方式の本発明の実施例の装置の主′要部の
概念図、第5図は第3図に示す装置を用いたときの打撃
羽根の傾斜角と溶融金属注入量に対する天井付着量の関
係を示すグラフ、第6図は第3図に示す装置を用いたと
きの打撃羽根の捩れ角と金属粉末のメジアン径の関係を
示すグラフ、第7図は第3図および第4図に示す装置を
用いたときの打撃羽根の回転衝撃周速と金属粉末のメジ
アン径の関係を示すグラフ、第8図〜第12図は従来の
回転衝撃噴霧法およびその装置の概要を示す説明図であ
る。 l・・・溶融金属供給部(タンディツシュ)2・・・溶
融金属の注入流 3・・・溶融金属の注入軸 4・・・打撃羽根車 5・・・打撃羽根 6・・・打撃羽根の前面 7・・・打撃羽根の周縁部 8・・・打撃羽根の周縁部の延長線 9・・・打撃羽根の周縁部の中心 10・・・打撃羽根の背面 11・・・打撃羽根のL面 12・・・打撃羽根の前り辺 13・・・打撃羽根の底面 14・・・回転軸 15・・・打撃羽根の外側面の中心から回転軸に下した
[有]線 16・・・気流 17・・・溶融金属滴あるいは金属粉末18・・・通気
部 l9・・・回転方向 20・・・第2の打撃羽根車 21・・・第2の打撃羽根車の打撃羽根22・・・第2
の打撃羽根車の回転軸 α・・・打撃羽根の捩れ角 β・・・打撃羽根の傾斜角 0・・・溶融全屈の入射角
1 and 2 show an impeller according to an embodiment of the present invention, respectively (a) is a plan view, (b) is a perspective view, and FIG. 3 is a main part of a single type device according to an embodiment of the present invention. 4 is a conceptual diagram of the main parts of the twin-type device according to the embodiment of the present invention, and FIG. 5 shows the inclination angle of the striking blade and molten metal when the device shown in FIG. 3 is used. 6 is a graph showing the relationship between the amount of ceiling deposited and the amount of injection, and FIG. Graphs showing the relationship between the rotational impact circumferential speed of the striking blade and the median diameter of the metal powder when using the apparatus shown in Figure 4 and Figure 4. Figures 8 to 12 show the conventional rotary impact spraying method and its equipment. It is an explanatory diagram showing an outline. l... Molten metal supply section (tundish) 2... Molten metal injection flow 3... Molten metal injection shaft 4... Strike impeller 5... Strike vane 6... Front side of the strike vane 7...Peripheral edge of the striking blade 8...Extension line of the peripheral edge of the striking blade 9...Center of the peripheral edge of the striking blade 10...Back surface 11 of the striking blade 12...L side 12 of the striking blade ... Front side of the striking blade 13... Bottom surface of the striking blade 14... Rotating shaft 15... Line 16 drawn from the center of the outer surface of the striking blade to the rotating shaft 16... Air flow 17 ... Molten metal droplets or metal powder 18 ... Ventilation section l9 ... Rotation direction 20 ... Second blowing impeller 21 ... Striking blades 22 of the second blowing impeller ... Second
Rotation axis α of the striking impeller...Twist angle β of the striking vane...Inclination angle of the striking vane 0...Incidence angle of total melt bending

Claims (1)

【特許請求の範囲】 1 溶融金属落下流を下向きの空気流中で衝撃斜切りす
ることを特徴とする衝撃霧化による金属粉末の製造方法
。 2 回転軸まわりに高速回転する打撃羽根車と、該羽根
車外周に突設され、回転軸に対して5〜85度の捩れ角
をもつはすば傘歯状の打撃羽根と、該打撃羽根周縁部に
溶融金属落下流を供給する金属供給部とからなることを
特徴とする金属粉末の製造装置。 3 回転軸まわりに高速回転する第1の打撃羽根車と、
該第1の打撃羽根車外周に突設さ れ、回転軸に対して5〜85度の捩れ角をもつはすば傘
歯状の第1の打撃羽根と、前記 第1の打撃羽根車に並設され回転軸まわりに高速回転す
る第2の打撃羽根車と、該第2の打撃羽根車外周に突設
され、回転軸に対して5〜85度の捩れ角をもつはすば
平歯状の打撃羽根と、前記第1の打撃羽根周縁部に溶融
金属落下流を供給する金属供給部とからなることを特徴
とする金属粉末の製造装置。 4 打撃羽根に通気部を設けた特許請求の範囲第2項ま
たは3項に記載の金属粉末の製造装置。
[Scope of Claims] 1. A method for producing metal powder by impact atomization, characterized in that a falling flow of molten metal is cut obliquely by impact in a downward air flow. 2. A striking impeller that rotates at high speed around a rotating shaft, a helical bevel-shaped striking vane that protrudes from the outer periphery of the impeller and has a helical angle of 5 to 85 degrees with respect to the rotating shaft, and the striking vane. 1. An apparatus for producing metal powder, comprising a metal supply section that supplies a falling flow of molten metal to a peripheral portion. 3. A first impact impeller that rotates at high speed around the rotation axis;
a helical bevel-shaped first striking impeller protruding from the outer periphery of the first striking impeller and having a helical angle of 5 to 85 degrees with respect to the rotation axis; a second percussion impeller that is installed and rotates at high speed around the rotational axis; and a helical spur tooth-shaped impeller that protrudes from the outer periphery of the second percussion impeller and has a helical angle of 5 to 85 degrees with respect to the rotational axis. A metal powder manufacturing apparatus comprising: a striking blade; and a metal supply section that supplies a falling flow of molten metal to the peripheral edge of the first striking blade. 4. The metal powder manufacturing apparatus according to claim 2 or 3, wherein the striking blade is provided with a ventilation section.
JP6087685A 1985-03-27 1985-03-27 Method and apparatus for producing metallic powder by impact atomization Pending JPS61221312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6087685A JPS61221312A (en) 1985-03-27 1985-03-27 Method and apparatus for producing metallic powder by impact atomization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6087685A JPS61221312A (en) 1985-03-27 1985-03-27 Method and apparatus for producing metallic powder by impact atomization

Publications (1)

Publication Number Publication Date
JPS61221312A true JPS61221312A (en) 1986-10-01

Family

ID=13155016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6087685A Pending JPS61221312A (en) 1985-03-27 1985-03-27 Method and apparatus for producing metallic powder by impact atomization

Country Status (1)

Country Link
JP (1) JPS61221312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240612A (en) * 1988-03-17 1989-09-26 Kurosaki Refract Co Ltd Method and apparatus injection-working molten metal flow-out hole and impeller for injecting recessed part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240612A (en) * 1988-03-17 1989-09-26 Kurosaki Refract Co Ltd Method and apparatus injection-working molten metal flow-out hole and impeller for injecting recessed part

Similar Documents

Publication Publication Date Title
EP0939676B1 (en) Method and device for synchronously impact milling of material
US11554417B2 (en) Article for producing ultra-fine powders and method of manufacture thereof
JP4891574B2 (en) Crusher and powder manufacturing method using the crusher
CN209478001U (en) A kind of shot-blasting machine impeller head
JPS62502478A (en) Metal powder manufacturing method
JP6665118B2 (en) Method for producing powder product
JPS60114507A (en) Manufacture of metal fine powder
JP2004269956A (en) Apparatus for producing metallic powder, and method for producing metallic powder using the apparatus
US4242069A (en) Apparatus for producing flake
JPS61221312A (en) Method and apparatus for producing metallic powder by impact atomization
JPS6117438A (en) Process and equipments for fiberizing mineral molten material
CN209849886U (en) Rectilinear ultrasonic wave tin powder atomizing device
JP2007504933A (en) Apparatus and method for grinding materials
US4373883A (en) Apparatus for producing granules from molten metallurgical slags
US2563064A (en) Process and apparatus for the production of metallic shot
JPS62253706A (en) Apparatus for producing metal power by impact atomization
JPS61110708A (en) Apparatus for producing metallic powder
US4358415A (en) Method for producing granules from molten metallurgical slags
US2882552A (en) Apparatus for forming mineral fibers and the like
JPS61110707A (en) Production of metallic powder
JPS6038042A (en) Centrifugal impact rock crusher
JPS6136463B2 (en)
JP5757689B2 (en) Raw material particle refiner and method for producing refined particle-containing material
RU2108160C1 (en) Method and device for grinding materials
JPH01312016A (en) Production of metal powder by rotary impact atomizer