JPS61220820A - Manufacture of polymer sheet - Google Patents

Manufacture of polymer sheet

Info

Publication number
JPS61220820A
JPS61220820A JP60062065A JP6206585A JPS61220820A JP S61220820 A JPS61220820 A JP S61220820A JP 60062065 A JP60062065 A JP 60062065A JP 6206585 A JP6206585 A JP 6206585A JP S61220820 A JPS61220820 A JP S61220820A
Authority
JP
Japan
Prior art keywords
sheet
melt
cooling surface
guide means
molten body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60062065A
Other languages
Japanese (ja)
Other versions
JPH0347173B2 (en
Inventor
Norio Takagi
高木 憲男
Yoshihiko Mikuni
未国 嘉彦
Toshifumi Osawa
大沢 利文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60062065A priority Critical patent/JPS61220820A/en
Publication of JPS61220820A publication Critical patent/JPS61220820A/en
Publication of JPH0347173B2 publication Critical patent/JPH0347173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums

Abstract

PURPOSE:To permit the speedup of casting speed by a method wherein guiding means are provided at the outside of both side ends of die slit while a contacting area between the guiding means and the edges of molten body is regulated so that the edges, the vicinities of the edges and the central section in the widthwise direction of the sheet-like molten body arrive at a cooling surface in parallel to the die slit substantially under keeping a linear configuration substantially. CONSTITUTION:The edge of the molten body, extruded out of the die slit, flows down on the surface of the guiding means 10 vertically substantially and flows to the side end 22 of a guiding surface along the bottom side 21 of the guiding surface into the take-off direction of the molten body, then, is released from the side end and arrives at the cooling surface through free space. In order to prevent the curl at the edge of sheet-like molten body and make the landing line of the sheet-like molten body to be a straight line, a releasing point 30 from the guiding means should be in the same plane as the stream line 13 of the central part of the body in case they are observed from a side direction. In case the landing point of the edge is moved to the upstream side of the landing point of the central part in the cooling surface, a high-speed casting effect, due to electrostatic adhesion, will not be changed.

Description

【発明の詳細な説明】 技術分野 本発明は重合体シートの製造法に関する。[Detailed description of the invention] Technical field The present invention relates to a method for manufacturing polymer sheets.

更に詳しくはダイよりシート状に押出された重合体の溶
融物に放電電極によって静電荷を付与し、このシート状
の溶融体を冷却面に密着させて冷却固化して重合体シー
トを成形する(いわゆる静電密着法)の改良技術であっ
て、シート状の溶融体のエツジを案内手段咳よって案内
することにより、溶融体の幅方向においてエツジがシー
トの中央部と同一か又はより早く冷却面に到達するよう
に案内してシート状の溶融体を冷却面にほぼ直線的に到
達サセ、特にエツジ部分の冷却面への到達の遅れのない
ような制御をなし、放電電極の密着作用をより効果的に
なさしめる重合体シートの製造法に関する。
More specifically, a discharge electrode applies an electrostatic charge to a polymer melt extruded from a die into a sheet, and the sheet-like melt is brought into close contact with a cooling surface and cooled and solidified to form a polymer sheet. This is an improved technique of the so-called electrostatic adhesion method, in which the edges of a sheet-like molten material are guided by a guiding means, so that the edges in the width direction of the molten material reach the cooling surface at the same level or faster than the center of the sheet. The sheet-like molten material is guided to reach the cooling surface in a nearly straight line, and in particular, the edge portion is controlled so that there is no delay in reaching the cooling surface, thereby improving the adhesion of the discharge electrode. This invention relates to a method for effectively producing a polymer sheet.

従来技術 静電密着法は溶融体のキャスティング速度が低い場合に
、重合体シートの厚みの均一性。
The prior art electrostatic adhesion method reduces the uniformity of the thickness of the polymer sheet when the melt casting speed is low.

表面の平滑性等の優れたシートを製造する方法である。This is a method for manufacturing sheets with excellent surface smoothness.

しかし、この方法の最大の問題点はキャスティング速度
の上昇に伴って、7一ト状の溶融体の冷却面への密着力
が低下して溶融状態のシートと冷却面との間に空気が流
入し、シートの表面に泡状の欠点を生じる。
However, the biggest problem with this method is that as the casting speed increases, the adhesion of the molten sheet to the cooling surface decreases, allowing air to flow in between the molten sheet and the cooling surface. This causes bubble-like defects on the surface of the sheet.

この泡状欠点の発生原因について検討したところ、その
原因の一つけグイと冷却面との間の自由空間で溶融体の
エツジがカールを起こし、冷却面への到達位置(以下着
地線と称することがある)がエツジ部分において湾曲す
るために、直線状の放電電極ではシートの全幅に亘って
好適な密着条件を維持することが出来ないことにある。
When we investigated the cause of this bubble-like defect, we found that the edge of the molten material curls in the free space between the contact pin and the cooling surface, and reaches the position where it reaches the cooling surface (hereinafter referred to as the landing line). The reason is that a straight discharge electrode cannot maintain suitable adhesion conditions over the entire width of the sheet because the discharge electrode is curved at the edge portion.

この状態を図面−を参照して説明すると、従来技術を示
す第5図ではダイスリット1】(グイの部分を省略)か
ら押出されたシートの溶融体1oが冷却面12に引き取
られる際に、溶融体の両側端が中央部に向ってネックイ
ノし、その時厚みを増すと共に冷却面と反対側にカール
する。その結果シート状の溶融体はその中央部の流線1
3に比べて端部の流線141′i冷却面より離れた高い
点に位置し、冷却面への到達位置社中央部が15である
のに対して、端部ヌけその近傍(以下エツジ部という)
Fiそれより遅れて下方(下[)側の位置16になる。
To explain this state with reference to the drawings, in FIG. Both ends of the molten material neck toward the center, increasing in thickness and curling toward the opposite side of the cooling surface. As a result, the sheet-like melt has a streamline 1 in its center.
3, the streamline 141'i at the end is located at a higher point away from the cooling surface, and while the central part of the reaching position to the cooling surface is 15, it is located near the edge (hereinafter referred to as the edge). )
Fi later reaches position 16 on the lower (lower [)] side.

即ち溶融体の冷却面への到達点Fi第6図の側面図から
明かのように、その中央部が15でエツジ部が16とな
り、エツジ部が下流方向に遅れを生じる。またこの時の
流線はエツジ部で賽M14.中央部で点線13のように
なっている。
That is, as is clear from the side view of FIG. 6, the arrival point Fi of the molten material to the cooling surface is 15 at the center and 16 at the edge, and the edge is delayed in the downstream direction. Also, the streamline at this time is die M14 at the edge part. It looks like a dotted line 13 in the center.

しかるに、静電密着法によジ、シートに泡状の欠点ある
いけ厚み斑の悪化を招かぬように良好な条膚で溶融重合
体をキャスティングをするには、電極31とシートの着
地#(15乃至16)との相対的な位置の調整可能な可
変幅は一般に狭い限られた範囲しかない。
However, in order to cast the molten polymer in a good manner without causing bubble-like defects or uneven thickness on the sheet using the electrostatic adhesion method, it is necessary to (15 to 16) The variable range in which the relative position can be adjusted is generally limited to a narrow range.

従って直線状の電極で前述のような着地線が湾曲したシ
ート状の溶融体をキャスティングするときけ、電極の良
好条件を溶融体の中央部に合わせると、エツジ部に欠点
を生じ、エツジ部に合わせると中央部に欠点を生じ易く
なる。
Therefore, when casting a sheet-like molten material with a curved landing line as described above using a straight electrode, if the favorable conditions of the electrode are adjusted to the center of the molten material, defects will occur at the edges, and it will be difficult to adjust the landing line to the edges. This tends to cause defects in the center.

m1シート状の溶融体のカールはキャスティング速度の
上昇に伴って大きくなり着地線の湾曲が大きくなる。更
に加えてキャスティング速度の上昇に伴って、シート状
溶融体の単位面積曲りの静電荷量が減少するため、静電
密着力自体が弱くなって電極の可変幅が更に狭くなる。
The curl of the m1 sheet-like melt increases as the casting speed increases, and the curvature of the landing line increases. Furthermore, as the casting speed increases, the amount of electrostatic charge per unit area of the melt sheet decreases, so the electrostatic adhesion force itself becomes weaker and the variable width of the electrode becomes even narrower.

静電密着法にLるキャスティング速度の上昇はこれらの
現象が重なり合って加重的に困難になってくる。
The combination of these phenomena makes it difficult to increase the casting speed in the electrostatic adhesion method.

特に溶融体のカールにかかわる開運の解決方法として、
従来技術は、例えば特開昭56−53037号公報に開
示されているように、ブレード状の放電電極を溶融体の
エツジ部で湾曲せしめて、ブレードの形状を溶融体のN
地線の形状に合わせて着地線との相対位置をシート状の
溶融体の全幅に一定になるよ5に工夫している。
In particular, as a solution to problems related to curling of molten material,
In the prior art, for example, as disclosed in Japanese Unexamined Patent Publication No. 56-53037, a blade-shaped discharge electrode is curved at the edge of the molten material, and the shape of the blade is adjusted to the N of the molten material.
In accordance with the shape of the ground line, the relative position with respect to the landing line is designed to be constant over the entire width of the sheet-like molten material.

しかし溶融体のカールの大きさは、フィルム(シート)
の厚ζ、キャスティング速度等によって変化するため、
キャスティング条倦の変化に対してブレード形状を常に
最適とすることは殆んど不可能である。
However, the size of the curl of the melt is
Because it changes depending on the thickness ζ, casting speed, etc.
It is almost impossible to always optimize the blade shape as casting conditions change.

特開昭59−150727号公報の技術は、カールする
エツジ部に流体を吹き付けてカールを修正しようとす提
案であるが、弾性の小さい溶融体に一部分でも流体を吹
き付けると、シート状の溶融体に振動を生じ易く、その
結果フィルムシートの厚み斑を誘引し、更に電極周辺で
の流体の乱れは、電極の放電状態にも乱れを生じ易く、
その結果フィルムシートに厚λ斑あるいは表面欠点を生
じる場合がある0 4I開昭59−106935号公報の技術は、重合体の
押出し条件、グイと冷却面との相対位置を最適化してカ
ールの軽減を企っているがカールを完全に解消すること
は困難であり、シートの厚み斑等を最良化しようとする
とき、この技術の適用が制約条件となることがある。
The technique disclosed in Japanese Patent Application Laid-Open No. 59-150727 proposes to correct the curl by spraying a fluid onto the curling edge. However, if the fluid is sprayed on even a portion of the molten material with low elasticity, the molten material becomes a sheet-like material. This tends to cause vibrations, resulting in uneven thickness of the film sheet, and furthermore, the disturbance of the fluid around the electrodes tends to cause disturbances in the discharge state of the electrodes.
As a result, thickness λ spots or surface defects may occur on the film sheet. The technology disclosed in Japanese Patent Publication No. 106935/1983 optimizes the polymer extrusion conditions and the relative position between the goo and the cooling surface to reduce curling. However, it is difficult to completely eliminate curl, and the application of this technology may become a constraint when trying to optimize sheet thickness unevenness.

発明の目的 本発明はかかる従来技術の問題点を解決して、キャステ
ィング速度の高速化な可能にすると共に、シート状溶融
体のネックインによる狭幅化及び製造条件の変更に伴う
シート幅の変化をも翰制する技術を提供することを目的
とする。
OBJECTS OF THE INVENTION The present invention solves the problems of the prior art and makes it possible to increase the casting speed, and also to reduce the width due to neck-in of the sheet-like melt and change in sheet width due to changes in manufacturing conditions. The purpose is to provide technology that can also control.

発明の構成 即ち、本発明は、ダイスリットの両側端部の各々に案内
手段を設けて、これに溶融体の端部を−たん接触させて
、しかる後冷却面に案内して密着させるに当り、この案
内手段の形状を工夫することによってシート状の溶融体
のカールを防止して、エツジの着地線の形状を直線状で
ダイスリットに平行となるように制御し、加えてシート
の狭幅化をも抑制する重合体シートの製造法である。
The constitution of the invention, that is, the present invention provides guide means at each of both ends of the die slit, and brings the end of the molten material into contact with the guide means, and then guides the melt to the cooling surface and brings it into close contact with the guide means. By devising the shape of this guide means, curling of the sheet-like molten material is prevented, and the shape of the edge landing line is controlled to be straight and parallel to the die slit, and in addition, the narrow width of the sheet is controlled. This is a method for producing a polymer sheet that also suppresses chemical reactions.

即ち本発明は、重合体を溶融しダイスリットLシシート
状に溶融体を押出し皺溶融体に放電電極にLり静電荷を
付与して冷却面上(密着させ冷却固化せしめ重合体、の
シートを形成する方法であって、ダイスリットの両側端
外側に案内手段を設けて溶融体の端部が該案内手段に接
触しながら冷却面に案内されるようになし、シート状の
核溶融体の幅方向における紋端部及びその近傍と中央部
とが該ダイスリットにほぼ平行にほぼTl1II的に冷
却面に到達する工うに該案内手段と該溶融体の該、m部
との接触領域を調整することを特徴する重合体シートの
製造法である。
That is, the present invention melts a polymer, extrudes the melt into a die-slit sheet shape, applies an electrostatic charge to the wrinkled melt on a discharge electrode, brings it into close contact with the cooling surface, and cools and solidifies the sheet of polymer. A method for forming a sheet-shaped nuclear melt by providing guide means on the outer sides of both ends of a die slit so that the ends of the melt are guided to the cooling surface while contacting the guide means, and the width of the sheet-like nuclear melt is The contact area between the guide means and the m portion of the molten material is adjusted so that the end portion of the crest, its vicinity, and the central portion in the direction reach the cooling surface approximately parallel to the die slit at approximately T1II. This is a method for producing a polymer sheet characterized by the following.

本発明を説明する。The present invention will be explained.

本発明はポリエチレン、ボリブクピレン。The present invention is polyethylene, polybupyrene.

ポリヘキサメチレンアジパミド、ポリテトラメチレンア
ジパミド、ポリエチレンテレフタレート、ポリテトラメ
チレンテレフタレート。
Polyhexamethylene adipamide, polytetramethylene adipamide, polyethylene terephthalate, polytetramethylene terephthalate.

ポリエチレン−2,6−す7タレンジカルポキシレート
等に代表される熱可塑性の重合体から2.5%角以下の
7+m5 ’nullを超えるシートを製造する場合に
適用できる。本発明はまた、静電密着法を適用して重合
体シートな製造する場合に利用できる技術であり、この
静電密着法は例えば米国特許第3427686号明細書
によりよく知られている。
It can be applied to the production of a sheet of 2.5% square or less and larger than 7+m5' null from a thermoplastic polymer such as polyethylene-2,6-su7thalene dicarpoxylate. The present invention is also a technique that can be used to produce polymer sheets by applying an electrostatic adhesion method, which is well known from, for example, US Pat. No. 3,427,686.

本発明では、ダイのダイスリットの両側端部に、押出さ
れた溶融体(シート状にダイスリットから押出されてい
る)の両端部が接する位置に案内手段を設け、この案内
手段に溶融体を接触させながら冷却面に案内する点に特
徴をもつものである。この案内手段の材質は、ステンレ
ススチール、アルミニューム。
In the present invention, guide means are provided at both ends of the die slit of the die at a position where both ends of the extruded melt (extruded from the die slit in the form of a sheet) touch, and the melt is guided to the guide means. The feature is that it is guided to the cooling surface while making contact with it. The material of this guide means is stainless steel and aluminum.

真ちゅう等の金属、アルミナ収量に代表されるセラミッ
ク、ポリイミド樹脂に代表される耐熱性樹脂等からなり
、ダイと冷却面との間の自由空間に挿入可能な大きさで
あって、ダイのスリットの端部近傍に取り付ける。この
案内手段には加熱冷却装置が附設されていて、溶融体が
接触してもこの案内手段との接触面で滑りかつ冷却固化
しないように、所定の温度に保持されるべく温度制御機
能を備えているものが望ましい。
It is made of metals such as brass, ceramics such as alumina, and heat-resistant resins such as polyimide resin, and has a size that allows it to be inserted into the free space between the die and the cooling surface. Attach near the end. This guide means is equipped with a heating and cooling device, and has a temperature control function to keep the molten material at a predetermined temperature so that it does not slip on the contact surface with the guide means and cool and solidify even if the molten material comes into contact with it. Preferably.

本発明は溶融体のカールを効果的に防止することにある
。本発明の案内手段のカール防止作用を説明するに当り
、案内手段20の表面を流れる重合体の軌跡を観察する
と、第3図に示す如く、ダイスリットから押出された溶
融体の端部17は案内手段200表面を先ずほぼ鉛直方
向に流下し、次に案内面の底辺21KBって溶融体の引
取り方向に案内面の側端22まで流れて、側端から離脱
して自由空間を通り冷却面に至る。案内面上の重合体の
流れ形状は、溶融体の溶融粘度、案内手段の温度、シー
ト状溶融体の引取張力等に工って鉛直方向から底辺に漬
った流れに移行する際に、小さな湾曲を描く場合がある
が、案内手段からの離脱点30を案内手段の底辺の側端
となるように設定することは、案内手段の温度、重合体
の溶融粘度(即ち溶融体の温度)、案内手段の形状等を
選択することから容易になし祷る。
The object of the present invention is to effectively prevent curling of the melt. In order to explain the curl prevention effect of the guide means of the present invention, when observing the trajectory of the polymer flowing on the surface of the guide means 20, as shown in FIG. It first flows down the surface of the guide means 200 in a substantially vertical direction, then flows along the bottom 21KB of the guide surface in the direction in which the molten material is taken up to the side edge 22 of the guide surface, leaves the side edge, passes through free space, and is cooled. reaching the surface. The flow shape of the polymer on the guide surface is controlled by the melt viscosity of the melt, the temperature of the guide means, the pulling tension of the sheet-like melt, etc., and when the flow changes from the vertical direction to the flow dipping at the bottom, a small Although it may draw a curve, setting the departure point 30 from the guide means to be the bottom side edge of the guide means depends on the temperature of the guide means, the melt viscosity of the polymer (i.e., the temperature of the melt), This can be easily achieved by selecting the shape etc. of the guide means.

従ってシート状の溶融体のエツジ部のカールを防止し、
シート状溶融体の着地線を直線となるようにするには案
内手段からの離脱点30が中央部の流@13と側方から
観察したとき同一面内にあるようにすればよい。好都合
なことには、端部の着地点を中央部の着地点より冷却面
において上汗側(図面において冷却ドラム12の右側)
に移動せしめても、密着効果(静電密着効果)は減殺し
ない。即ち溶融体の着地線の形状をエツジ部において上
流側に湾曲するように過調整しても静電密着法における
高速キャスティング効+#i、着地線が直線の場合に比
べてほとんど劣らない事実がある。このような現象から
、案内手段における溶融体の離脱点が中央部の流線と同
一面内にあるかヌは冷却面側偏っていれば、静電密着に
よる高速キャスティング効果が奏される。
Therefore, curling of the edges of the sheet-like melt is prevented,
In order to make the landing line of the sheet-like melt a straight line, the departure point 30 from the guide means should be in the same plane as the central flow @ 13 when observed from the side. Conveniently, the landing points of the ends are located on the upper side of the cooling surface (to the right of the cooling drum 12 in the drawing) than the central landing points.
Even if it is moved, the adhesion effect (electrostatic adhesion effect) will not be reduced. In other words, even if the shape of the landing line of the molten material is over-adjusted so that it curves upstream at the edge, the high-speed casting effect in the electrostatic adhesion method is almost as good as when the landing line is straight. be. From this phenomenon, if the point at which the molten material leaves the guide means is in the same plane as the streamline in the center or is biased towards the cooling surface, a high-speed casting effect due to electrostatic adhesion can be achieved.

本発明の案内手段の形状は、第4図に示すようにダイス
リットの中心を原点40とし、鉛直方向41をy方向、
その喬直方向42をX方向として、それぞれ下方、左方
を正方向とし溶融体の中央部の流線なF(3:)、案内
手段の底辺の側端部22の座標を(X、G(X)とすれ
ばG (x )’J (x )の関係になければならな
い。但しG(x)はグイと冷却面との間の自由空間にな
ければならないとする。
As shown in FIG. 4, the shape of the guide means of the present invention is such that the center of the die slit is the origin 40, the vertical direction 41 is the y direction,
With the vertical direction 42 as the X direction, the lower and left directions are the positive direction, respectively, and the streamline F(3:) at the center of the molten body, and the coordinates of the side end 22 at the bottom of the guide means (X, G (X), it must be in the relationship G(x)'J(x).However, it is assumed that G(x) must be in the free space between the goo and the cooling surface.

案内手段に接する溶融体の流線形状は、溶融体が案内手
段の底辺の側端へ流れて、該側端が離脱点になるに支障
がなく、且つ案内手段の接触面及びその近傍で溶融体の
流れに支障をき次さない形状であれば特に制約は表い。
The streamlined shape of the molten material in contact with the guide means allows the molten material to flow to the side end of the bottom of the guide means, and this side end becomes the separation point without any hindrance, and the melt is melted at the contact surface of the guide means and its vicinity. This is particularly true if the shape does not interfere with the flow of the body.

発明の効果 本発明は、案内手段の付設によって、重合体シートの高
速キャスティングが可能となる効果がある。
Effects of the Invention The present invention has the effect that high-speed casting of a polymer sheet is possible by providing a guide means.

本発明の別な大きな効果は、ネックインによるシート幅
の減少を抑制できることにある。
Another great effect of the present invention is that reduction in sheet width due to neck-in can be suppressed.

一般にキャスティング速度が上昇すると、それに伴って
ネックインが大きくなりシート状の溶融体の幅が減少す
る。従って生産性向上のための中ヤスティング速度の上
昇が逆にシート幅の減少を招来して生産性に対し逆効果
となる場合がある。
Generally, as the casting speed increases, the neck-in increases and the width of the sheet-like melt decreases. Therefore, an increase in the medium sanding speed to improve productivity may instead lead to a decrease in sheet width, which may have an adverse effect on productivity.

本発明においては、ダイスリットから着地点の途中まで
シート状の溶融体のエツジ部が案内手段に沿って流れる
危め、この間はシート幅の変化が規制される。案内手段
の離脱点から着地点に至る間にネックインは避けられな
いものの、この非束縛の間を小さくするように案内手段
の大きさを設計すればネックインの影響を最小限にとど
めることができる。
In the present invention, the edge portion of the sheet-like molten material flows along the guide means from the die slit halfway to the landing point, and during this period, changes in the sheet width are regulated. Although neck-in is unavoidable between the departure point of the guide means and the landing point, the effect of neck-in can be minimized by designing the size of the guide means to reduce this unrestrained interval. can.

本発明によって成形された重合体シートは次工程で、−
軸延伸、逐次2軸延伸、同時2軸延伸を行なうことが出
来る。この際シートの表面は平滑であり、均質な厚みを
備えているため、延伸や熱処理が円滑かつ高生産になし
得る効果もある。
The polymer sheet formed according to the present invention undergoes the following steps: -
Axial stretching, sequential biaxial stretching, and simultaneous biaxial stretching can be performed. At this time, since the surface of the sheet is smooth and has a uniform thickness, stretching and heat treatment can be carried out smoothly and high production can be achieved.

以下本発明を実施例によって説明する。The present invention will be explained below with reference to Examples.

実施例1 グイと冷却面との自由空間の間隔を20 m+eとし、
タイスリットより厚さ170grnのポリエチレンテレ
フタレートを溶融押出し、直線的な放電電極にエリシー
ト状の溶融体全幅に亘って静電荷を何本して冷却ドラム
上に静電的に密着した O ここで重せ体シートの引取速度を徐々に高めたとき、速
度が45m/分で重合体シートのエツジ部に小さな気泡
状の欠点が発生し、昇速に伴って欠点の発生頻度が大き
くなり、両端及びその近傍の約40鰭幅に拡がった。
Example 1 The free space interval between the guide and the cooling surface is 20 m+e,
Polyethylene terephthalate with a thickness of 170grn was melted and extruded through the tie slit, and several lines of electrostatic charge were applied to the straight discharge electrode over the entire width of the sheet-shaped melt to electrostatically adhere to the cooling drum. When the taking speed of the polymer sheet was gradually increased, small bubble-like defects occurred at the edges of the polymer sheet at a speed of 45 m/min, and as the speed increased, the frequency of defects increased, and the defects at both ends and It expanded to about 40 fin widths nearby.

第6図に記載のシート状の溶融体の流線な測定するため
に、ダイスリットの延長Jl上1.5mの位置にカセト
メーターを鷹き、ダイスリットの中心を原点とする座標
系において、シート状溶融体の流線を測定したところ、
x =25 mmにおける中央部の高さはF(25) 
= 12關であり、端部の昼さはF(25) = 10
 mmであった。
In order to measure the streamlines of the sheet-shaped melt shown in Fig. 6, a cassette meter was placed at a position 1.5 m above the extension Jl of the die slit, and in the coordinate system with the center of the die slit as the origin, the sheet When we measured the streamlines of a shaped melt, we found that
The height of the center at x = 25 mm is F(25)
= 12 degrees, and the daytime at the end is F(25) = 10
It was mm.

そこで第4図の案内手段は、底辺の側端部の位置の座標
が(25,IF)であって、ヒーターと温度測定具を備
えたステンレススチール族の直方体の案内手段をスリッ
トの両側に付設し、280℃に保持して溶融体の各々の
端部を接触せしめ几O その結果溶融体の各端部は案内手段の側端部近傍から離
脱し、冷却面に至る。この案内具と冷却面の間の自由空
間にはエツジ部のカールは認められず、溶融体の端部と
中央の流線は合致し次。シートの引取速度を徐々に上昇
し九ところ、この条件では52m/分になるまで欠点を
生じなかった。なお、案内具を用いないで成形したとき
け、シートの幅が340■■であったのに対して案内具
を用いた場合のシート幅は372酎と広幅のものであっ
た。
Therefore, the guide means shown in Fig. 4 has the coordinates of the position of the side end of the bottom side (25, IF), and the guide means is a rectangular parallelepiped made of stainless steel and equipped with a heater and a temperature measuring device, attached to both sides of the slit. Then, the respective ends of the melt are brought into contact with each other by maintaining the temperature at 280° C. As a result, each end of the melt separates from the vicinity of the side end of the guide means and reaches the cooling surface. In the free space between this guide and the cooling surface, no curling of the edges was observed, and the edges of the molten material and the streamlines in the center coincided. When the sheet take-up speed was gradually increased, no defects occurred under these conditions until it reached 52 m/min. Furthermore, when molded without using a guide tool, the sheet width was 340 mm, whereas when a guide tool was used, the sheet width was as wide as 372 mm.

実施例2 実施例1において案内具を次のように変更した。即ち底
辺の側端部の位置の座標がx=25arm、 G(25
) = 15 IIImの真ちゅう製の直方体を用いて
実施例1と同様の条件で重合体シートを成形した。その
結果、シートの欠点は実施例1と同様に引取速度が52
m/分になるまでは発生が認められなかった。このとき
の重合体シートの幅は383 +wであシ、ネックイン
を更に抑制できた。
Example 2 The guide tool in Example 1 was changed as follows. That is, the coordinates of the position of the side edge of the base are x=25arm, G(25
) = 15 A polymer sheet was molded under the same conditions as in Example 1 using a brass rectangular parallelepiped. As a result, the drawback of the sheet was that, as in Example 1, the take-up speed was 52
No occurrence was observed until the speed reached m/min. The width of the polymer sheet at this time was 383 +w, which further suppressed neck-in.

【図面の簡単な説明】 第1図及び第2図は、本発明の実施例におけるダイスリ
ットから押出された溶融体が冷却面に到達する状況を示
す斜視図(部分図)である。 第3図及び第4図は本発明の実施例を示す溶融体の冷却
面に到達する状況を示す側面図である。 第5図は従来技術における溶融体がダイスリットから冷
却面に到るまでの斜視図である。また第6図は従来技術
における溶融体の挙動を示す側面図である。図面におい
て、10は溶融体(シート状の未固化物)、11はダイ
スリット、12は冷却面、13は溶融体の中央部の流線
、14Fi溶融体の端部の流線、15は溶融体の中央部
の冷却面への到達位置、16e−を溶融体の端部の冷却
面への到達位置、20は案内手段、21は案内手段の底
辺、22け案内手段の側端。 30け溶融体の案内手段からの離脱点、31#′i放賞
電極、32は放1m極の支持具、40はダイスリット吐
出位置な原点としたときの位置、41は鉛直方向(y軸
方向)、42は水平方向(X軸方向)を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are perspective views (partial views) showing how the melt extruded from the die slit reaches the cooling surface in an embodiment of the present invention. FIGS. 3 and 4 are side views showing the situation in which the melt reaches the cooling surface according to the embodiment of the present invention. FIG. 5 is a perspective view of the melt from the die slit to the cooling surface in the prior art. Moreover, FIG. 6 is a side view showing the behavior of a molten body in the prior art. In the drawing, 10 is a melt (sheet-like unsolidified material), 11 is a die slit, 12 is a cooling surface, 13 is a streamline at the center of the melt, 14 is a streamline at the end of the Fi melt, and 15 is a melt 16e is the position at which the center of the body reaches the cooling surface, 16e is the position at which the end of the molten body reaches the cooling surface, 20 is the guide means, 21 is the bottom of the guide means, and 22 is the side end of the guide means. 30 points of departure of the molten material from the guiding means, 31#'i discharge electrode, 32 a support for the discharge 1m pole, 40 the position when the origin is the die slit discharge position, 41 the vertical direction (y-axis direction), 42 indicates the horizontal direction (X-axis direction).

Claims (1)

【特許請求の範囲】[Claims] 重合体を溶融しダイスリットよりシート状に溶融体を押
出し該溶融体に放電電極により静電荷を付与して冷却面
上に密着させ冷却固化せしめ重合体のシートを形成する
方法であつて、ダイスリットの両側端外側に案内手段を
設けて溶融体の端部が該案内手段に接触しながら冷却面
に案内されるようになし、シート状の該溶融体の幅方向
における該端部及びその近傍と中央部とが該ダイスリッ
トにほぼ平行に、ほぼ直線的に冷却面に到達するように
該案内手段と該溶融体の該端部との接触領域を調整する
ことを特徴する重合体シートの製造法。
A method of melting a polymer, extruding the melt in the form of a sheet through a die slit, applying an electrostatic charge to the melt using a discharge electrode, bringing it into close contact with a cooling surface, solidifying it by cooling, and forming a sheet of the polymer. Guide means are provided outside both ends of the slit so that the ends of the molten material are guided to the cooling surface while contacting the guide means, and the edges and the vicinity thereof in the width direction of the sheet-like molten material are and a central portion of the polymer sheet, characterized in that the contact area between the guide means and the end of the melt is adjusted so that the guide means and the end of the melt reach the cooling surface approximately parallel to the die slit and approximately in a straight line. Manufacturing method.
JP60062065A 1985-03-28 1985-03-28 Manufacture of polymer sheet Granted JPS61220820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062065A JPS61220820A (en) 1985-03-28 1985-03-28 Manufacture of polymer sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062065A JPS61220820A (en) 1985-03-28 1985-03-28 Manufacture of polymer sheet

Publications (2)

Publication Number Publication Date
JPS61220820A true JPS61220820A (en) 1986-10-01
JPH0347173B2 JPH0347173B2 (en) 1991-07-18

Family

ID=13189331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062065A Granted JPS61220820A (en) 1985-03-28 1985-03-28 Manufacture of polymer sheet

Country Status (1)

Country Link
JP (1) JPS61220820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002347099A (en) * 2001-05-28 2002-12-04 Toray Ind Inc Mouthpiece for manufacturing sheet as well as apparatus and method for manufacturing sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002347099A (en) * 2001-05-28 2002-12-04 Toray Ind Inc Mouthpiece for manufacturing sheet as well as apparatus and method for manufacturing sheet
JP4636356B2 (en) * 2001-05-28 2011-02-23 東レ株式会社 Sheet manufacturing method

Also Published As

Publication number Publication date
JPH0347173B2 (en) 1991-07-18

Similar Documents

Publication Publication Date Title
JP5686537B2 (en) Film manufacturing apparatus and manufacturing method
US4290476A (en) Nozzle geometry for planar flow casting of metal ribbon
JPS61220820A (en) Manufacture of polymer sheet
JP2000006227A (en) Extrusion molding die
KR101868832B1 (en) Film Production Device And Production Method
US5908068A (en) Method of manufacturing a wide metal thin strip
JPH0479290B2 (en)
JPH0419012B2 (en)
JP7377499B2 (en) Sheet material manufacturing method, coating film forming method, sheet material manufacturing device, and coater
KR102171089B1 (en) Manufacturing apparatus for metal material and method thereof
JP5620854B2 (en) Film manufacturing apparatus and manufacturing method
EP0051699A1 (en) Process for pneumatic gauge adjustment of edge-pinned cast web
JP6642500B2 (en) Method of forming resin film
JP2024009758A (en) Method for manufacturing stretched film
KR20220076315A (en) Film manufacturing system
JPS62142055A (en) Pouring nozzle for single roll type rapid cooled thin foil production
JPS6313732A (en) Manufacture of thermoplastic resin film
JPS6316838A (en) Pouring method for molten metal
JPS5850173B2 (en) Manufacturing method of polyester film
JPH0483627A (en) Manufacture of thermoplastic polymer sheet
JP3702042B2 (en) Extrusion die
JPH1110712A (en) Method and apparatus for molding thermoplastic resin sheet
JP2626944B2 (en) Method and apparatus for forming blown film
JPS6315725A (en) Manufacture of thermoplastic resin film
JP2002347099A (en) Mouthpiece for manufacturing sheet as well as apparatus and method for manufacturing sheet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term