JPS6121993B2 - - Google Patents

Info

Publication number
JPS6121993B2
JPS6121993B2 JP3382776A JP3382776A JPS6121993B2 JP S6121993 B2 JPS6121993 B2 JP S6121993B2 JP 3382776 A JP3382776 A JP 3382776A JP 3382776 A JP3382776 A JP 3382776A JP S6121993 B2 JPS6121993 B2 JP S6121993B2
Authority
JP
Japan
Prior art keywords
melting point
oil
triglyceride
fractional crystallization
fat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3382776A
Other languages
Japanese (ja)
Other versions
JPS52117305A (en
Inventor
Nobutaka Nawata
Kuniaki Koshiba
Minoru Ueda
Ren Ooishi
Hiromi Nagayoshi
Atsushi Tsuji
Noritatsu Chigusa
Shigekatsu Sawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP3382776A priority Critical patent/JPS52117305A/en
Publication of JPS52117305A publication Critical patent/JPS52117305A/en
Publication of JPS6121993B2 publication Critical patent/JPS6121993B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、油脂質物の改良された溶剤分別結晶
法に関するものである。更に詳しくはカカオバタ
ー代用脂、硬質ステアリンバター等の製菓用食用
油脂に適した良質の分別油脂を高収率に分取する
方法に関するものである。 油脂質物例えば天然トリグリセライド及び微量
に含まれるガム物質、燐脂質、その他の不鹸化物
及び合成グリセライド等(以下単に油脂と称す)
の溶剤分別結晶法は油脂の有効利用法の一つとし
て欠くことのできない重要な処理方法であつて、
その収率や品質を向上させることは工業的利益が
大きく、製品の利用価値を高め、製品を有利に供
給し得ることになる。 溶剤分別結晶法の応用で特に関心のある分野は
カカオバター代用脂、硬質ステアリンバターの製
造法に関するものである。ここでいうカカオバタ
ー代用脂とは天然カカオ脂と部分的又は全体的に
置換し得る通常テンパリング型チヨコレート用油
脂を指し、カカオ脂同等の融解特性と高い置換率
が望まれる。また、硬質ステアリンバターとはサ
ンドビスケツト用油脂、製菓用フイリング等に主
として使用される非テンパリング型食用油脂を指
し、体温付近の温度で鋭敏な融解特性をもつヤシ
油等のラウリン型油脂及びその硬化油脂、硬化植
物油脂、及びその分別油脂等が使用されている。 既に公知の溶剤分別結晶法で提案されている方
法では、有機溶剤としてカカオバター代用脂分画
を精度よく分別し得る選択性のよい溶剤に関する
提案、カカオ脂のトリグリセライド成分であるオ
レオジステアリン、オレオパルミトステアリン、
オレオジパルミチン等の一不飽和トリグリセライ
ドを分取し得る原料油脂の選択と分別方法に関す
る提案、油脂結晶の晶出方法、結晶の分離方法等
の化学工学的な方法に関する提案等多数がある。 既に提案された選択性溶剤を例示するとアセト
ン、メチルエチルケトン等のケトン系溶剤を主流
として、n−ヘキサン等のパラフイン系炭化水素
とその塩素化物、ニトロ化物及び酢酸エチル、酢
酸メチル、イソプロピルアセテート等の酢酸エス
テル類である。この様なケトン系溶剤、パラフイ
ン系溶剤、酢酸エステル類の大部分は食品添加物
としての使用が制限または禁止されている。更に
天然物または食品添加物として認められるものも
選択性が不充分であつて、より安全で選択性の優
れた溶剤の出現が望まれている。 本発明者は、この様な要求を満足させるべく
種々の有機溶剤またはその混合溶剤による溶剤分
別結晶法の改良について研究の結果、意外にも従
来非選択性溶剤とされていた脂肪族一価アルコー
ルの一部が従来のケトン系、パラフイン系、酢酸
エステル系等の選択性溶剤により数段優れた選択
性を示すことを発見して本発明を完成した。 本発明の方法を説明すると、オレオステアリン
型油脂、例えばシア脂・マラバル脂・類似脂及び
その微水添油等、パルミチン系油脂、例えばパー
ム油・牛脂・フルワラ脂・ボルネオ脂・イリツペ
脂・類似脂及びその微水添油等、オレオステアリ
ン型油脂とパルミチン系油脂との混合油脂等のカ
カオ脂のトリグリセライド成分である前記の一不
飽和トリグリセライドを含有する油脂を炭素数4
〜8の脂肪族一価アルコールに溶解後冷却するか
又は冷却しないで溶剤分別法に服せしめて結晶ト
リグリセライドと液体トリグリセライド分画とを
分別する。例えばカカオ代用脂を得るにはその一
不飽和トリグリセライドを主成分とする融点27〜
38℃の中融点部を分取する。こゝでいう中融点部
とは必ずしも三分画中の中間分画を指すものでは
なくシア脂等では僅かの高融点飽和トリグリセラ
イドを除去するか又は除去しないで1次結晶部又
は2次結晶部として分別される中融点部も包含す
る。また、菜種油・カラシ油及び類似脂等のエル
カ酸型油脂及び大豆油・サフラワー油・米ヌカ油
及び類似脂等のオレイン−リノール型油脂等の多
不飽和トリグリセライドを硬化して得られるトラ
ンスモノ不飽和脂肪酸含量が20〜80%の硬化油を
上記と同様に溶剤分別結晶法に服せしめて所望の
分画部を分取する。例えば一不飽和トリグリセラ
イドとトランス酸含量を高めた中融点部を分取す
る方法においては僅に残存する液体又は軟質部又
は期待に反して生成する高融点飽和トリグリセラ
イドを除去して得られる1次結晶部、1次液
部、2次結晶部をも包含する。 本発明の炭素数4〜8の脂肪族一価アルコー
ル、例えばブチルアルコール、ヘキシルアルコー
ル、オクチルアルコール等及びその異性体、混合
物、特に好ましくはブチルアルコールまたはその
混合溶剤は上記溶剤分別結晶法により、1次結晶
部、1次液部、2次結晶部として得られる融点
27〜38℃の中融点部の分画精度を著しく向上させ
る、即ち炭素数4〜8の脂肪族一価アルコールに
よる溶剤分別結晶法による中融点部は従来のケト
ン系、パラフイン系、酢酸エステル系溶剤による
ものに比し中融点部以外の軟質部、硬質部の混入
が著しく改良される。この改良の効果は軟質部の
混入による中融点部の軟質化を防止し、又硬質部
の混入による中融点部の融解曲線の高温部での裾
引き現象、即ち口どけの悪さを改良してカカオ脂
に類似した鋭敏な融解特性を得る。この様な効果
は従来の選択性溶剤による溶剤分別結晶法では著
しく中融点部の収率を犠牲にしても得ることが困
難である。この事実は溶剤分別結晶法によるカカ
オバター代用脂、硬質ステアリンバターの融解特
性の改良には中融点部の分取収率よりも溶剤の選
択性の方が大きく寄与していることを示す。又本
発明の脂肪族一価アルコールは従来の溶剤に比し
てトリグリセライドの脂肪酸基の飽和、不飽和度
に対する選択性が優れていることが後記実施例に
より明らかである。 本発明の中融点部の改良はカカオバター代用脂
の天然カカオ脂に対する置換、代用をより自由に
し、硬質ステアリンバターにおいても中融点部収
率を著しく向上させる。又、特に優れた特性はカ
カオ脂とカカオ代用脂の混合による混合油脂の融
点降下を改良し、混合油脂の結晶形の変化、結晶
転位態様の変化を最少限にとどめる。このことは
中融点部に対する一次分別での高融点飽和トリグ
リセライド、特にトリステアリン、パルミトジス
テアリンの混入が改良され、二次分別においては
多不飽和トリグリセライドの混入が防止されるた
めであろう。更に本発明の優れた特徴は原料油脂
に含有する不鹸化物、特にガム質に対する選択性
が優れている点にある。即ち本発明の脂肪族一価
アルコールは従来の溶剤に比しトリグリセライド
とガム物質の溶剤に対する溶解温度の差を大きく
することが本発明者によつて発見された。この結
果本発明の方法によれば高融点トリグリセライド
の溶剤にする溶解温度(以下単に溶解温度とい
う)においてガム物質が析出するのでトリグリセ
ライドの溶解状態でガム物質のみからなる分画と
液体トリグリセライド分画とを分別することが可
能となり、従来ガム質に30〜40%程度混入してた
トリグリセライドを殆ど皆無とすることができ
る。 本発明の方法を更に詳記するとオレオステアリ
ン型油脂、パルミチン系油脂、高トランス酸含有
硬化植物油脂等の原料油脂1重量部と炭素数4−
8の脂肪族一価アルコール0.5〜6重量部とを油
脂の溶解温度以上の温度で混合溶解する。特にガ
ム物質含有油脂の溶解温度は20〜70℃、好ましく
は45〜60℃である。60℃以下では、ガム物質が溶
解しないで析出するので油分の殆んど含まないガ
ム物質のみを分取できる。ガム物質は90℃をこえ
て昇温すると溶剤中で融解を始めガム質結晶が互
に融着結合し70℃以上では溶剤中に不透明に溶解
し別不能となり、冷却再結晶が必要である。又
再度油脂の溶解温度に昇温すると分別可能とな
る。但し結晶部と同時に分別する場合は冷却再結
晶後の昇温は不要である。ガム質の再結晶温度は
15〜20℃が好適である。次に、一次分別により高
融点飽和トリグリセライド結晶を除去し、再に
液部を冷却し二次分別を行つて融点27〜38℃の中
融点部トリグリセライド結晶を分取する。この中
融点部は原料油脂の種類によりカカオ代用脂また
は硬質ステアリンバターとして好適である。 本発明による一次及び二次分別における結晶部
の結晶形態は従来法溶剤に比して著しく均質微細
であるが過性が優れており、これが本発明溶剤
の飽和、不飽和トリグリセライドの選択性と相俟
つて効果を発揮するものと考えられる。本発明の
溶剤は、炭素数4未満のエチルアルコール、メチ
ルアルコール、プロピルアルコールの混合も40%
以下で可能であり、水分は10%以下が許容され
る。以下、実施例をもつて更に詳細説明する。 実施例 1 不鹸物4.1%含有精製シア脂200grを融解しブタ
ノール800grと混合して50℃に加温するとトリグ
リセライドはブタノールに完全に溶解し溶液は完
全透明となり溶液中にガム物質がモロモロの状態
で析出沈降する。これを別して8.1grのガム物
質を除去した。次いで液部を撹拌しながら毎分
0.5℃の割合で35℃迄冷却し30分間保持した。次
にこれを過し高融点トリグリセライド結晶
0.68grを得た。更に、この液部を同様に冷却し
て−5℃としそのまゝ30分間保持して後過して
中融点トリグリセライド結晶150grを得た。得ら
れた結晶は20〜40メツシの均質な結晶で過性は
良好であつた。次に同一原料油をアセトンを用い
一次分別29℃、二次分別−5℃、その他は実施例
と同一条件で得た分別油との比較を第1表に示
す。
The present invention relates to an improved method for solvent fractional crystallization of oil lipids. More specifically, the present invention relates to a method for fractionating high-quality fractionated oils and fats suitable for edible oils and fats for confectionery, such as cocoa butter substitutes and hard stearin butter, at a high yield. Oils and lipids, such as natural triglycerides, gum substances contained in trace amounts, phospholipids, other unsaponifiable substances, and synthetic glycerides (hereinafter simply referred to as fats and oils)
The solvent fractional crystallization method is an indispensable and important processing method as one of the effective utilization methods of fats and oils.
Improving the yield and quality has great industrial benefits, increases the utility value of the product, and allows the product to be supplied advantageously. An area of particular interest in the application of solvent fractional crystallization is the production of cocoa butter substitutes and hard stearin butter. The cocoa butter substitute referred to here refers to a normal tempering-type thiokolate fat that can partially or completely replace natural cocoa butter, and is desired to have melting properties equivalent to cocoa butter and a high substitution rate. Hard stearin butter refers to non-tempering edible fats and fats mainly used for sandwich biscuits and confectionery fillings, and includes lauric oils and fats such as coconut oil, which have a sharp melting property at temperatures close to body temperature. Hydrogenated fats and oils, hydrogenated vegetable fats, and their fractionated fats and oils are used. Methods that have already been proposed in the known solvent fractional crystallization method include proposals for organic solvents with good selectivity that can accurately separate the cocoa butter substitute fat fraction, and oleodistearin and oleopalmy, which are triglyceride components of cocoa butter. tostearin,
There are many proposals regarding the selection and fractionation method of raw material fats and oils from which monounsaturated triglycerides such as oleodipalmitin can be fractionated, and chemical engineering methods such as methods for crystallizing oil and fat crystals and methods for separating crystals. Examples of selective solvents that have already been proposed are mainly ketone solvents such as acetone and methyl ethyl ketone, paraffinic hydrocarbons such as n-hexane, their chlorinated and nitrated products, and acetic acids such as ethyl acetate, methyl acetate, and isopropyl acetate. They are esters. The use of most of these ketone solvents, paraffin solvents, and acetate esters as food additives is restricted or prohibited. Furthermore, those that are recognized as natural products or food additives also have insufficient selectivity, and there is a desire for a safer and more selective solvent. In order to satisfy these demands, the present inventor conducted research on improving the solvent fractional crystallization method using various organic solvents or their mixed solvents, and unexpectedly found that aliphatic monohydric alcohols, which had been conventionally considered to be non-selective solvents, The present invention was completed by discovering that some of these exhibit selectivity that is significantly superior to conventional selective solvents such as ketone, paraffin, and acetate esters. To explain the method of the present invention, oleostearin type fats and oils, such as shea butter, Malabar fat, similar fats and their slightly hydrogenated oils, palmitic fats and oils, such as palm oil, beef tallow, fulwara fat, Borneo fat, Iritzpe fat, and similar fats and oils. Oils and fats containing the monounsaturated triglyceride, which is the triglyceride component of cacao butter, such as fats and their slightly hydrogenated oils, such as mixed oils and fats of oleostearin type oils and palmitic oils, have 4 carbon atoms.
After dissolving in the aliphatic monohydric alcohol of 1 to 8, it is cooled or subjected to a solvent fractionation method without cooling to separate crystalline triglyceride and liquid triglyceride fractions. For example, to obtain cacao fat substitute, the main component is monounsaturated triglyceride, which has a melting point of 27~
Separate the medium melting point portion at 38℃. The intermediate melting point part here does not necessarily refer to the intermediate fraction among the three fractions; in the case of shea butter, etc., a small amount of high melting point saturated triglycerides may be removed or not removed to form the primary crystal part or secondary crystal part. It also includes the intermediate melting point fraction that is separated as In addition, trans monomers obtained by curing polyunsaturated triglycerides such as erucic acid type oils and fats such as rapeseed oil, mustard oil, and similar fats, and oleic-linole type oils and fats such as soybean oil, safflower oil, rice bran oil, and similar fats. A hydrogenated oil having an unsaturated fatty acid content of 20 to 80% is subjected to the solvent fractional crystallization method in the same manner as above to separate a desired fraction. For example, in the method of fractionating monounsaturated triglyceride and the intermediate melting point part with increased trans acid content, the primary crystals obtained by removing the slightly remaining liquid or soft part or the unexpectedly produced high melting point saturated triglyceride It also includes a part, a primary liquid part, and a secondary crystal part. The aliphatic monohydric alcohol having 4 to 8 carbon atoms, such as butyl alcohol, hexyl alcohol, octyl alcohol, etc., and isomers and mixtures thereof, particularly preferably butyl alcohol or a mixed solvent thereof, can be prepared by the above-mentioned solvent fractional crystallization method. Melting points obtained as secondary crystal part, primary liquid part, and secondary crystal part
The fractionation accuracy of the intermediate melting point region of 27 to 38℃ is significantly improved, that is, the intermediate melting point region by the solvent fractional crystallization method using an aliphatic monohydric alcohol having 4 to 8 carbon atoms is compared to conventional ketone, paraffin, and acetate ester systems. Compared to the method using a solvent, the contamination of soft parts and hard parts other than the intermediate melting point part is significantly improved. The effect of this improvement is to prevent the softening of the intermediate melting point portion due to the inclusion of the soft portion, and to improve the tailing phenomenon in the high temperature portion of the melting curve of the intermediate melting point portion due to the inclusion of the hard portion, that is, poor melting in the mouth. Obtains sensitive melting properties similar to cocoa butter. It is difficult to obtain such an effect by the conventional solvent fractional crystallization method using a selective solvent, even if the yield of the intermediate melting point region is significantly sacrificed. This fact indicates that the selectivity of the solvent contributes more than the fractional yield of the intermediate melting point to the improvement of the melting characteristics of cocoa butter substitutes and hard stearin butter by the solvent fractional crystallization method. Further, it is clear from the examples below that the aliphatic monohydric alcohol of the present invention has superior selectivity to the degree of saturation and unsaturation of fatty acid groups in triglycerides compared to conventional solvents. The improvement of the mid-melting point portion of the present invention allows the cocoa butter substitute fat to be more freely substituted for natural cacao butter, and significantly improves the yield of the mid-melting point portion even in hard stearin butter. In addition, particularly excellent properties improve the melting point drop of the mixed fat and oil caused by mixing cocoa butter and cacao substitute fat, and minimize changes in the crystal form and crystal rearrangement mode of the mixed fat and oil. This is probably because the contamination of high melting point saturated triglycerides, especially tristearin and palmitodistearin, in the first fractionation into the intermediate melting point portion is improved, and the contamination of polyunsaturated triglycerides is prevented in the second fractionation. A further advantageous feature of the present invention is that it has excellent selectivity to unsaponifiable substances contained in raw material fats and oils, especially gum substances. That is, the inventors have discovered that the aliphatic monohydric alcohol of the present invention increases the difference in the dissolution temperature of triglycerides and gum substances in the solvent compared to conventional solvents. As a result, according to the method of the present invention, gum substances precipitate at the dissolution temperature (hereinafter simply referred to as dissolution temperature) of the high melting point triglyceride in the solvent, so that a fraction consisting only of gum substances and a liquid triglyceride fraction are separated in the dissolved state of triglyceride. It is now possible to separate triglycerides, which used to be mixed in gum at about 30 to 40%, and can be almost completely eliminated. The method of the present invention will be described in more detail: 1 part by weight of a raw material oil such as an oleostearin type oil, a palmitic oil, a hydrogenated vegetable oil containing a high trans acid content, and a carbon number of 4-
8 and 0.5 to 6 parts by weight of aliphatic monohydric alcohol are mixed and dissolved at a temperature equal to or higher than the melting temperature of fats and oils. In particular, the melting temperature of the gum material-containing fat or oil is 20 to 70°C, preferably 45 to 60°C. At temperatures below 60°C, the gum substance does not dissolve but precipitates, so only the gum substance containing almost no oil can be separated. When the temperature of the gum substance rises above 90°C, it begins to melt in the solvent and the gum crystals are fused together, and when the temperature exceeds 70°C, it becomes opaque and dissolves in the solvent and cannot be separated, requiring cooling and recrystallization. Furthermore, when the temperature is raised again to the melting temperature of fats and oils, separation becomes possible. However, if the crystal part is separated at the same time as the crystal part, there is no need to raise the temperature after cooling and recrystallization. The recrystallization temperature of gum is
15-20°C is suitable. Next, high melting point saturated triglyceride crystals are removed by primary fractionation, and the liquid portion is cooled again and secondary fractionation is performed to separate triglyceride crystals having a medium melting point of 27 to 38°C. This medium melting point portion is suitable as a cacao substitute fat or hard stearin butter depending on the type of raw material fat. The crystal morphology of the crystal part in the primary and secondary fractionation of the present invention is significantly more homogeneous and finer than that of conventional method solvents, but it has excellent transient properties, and this is compatible with the selectivity of saturated and unsaturated triglycerides of the present solvent. It is thought that the effect will be exerted over time. The solvent of the present invention can also contain 40% of ethyl alcohol, methyl alcohol, and propyl alcohol having less than 4 carbon atoms.
A moisture content of 10% or less is acceptable. A more detailed explanation will be given below using examples. Example 1 When 200g of purified shea butter containing 4.1% of unsaponifiable matter is melted and mixed with 800g of butanol and heated to 50°C, the triglyceride is completely dissolved in the butanol and the solution becomes completely transparent with gum substances in the solution. It precipitates and settles. Separately, 8.1 gr of gum material was removed. Then every minute while stirring the liquid part.
It was cooled to 35°C at a rate of 0.5°C and held for 30 minutes. This is then filtered to form high melting point triglyceride crystals.
I got 0.68gr. Further, this liquid portion was similarly cooled to -5°C, maintained as such for 30 minutes, and then filtered to obtain 150 gr of medium melting point triglyceride crystals. The obtained crystals were homogeneous crystals with a size of 20 to 40 mesh and had good transient properties. Next, Table 1 shows a comparison with fractionated oils obtained from the same raw material oil using acetone, firstly fractionated at 29°C, secondly fractionated at -5°C, and otherwise under the same conditions as in the Examples.

【表】 第1表により中融点部の収率が著しく向上し、
しかも沃素価、融点が改良されている。 実施例 2 精製シア脂110grと精製パーム油90grの混合油
をフタノール640grとエタノール160grの混合溶剤
に混合し55℃に加温するとトリグリセライドは完
全に溶解し完全透明となつた。ガム物質は溶液中
に析出沈降するのでこれを別し4grの殆んど油
分を含まないガム物質を分取した。次に、液部
を撹拌しながら毎分0.5℃の割合で25℃まで冷却
してそのまゝ30分保持して後、高融点結晶部7gr
を過除去した。更にこの液部を同様に撹拌冷
却して5℃としそのまゝ30分間保持して、均質微
細な中融点結晶部を析出させ別して125grのカ
カオバター代用脂を得た。 次に比較のため、同じ原料油脂をアセトンを用
いて一次分別24℃、二次分別−5℃、及び一次分
別20℃、二次分別−5℃で得たカカオバター代用
脂A及びBの収率、特性値を第2表に示す。第2
表よりアセトン分別では収率を犠牲にしても特性
値が大きく変化せず本発明の方法に比べて劣つて
いることがわかる。また、第1図冷却曲線、第2
図固体脂指数を見ても本発明によるカカオ代用脂
の品質が優れていることが明らかである。
[Table] According to Table 1, the yield of the intermediate melting point portion was significantly improved,
Furthermore, the iodine value and melting point have been improved. Example 2 When a mixed oil of 110 gr of refined shea butter and 90 gr of refined palm oil was mixed with a mixed solvent of 640 gr of phthanol and 160 gr of ethanol and heated to 55°C, the triglycerides were completely dissolved and the mixture became completely transparent. Since the gum material precipitated in the solution, it was separated and 4 gr of gum material containing almost no oil was collected. Next, the liquid part was cooled down to 25°C at a rate of 0.5°C per minute while stirring, and kept as such for 30 minutes.
was overremoved. Further, this liquid portion was similarly stirred and cooled to 5° C. and maintained at that temperature for 30 minutes to precipitate and separate a homogeneous and fine medium-melting point crystal portion to obtain 125 gr of cocoa butter substitute fat. Next, for comparison, the yields of cocoa butter substitutes A and B were obtained from the same raw material fat using acetone at 24°C for the first fractionation and at -5°C for the second fractionation, and at 20°C for the first fractionation and at -5°C for the second fractionation. The ratio and characteristic values are shown in Table 2. Second
From the table, it can be seen that the acetone fractionation is inferior to the method of the present invention because the characteristic values do not change significantly even if the yield is sacrificed. In addition, the cooling curve in Figure 1, the cooling curve in Figure 2,
It is clear from the figure solid fat index that the quality of the cacao fat substitute according to the present invention is excellent.

【表】 実施例 3 菜種油50%、大豆油50%の混合精製油500grを
ニツケル触媒を用いて水素添加し沃素価73.7融点
33.0℃、トランス酸含量42.5%の硬化油を調整し
た。この硬化油100grをブタノール500grに溶解
し、一次分別25℃、二次分別10℃で分別処理し中
融点部56grを得た。この硬質ステアリンバターと
比較のため硬化油100gをメチルエチルケトン
500grに溶解し、一次分別25℃、二次分別10℃、
で分別処理した硬質ステアリンバター(A)と一次分
別22℃、二次分別7℃で分別処理した硬質ステア
リンバター(B)を調整し本発明の方法で得た硬質ス
テアリンバターとの比較を第3表に示す。第3表
より、同一特性を有する硬質ステアリンバターを
従来の溶剤で得るには著しい収率低下が伴うこと
が明白である。
[Table] Example 3 500g of mixed refined oil of 50% rapeseed oil and 50% soybean oil was hydrogenated using a nickel catalyst to obtain an iodine value of 73.7 melting point
A hydrogenated oil with a trans acid content of 42.5% was prepared at 33.0°C. 100g of this hardened oil was dissolved in 500g of butanol and fractionated at 25°C for the primary fractionation and 10°C for the secondary fractionation to obtain a medium melting point portion of 56gr. For comparison with this hard stearin butter, add 100g of hydrogenated oil to methyl ethyl ketone.
Dissolved in 500gr, primary fractionation at 25℃, secondary fractionation at 10℃,
A comparison is made between the hard stearin butter (A) that was fractionated at 22°C for the first fractionation and the hard stearin butter (B) that was fractionated at 7°C for the secondary fractionation with the hard stearin butter obtained by the method of the present invention. Shown in the table. From Table 3, it is clear that obtaining hard stearin butter with the same properties using conventional solvents is accompanied by a significant decrease in yield.

【表】【table】

【表】 実施例 4 オクチルアルコール60%、メチルアルコール40
%の混合溶剤400grに精製パーム油100grを溶解し
50℃より毎分0.5℃の割合で21℃迄冷却しその
まゝ30分間保持して後過して結晶部8.5gr(油
分)を除去し、次に液部を同様に5℃迄冷却し
30分間保持して46.5grの中融点部を別した。第
4表に、このカカオ代用脂とアセトンを溶剤とし
て同収率で分取した中融点部との特性値の比較を
示す。
[Table] Example 4 Octyl alcohol 60%, methyl alcohol 40%
Dissolve 100gr of refined palm oil in 400gr of mixed solvent
Cool from 50°C to 21°C at a rate of 0.5°C per minute, hold for 30 minutes, and then filter to remove 8.5gr (oil) of the crystal part, then cool the liquid part to 5°C in the same way.
The medium melting point portion of 46.5 gr was separated after holding for 30 minutes. Table 4 shows a comparison of the characteristic values of this cacao substitute fat and the intermediate melting point fraction fractionated at the same yield using acetone as a solvent.

【表】【table】

【表】 実施例 5 精製パーム200gを融解し、ブタノール800gと
混合し、50℃より毎分0.5℃の割合で27℃まで冷
却し、そのまま30分間保持して後、過した。 結晶部57.5gを脱溶剤して20.8gの高融点部を
得た。更に、液部を5℃まで冷却し、30分間保
持した後、過し、293.5gの結晶部を脱溶剤し
95.0gの中融点部と、液部を脱溶剤して液油
部84.0gを得た。その収率バランス及び特性を第
5表に示す。なお、別に比較例1としてエタノー
ルを、比較例2としてn−ヘキサンを、比較例3
としてn−デカノールを使い、第5表に示した条
件にて実施例5と同様の操作によつて得た収率と
その特性を第5表に併せ示した。
[Table] Example 5 200 g of purified palm was melted, mixed with 800 g of butanol, cooled from 50° C. to 27° C. at a rate of 0.5° C. per minute, kept as it was for 30 minutes, and then filtered. 57.5 g of the crystalline portion was removed from the solvent to obtain 20.8 g of high melting point portion. Furthermore, the liquid part was cooled to 5°C, held for 30 minutes, filtered, and 293.5 g of crystal part was removed from the solvent.
95.0g of the medium melting point part and the liquid part were desolvated to obtain 84.0g of the liquid oil part. Its yield balance and properties are shown in Table 5. In addition, separately, ethanol was used as Comparative Example 1, n-hexane was used as Comparative Example 2, and Comparative Example 3 was used.
Table 5 also shows the yield and characteristics obtained by carrying out the same operations as in Example 5 under the conditions shown in Table 5, using n-decanol as the compound.

【表】【table】

【表】 第5表に示す実施例と比較例から、先ず、ブタ
ノールの選択性のある晶析については、分別脂の
収率バランスとその特性からいつて実施例の中融
点部は、収量47.5%、よう素価41.9を示すのに対
して、比較例1はよう素価が高く、結晶純度が非
選択であり、比較例2は中融点部の収量が少い。
即ち、実施例によれば、カカオ代用脂に好適なパ
ーム油の中融点部(二飽和一不飽和グリセライド
画分)が収率よく得られることを示している。こ
れはエタノールに対するトリグリセライドの溶解
度が20℃以下で非常に小さくなることと、ヘキサ
ンは逆に0℃以下でも大きな溶解性を示すことに
起因すると考えられる。更に経済性を考慮した場
合、エタノール分別は大量の溶剤使用という面
で、又ヘキサン分別は晶析温度が−20℃と云う冷
却費用の面で、共に非常に不利であることがわか
る。また高級アルコール類としてのデカノール
(炭素数10)の融点6.9℃はパーム油の液融点よ
り低いので選択的な晶析ができない事と、粘度が
高い事は別性が悪い事を意味し、分別溶剤とし
ての利用は不利である。
[Table] From the Examples and Comparative Examples shown in Table 5, first of all, regarding the selective crystallization of butanol, based on the yield balance of the fractionated fat and its characteristics, the intermediate melting point part of the example has a yield of 47.5 % and an iodine value of 41.9, whereas Comparative Example 1 has a high iodine value and unselective crystal purity, and Comparative Example 2 has a low yield of the intermediate melting point region.
That is, the examples show that the medium melting point part of palm oil (disaturated monounsaturated glyceride fraction) suitable for cacao fat substitute can be obtained in good yield. This is thought to be due to the fact that the solubility of triglyceride in ethanol becomes very low at temperatures below 20°C, and on the contrary, hexane exhibits a large solubility even below 0°C. Furthermore, when economic efficiency is considered, it can be seen that ethanol fractionation is very disadvantageous in terms of the use of a large amount of solvent, and hexane fractionation is very disadvantageous in terms of cooling costs since the crystallization temperature is -20°C. In addition, the melting point of decanol (10 carbon atoms), which is a higher alcohol, is lower than the liquid melting point of palm oil, so selective crystallization is not possible, and its high viscosity means that it has poor separation properties. Its use as a solvent is disadvantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例2のカカオ代用脂と
天然カカオ脂及び比較例との冷却曲線であり、第
2図は同固体脂指数を比較した線図である。
FIG. 1 is a cooling curve of the cacao fat substitute of Example 2 of the present invention, natural cacao butter, and a comparative example, and FIG. 2 is a diagram comparing the solid fat index of the same.

Claims (1)

【特許請求の範囲】 1 油脂の溶剤分別結晶法において、選択性溶剤
として炭素数4〜8の脂肪族一価アルコールの一
種、又は二種以上の混合溶剤を主成分とする脂肪
族一価アルコールに油脂を溶解し結晶トリグリセ
ライドと液体トリグリセライド分画を分別分取す
ることを特徴とする油脂の溶剤分別結晶法。 2 脂肪族一価アルコールがブチルアルコールの
単独、又はブチルアルコールを主成分とする混合
物である特許請求の範囲第1項記載の分別結晶
法。 3 高融点トリグリセライド部を除去して後、融
点27〜38℃の中融点部を分別分取する分別油脂が
カカオ代用脂である特許請求の範囲第1項または
第2項記載の分別結晶法。 4 高融点トリグリセライド部を除去して後、融
点27〜38℃の中融点部を分別分取する分別油脂が
硬質ステアリンバターである特許請求の範囲第1
項または第2項記載の分別結晶法。 5 オレオジステアリン系油脂から高融点トリグ
リセライド部を除去する工程と、一不飽和トリグ
リセライドを主成分とする融点27〜38℃の中融点
部を分取する工程とを含む特許請求の範囲第1項
または第2項記載の分別結晶法。 6 パルミチン系油脂より高融点トリグリセライ
ド部を除去する工程と、一不飽和トリグリセライ
ドを主成分とする融点27〜38℃の中融点部を分取
する工程とを含む特許請求の範囲第1項または第
2項記載の分別結晶法。 7 オレオジステアリン系油脂80〜40部とパルミ
チン系油脂20〜60部との混合油より高融点トリグ
リセライド部を除去する工程と一不飽和トリグリ
セライドを主成分とする融点27〜38℃の中融点部
を分取する工程とを含む特許請求の範囲第1項ま
たは第2項記載の分別結晶法。 8 オレイン−リノール型油脂を硬化して得られ
るトランスモノ不飽和脂肪酸含量が20〜80%の硬
化油を一次分別で高融点部を除去し、二次分別で
一不飽和トリグリセライドとトランス酸含量を高
めた融点27〜38℃の中融点部を分取する特許請求
の範囲第1項または第2項記載の分別結晶法。
[Scope of Claims] 1. In the solvent fractional crystallization method of fats and oils, an aliphatic monohydric alcohol whose main component is one kind of aliphatic monohydric alcohol having 4 to 8 carbon atoms, or a mixed solvent of two or more kinds as a selective solvent. A method for solvent fractional crystallization of fats and oils, which is characterized by dissolving fats and oils in water and separating crystalline triglyceride and liquid triglyceride fractions. 2. The fractional crystallization method according to claim 1, wherein the aliphatic monohydric alcohol is butyl alcohol alone or a mixture containing butyl alcohol as a main component. 3. The fractional crystallization method according to claim 1 or 2, wherein the fractionated oil or fat in which the medium melting point portion having a melting point of 27 to 38°C is fractionated after removing the high melting point triglyceride portion is a cacao substitute fat. 4. Claim 1, wherein after removing the high melting point triglyceride portion, the fractionated oil and fat from which the middle melting point portion with a melting point of 27 to 38°C is fractionated is hard stearin butter.
The fractional crystallization method described in Section 1 or 2. 5. Claim 1, which includes the steps of removing a high melting point triglyceride portion from an oleodystearin fat and oil, and separating a middle melting point portion of 27 to 38° C. that is mainly composed of monounsaturated triglycerides; or The fractional crystallization method described in Section 2. 6. Claim 1 or 2 which includes the steps of removing a high melting point triglyceride part from palmitic oil and fat, and separating a middle melting point part with a melting point of 27 to 38 °C mainly composed of monounsaturated triglycerides. The fractional crystallization method described in Section 2. 7. A step of removing the high melting point triglyceride part from a mixed oil of 80 to 40 parts of oleodystearin oil and fat and 20 to 60 parts of palmitic oil, and removing the middle melting point part of the melting point of 27 to 38 °C, which is mainly composed of monounsaturated triglyceride. The fractional crystallization method according to claim 1 or 2, which comprises a step of fractionating. 8 Hydrogenated oil with a trans monounsaturated fatty acid content of 20 to 80% obtained by curing oleic-linole type fats is first fractionated to remove high melting point parts, and a second fractionation is performed to remove monounsaturated triglycerides and trans acid content. The fractional crystallization method according to claim 1 or 2, wherein the intermediate melting point portion having an increased melting point of 27 to 38° C. is fractionated.
JP3382776A 1976-03-26 1976-03-26 Solvent fractionation of fat and oil Granted JPS52117305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3382776A JPS52117305A (en) 1976-03-26 1976-03-26 Solvent fractionation of fat and oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3382776A JPS52117305A (en) 1976-03-26 1976-03-26 Solvent fractionation of fat and oil

Publications (2)

Publication Number Publication Date
JPS52117305A JPS52117305A (en) 1977-10-01
JPS6121993B2 true JPS6121993B2 (en) 1986-05-29

Family

ID=12397311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3382776A Granted JPS52117305A (en) 1976-03-26 1976-03-26 Solvent fractionation of fat and oil

Country Status (1)

Country Link
JP (1) JPS52117305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113998U (en) * 1987-01-16 1988-07-22
JPH02181691A (en) * 1989-01-06 1990-07-16 Fumio Fukushima Portable alighting station indicating device
JP5803671B2 (en) * 2009-09-30 2015-11-04 不二製油株式会社 Method for reducing chloropropanols and their forming substances and glycidol fatty acid esters in glyceride oils and fats

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2464655A1 (en) * 1979-09-10 1981-03-20 Blohorn Sa Prepn. of cocoa butter substitute esp. for chocolate - by solvent fractionation of a specified vegetable material and palm oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113998U (en) * 1987-01-16 1988-07-22
JPH02181691A (en) * 1989-01-06 1990-07-16 Fumio Fukushima Portable alighting station indicating device
JP5803671B2 (en) * 2009-09-30 2015-11-04 不二製油株式会社 Method for reducing chloropropanols and their forming substances and glycidol fatty acid esters in glyceride oils and fats

Also Published As

Publication number Publication date
JPS52117305A (en) 1977-10-01

Similar Documents

Publication Publication Date Title
EP0196780B1 (en) Use of mixed acid triglycerides as a fat blooming inhibitor
CA2315464C (en) Trans free hard structural fat for margarine blend and spreads
Rossell Fractionation of lauric oils
EP0074146B1 (en) Wet fractionation of hardened butterfat
JP4193999B2 (en) Fractionation of triglyceride oil
US3686240A (en) Process for producing cacao butter substitute from palm oil described and claimed therein
EP0081881B1 (en) A process for the solvent fractionation of palm oil stearines and products obtained with said process
US7785645B2 (en) Process for obtaining an oil composition and the oil composition obtained therefrom
US4601857A (en) Process for fat fractionation with azeotropic solvents
Young Interchangeability of fats and oils
JP3388838B2 (en) Method for producing fat composition for confectionery
JP5755472B2 (en) Method for dry separation of fats and oils
JPS6121993B2 (en)
JPS61242543A (en) Method of improving quality of hard butter
US3944585A (en) Multi-step crystallization and blending process for making physiochemically designed fat compositions from tallow
US3790608A (en) Process for preparing edible fats by hydrogenation and fractionation of triglyceride fatty oils containing c20 and c22 fatty acids
JPH0427813B2 (en)
JP6369586B1 (en) Edible shea olein and process for producing the same
JPH02150236A (en) Hard butter composition
CN112970914B (en) Chocolate cream inhibiting agent and preparation method thereof
JP3502158B2 (en) Method for fractionating cocoa butter and chocolate containing fractionated fat obtained by the method
JPH069465B2 (en) Hard butter manufacturing method
JP6534512B2 (en) Hard butter manufacturing method
US4839191A (en) Fat fractions and mixtures thereof
US4880658A (en) Obtaining a fat fraction with azeotropic solvents