JPS61219759A - Manufacture of diamond massed body - Google Patents

Manufacture of diamond massed body

Info

Publication number
JPS61219759A
JPS61219759A JP60060857A JP6085785A JPS61219759A JP S61219759 A JPS61219759 A JP S61219759A JP 60060857 A JP60060857 A JP 60060857A JP 6085785 A JP6085785 A JP 6085785A JP S61219759 A JPS61219759 A JP S61219759A
Authority
JP
Japan
Prior art keywords
diamond
carbon
graphite
powder
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60060857A
Other languages
Japanese (ja)
Inventor
蕗沢 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60060857A priority Critical patent/JPS61219759A/en
Publication of JPS61219759A publication Critical patent/JPS61219759A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ■ 産業上の利用分野 本発明は研削、切削工具等に使用されるダイヤモンド焼
結体に関し、特にダイヤモンド以外の物質を殆んど含ま
ない密集腕体に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to a diamond sintered body used for grinding, cutting tools, etc., and particularly to a dense arm body containing almost no substance other than diamond.

←)従来技術 ダイヤモンド焼結体はダイヤモンドが単独では焼結しな
いため、ダイヤモンド粉末にFe e Nf + C。
←) Conventional technology Diamond sintered bodies do not sinter diamond alone, so Fe e Nf + C is added to the diamond powder.

等のダイヤモンドを溶解する金属、合金粉末を加え、熱
力学的にダイヤモンド安定域の高温、高圧下で処理して
焼結する方法が知られている。また上記においてさらに
黒鉛粉末を1部添加する方法も提案されている。添加し
た黒鉛が高温、高圧下でダイヤモンドに変換し、同時に
ダイヤモンド粉末を焼結するものである。
A known method is to add a metal or alloy powder that melts diamond, such as diamond, and process and sinter it at a high temperature and high pressure in the thermodynamically stable diamond range. Furthermore, a method has also been proposed in which one part of graphite powder is further added to the above method. The added graphite converts into diamond under high temperature and pressure, and at the same time, the diamond powder is sintered.

また上記金属又は合金からなる薄板とダイヤモンド粉末
圧粉体を重ねて配置したものを高温、高圧条件下で処理
し、薄板が溶融してダイヤモンド焼結体内に浸入し、ダ
イヤモンドが焼結する方法もある。
There is also a method in which a thin plate made of the above-mentioned metal or alloy and a diamond powder compact are stacked and treated under high temperature and high pressure conditions, and the thin plate melts and penetrates into the diamond sintered body, thereby sintering the diamond. be.

しかし、これらの方法ではダイヤモンドの1部あるいは
黒鉛が金属等に溶解し、ダイヤモンドとなって析出する
際粒子が粗大化し、不均一な焼結体となシ強度等の特性
が劣る。またダイヤモンドに較べて硬度の低い金属等が
残存すると、さらに黒鉛を添加した場合は黒鉛の1部が
焼結体中に残存すること等によシ同様に焼結体の硬度、
強度等が劣るものになる。
However, in these methods, part of the diamond or graphite dissolves in the metal, etc., and when it precipitates as diamond, the particles become coarse, resulting in a non-uniform sintered body, which has poor properties such as strength. In addition, if metals with lower hardness than diamond remain, if graphite is added, a portion of the graphite may remain in the sintered body. Similarly, the hardness of the sintered body
The strength etc. will be inferior.

f→ 発明が解決しようとする問題点 本発明はダイヤモンド密集塊体中に黒鉛や金属等の物質
含有による特性低下を避は実質的にダイヤモンドのみか
らなる焼結体とし、かつ焼結体中にダイヤモンドの粗大
粒の発生を防ぎ、均一なダイヤモンド焼結体を得ようと
するものである。
f→ Problems to be Solved by the Invention The present invention avoids deterioration of properties due to the inclusion of substances such as graphite and metals in the diamond dense lump, and provides a sintered body consisting essentially only of diamond. The purpose is to prevent the generation of coarse diamond particles and obtain a uniform diamond sintered body.

に)問題点を解決するための手段 本発明はダイヤモンド粉末にいわゆるi−カーピンある
いはダイヤモンド状炭素粉末を少量添加し、ダイヤモン
ドの熱力学定安定域の高温、高圧下で処理し、ダイヤモ
ンド粉末粒子の表面においてi−カーがンを直接ダイヤ
モンドに転換しながら1体に焼結する方法である。
(2) Means for Solving the Problems The present invention involves adding a small amount of so-called i-carpine or diamond-like carbon powder to diamond powder, and treating it at a high temperature and high pressure in the thermodynamic constant stability range of diamond, to form diamond powder particles. This is a method in which the i-carbon is directly converted into diamond at the surface and sintered into a single body.

炭素には黒鉛とダイヤモンドがあることは古くから知ら
れている。ところが最近ダイヤモンドと黒鉛とは別の構
造の炭素が発見されている。ラマンスイクトルでは図1
に示すように1550an  付近にブロードなピーク
1を有する。
It has long been known that carbon includes graphite and diamond. However, recently carbon has been discovered with a structure different from that of diamond and graphite. Figure 1 in Ramansuictor
As shown in the figure, there is a broad peak 1 near 1550 an.

これがいわゆるi−カーがンあるいはダイヤモンド状炭
素と称されているものである。一方黒鉛構造では159
0fi−’、ダイヤモンドでは1332cIrL  に
ピーク2を有する。i−カーがンあるいはダイヤモンド
状炭素に関する文献とじてはJ、VAC,SC1,TE
CH,Vol 20 、 No、 3 、338−34
0  *  1981  r  1.J、Morave
c、J、Mat、Sci  +vol  17  r 
 3106  +  1982  r  S、Mats
umoto + et *a1  などがある。
This is what is called i-carbon or diamond-like carbon. On the other hand, in the graphite structure, 159
0fi-', diamond has a peak 2 at 1332cIrL. References regarding i-carbon or diamond-like carbon include J, VAC, SC1, TE.
CH, Vol 20, No. 3, 338-34
0 * 1981 r 1. J, Morave
c, J, Mat, Sci +vol 17 r
3106 + 1982 r S, Mats
Examples include umoto + et *a1.

本発明はとのi−カーピンあるいはダイヤモンド状炭素
(以下代表してi−カーピンという)について種々研究
した結果、ダイヤモンドの焼結助剤として有効であるこ
とを見出したものである。
The present invention is based on the results of various studies on i-carpine or diamond-like carbon (hereinafter referred to as i-carpine) and the discovery that it is effective as a sintering aid for diamond.

通常黒鉛からダイヤモンドが得られるのは黒鉛を金属等
に溶解して原子状炭素とし、それがダイヤモンド安定域
で析出する際ダイヤモンド構造になると云われている。
It is said that diamond is usually obtained from graphite by dissolving graphite in a metal or the like to form atomic carbon, which forms a diamond structure when it precipitates in the diamond stability region.

また特に圧力の高い領域では黒鉛を直接ダイヤモンド構
造に変えることも可能と云われている。しかしこれは実
用上は難しい。
It is also said that it is possible to directly convert graphite into a diamond structure, especially in areas of high pressure. However, this is difficult in practice.

i−カーピンも金属等を使用しない場合、単独では特に
高い圧力については別として実用上の範囲においてはあ
る程度の収率をもってダイヤモンドに変換することはむ
ずかしい。ところが、このi−カーNンをダイヤモンド
粉末に混合し、これに実用上可能な高温高圧下で処理す
るとi−カーがンが大部分ダイヤモンドに変換すること
が判明した。これはi−カーピンは黒鉛よシは不安定な
構造であシ、そのためダイヤモンド粒子の表面において
高温高圧下の条件下でダイヤモンドに変換するものと考
えられる。
If i-carpine does not use metal or the like, it is difficult to convert it into diamond with a certain degree of yield within a practical range, except at particularly high pressures. However, it has been found that when this i-carn is mixed with diamond powder and treated under practically possible high temperature and high pressure, most of the i-carn is converted into diamond. This is because i-carpine has an unstable structure compared to graphite, and therefore it is considered that it converts to diamond on the surface of diamond particles under conditions of high temperature and high pressure.

i−カーがンの製造法としてはCH4等の炭化水素をH
2あるいはH2と不活性ガスで希釈し、これをマイクロ
波あるいは高周波などで励起状態とし、これから所定温
度に加熱されたシリコン等の基板上にi−カーピンとし
て析出させる方法(プラズマCVD法)がある。この方
法で一般には、ダイヤモンドとi−カーピンの混合物が
得られ、これに少量の黒鉛が含まれることが多い。黒鉛
を少なくするには圧力0.5〜10 曲a %マイクロ
波の場合、CH4濃度0.1〜0.59g、基板温度7
00〜1000℃、マイクロ波のPowerはプラズマ
中心の基板の温度が700〜1000℃になる大きさ、
またダイヤモンドも少なくしてi−カーボンの量を多く
するには、条件をCH4濃度2〜4チ、圧力1〜5KP
a、マイクロ波Powerは基板温度を850〜950
℃に保てる大きさとする。
The method for producing i-carbon is to convert hydrocarbons such as CH4 into H
There is a method (plasma CVD method) in which i-carpine is diluted with 2 or H2 and an inert gas, excited with microwaves or high frequency waves, and then deposited as i-carpine on a substrate such as silicon that has been heated to a predetermined temperature. . This process generally results in a mixture of diamond and i-carpine, often containing small amounts of graphite. To reduce graphite, the pressure is 0.5-10%. In the case of microwave, the CH4 concentration is 0.1-0.59g, and the substrate temperature is 7.
00 to 1000℃, the microwave power is such that the temperature of the substrate at the center of the plasma is 700 to 1000℃,
In addition, in order to increase the amount of i-carbon while reducing the amount of diamond, the conditions are CH4 concentration of 2 to 4 cm and pressure of 1 to 5 KP.
a. Microwave Power sets the substrate temperature to 850-950
The size should be such that it can be maintained at ℃.

本発明で用いられるダイヤモンド粉末は塊体密度、強度
を高めるために粒度が1〜10μmの範囲であって、粒
度が揃っているものが望ましい。これに添加するぜ一カ
ーがンは例えば前記プラズマCVD法によシ基板に析出
した膜を剥離し、1〜5繻程度に粉砕して用いる。この
粉砕はダイヤモンドと混合した後攪拌することKよ)行
なってもよい。両者の混合割合はダイヤモンド100重
量部に対し、i−カー2710〜50重量部が適当であ
る。i−カーピンの量が少な過ぎると腕体の結合強度が
上らず、反対に多過ぎるとダイヤモンドぢ に変換し丞いi−カーがンが増し腕体としては好ましく
ない。本発明においてi−カーがンはできるだけ腕体中
に残存しないようにし、望ましくは塊体中重量で5チ以
下とする。そのために処理条件との関連においてi−カ
ーボンの量を定める。
The diamond powder used in the present invention preferably has a particle size in the range of 1 to 10 μm and has uniform particle size in order to increase the lump density and strength. The carbon to be added to this is used by peeling off the film deposited on the substrate by, for example, the plasma CVD method described above, and pulverizing it into about 1 to 5 pieces. This pulverization may be performed by stirring after mixing with diamond. A suitable mixing ratio of both is 2,710 to 50 parts by weight of i-car to 100 parts by weight of diamond. If the amount of i-carpin is too small, the bonding strength of the arm will not increase; on the other hand, if it is too large, the i-carpin will become diamond-like and the number of i-carpins will increase, making it undesirable for the arm. In the present invention, the i-cargan should not remain in the arm body as much as possible, and preferably the weight of the mass should be 5 cm or less. For this purpose, the amount of i-carbon is determined in relation to the processing conditions.

一般的に十分な高温高圧及び時間で処理する場合は原料
中のi−カーがンの量を多くすることができる。
Generally, if the treatment is carried out at a sufficiently high temperature, high pressure, and time, the amount of i-carbon in the raw material can be increased.

ダイヤモンド粉末とi−カービン粉末は十分よく混合し
、成形したものを超高圧装置に装填して処理する。
The diamond powder and the i-carbine powder are thoroughly mixed, and the molded product is loaded into an ultra-high pressure device and processed.

処理条件は基本的にはダイヤモンドの熱力学的安定域な
らよいが、転換速度及び装置上の問題等よ#)1300
〜1800℃、5〜5GPa、10〜30分が好ましい
Basically, the processing conditions may be within the thermodynamic stability range of diamond, but there may be problems such as conversion rate and equipment.#) 1300
~1800°C, 5~5GPa, and 10~30 minutes are preferred.

(ホ)実施例 メタン3容tS、水素97容量チの混合ガスを用い、こ
れを反応槽内で2.45 GHzのマイクロ波で励起し
、反応槽内に置かれて850℃に加熱されたシリコン基
板上にi−カーがンを析出させた。
(E) Example Using a mixed gas of 3 volumes of methane and 97 volumes of hydrogen, this was excited with a 2.45 GHz microwave in a reaction tank, and the mixture was placed in the reaction tank and heated to 850°C. An i-carbon was deposited on a silicon substrate.

この時の反応槽内の圧力は2KPaであった。基板析出
物を剥離し、ラマンスペクトルを調べた結果図1に示す
ようなものであった。このラマンスペクトルに示される
様にこのi−カーがンは10チ以下のダイヤモンドを含
んでいた。このi−カーボンを乳鉢で粉砕し、大部分1
〜3RILにして使用した。
The pressure inside the reaction tank at this time was 2 KPa. The substrate precipitate was peeled off and the Raman spectrum was examined, and the results were as shown in FIG. As shown in this Raman spectrum, this i-carn contained less than 10 diamonds. This i-carbon is crushed in a mortar, and most of it is
~3RIL was used.

ダイヤモンド粉末は大部分が2〜8μmのものを用い、
この100重量部に上記i−カーボン粉末20重量部を
加え、よく混合し、直径20■、高さ5■に圧縮成形し
た。これをベルト型超高圧装置に装填し、1500℃、
6GPaで20分間保持した後、常温常圧に戻した。成
形体は緻密に結合し、その見掛密度は3.371−/c
m3(ヌープ硬度6600 kg/1m” )であった
。このもののラマンスペクトルを図2に示す。
Most of the diamond powder used is 2 to 8 μm,
To this 100 parts by weight, 20 parts by weight of the above i-carbon powder was added, mixed well, and compression molded to a diameter of 20 cm and a height of 5 cm. This was loaded into a belt-type ultra-high pressure device and heated to 1500℃.
After holding at 6 GPa for 20 minutes, the temperature was returned to normal temperature and pressure. The molded body is tightly bonded, and its apparent density is 3.371-/c.
m3 (Knoop hardness 6600 kg/1 m"). The Raman spectrum of this material is shown in FIG.

(へ)発明の効果 本発明によればわずかに黒鉛を含むか、或いは含まない
ダイヤモンド腕体が得られ、金属やセラミックスを含ま
ないので理想的な硬度の高いダイヤモンド腕体となる。
(f) Effects of the Invention According to the present invention, a diamond arm containing a small amount of graphite or no graphite can be obtained, and since it does not contain metal or ceramics, it becomes an ideal diamond arm with high hardness.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明における実施例で用いたi−カーボンのラ
マンスペクトル、図2は本発明のダイヤモンド腕体のラ
マンスペクトルを示す。 1・・・i−カーボン、2・・・ダイヤモンド。 図2 rrt−t
FIG. 1 shows the Raman spectrum of i-carbon used in Examples of the present invention, and FIG. 2 shows the Raman spectrum of the diamond arm of the present invention. 1...i-carbon, 2...diamond. Figure 2 rrt-t

Claims (1)

【特許請求の範囲】[Claims] ダイヤモンド粉末にi−カーボンあるいは、ダイヤモン
ド状炭素を添加し、ダイヤモンドの熱力学的安定域下で
高温、高圧処理することを特徴とするダイヤモンド密集
塊体の製造法。
A method for producing a dense diamond mass, which comprises adding i-carbon or diamond-like carbon to diamond powder and subjecting it to high temperature and high pressure treatment in the thermodynamic stability range of diamond.
JP60060857A 1985-03-27 1985-03-27 Manufacture of diamond massed body Pending JPS61219759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60060857A JPS61219759A (en) 1985-03-27 1985-03-27 Manufacture of diamond massed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60060857A JPS61219759A (en) 1985-03-27 1985-03-27 Manufacture of diamond massed body

Publications (1)

Publication Number Publication Date
JPS61219759A true JPS61219759A (en) 1986-09-30

Family

ID=13154468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60060857A Pending JPS61219759A (en) 1985-03-27 1985-03-27 Manufacture of diamond massed body

Country Status (1)

Country Link
JP (1) JPS61219759A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9227166B2 (en) 2005-07-21 2016-01-05 Sumitomo Electric Industries, Ltd. High-hardness polycrystalline diamond and method of preparing the same
CN106582448A (en) * 2016-12-28 2017-04-26 安徽工业大学 Method of preparing polycrystalline diamond microspheres by hydro-thermal synthesis of carbon spheres

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9227166B2 (en) 2005-07-21 2016-01-05 Sumitomo Electric Industries, Ltd. High-hardness polycrystalline diamond and method of preparing the same
CN106582448A (en) * 2016-12-28 2017-04-26 安徽工业大学 Method of preparing polycrystalline diamond microspheres by hydro-thermal synthesis of carbon spheres
CN106582448B (en) * 2016-12-28 2019-02-19 安徽工业大学 A kind of method that hydrothermal synthesis carbon ball prepares polycrystalline diamond micron ball

Similar Documents

Publication Publication Date Title
US5248317A (en) Method of producing a composite diamond abrasive compact
JP2980623B2 (en) Method for producing polycrystalline cubic boron nitride / ceramic composite mass and product obtained thereby
US4931068A (en) Method for fabricating fracture-resistant diamond and diamond composite articles
EP2641868B1 (en) High-hardness conductive diamond polycrystalline body and method for producing same
US4882138A (en) Method for preparation of diamond ceramics
JP2005514300A (en) Low oxygen cubic boron nitride and its products
US5071708A (en) Composite diamond grain
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
JPS61219759A (en) Manufacture of diamond massed body
JPH05506066A (en) Nitriding method for heat-resistant metal articles
JP3751662B2 (en) Spherical nitride
US5268201A (en) Composite diamond grain and method for production thereof
JPH0510282B2 (en)
JP2799426B2 (en) Method for producing boron nitride composite
JP2505789B2 (en) High hardness sintered body tool
JPS61227912A (en) Densely agglomerated mass of diamond particle
RU2087576C1 (en) Method of production of diamond-containing material from fulleren
JP2801821B2 (en) Ceramic composite sintered body and method of manufacturing the same
JPS59217608A (en) Method for synthesizing cubic boron nitride
KR0153154B1 (en) Process for preparing sintered hard cubic boron nitride
JP2601315B2 (en) Fine polycrystalline diamond particles and method for producing the same
JPH11193425A (en) Method for regenerating powder for sintered hard alloy chip and method for regenerating sintered hard alloy chip
JPS61117106A (en) Synthesis of cubic boron nitride
Naka et al. Reaction sintering of diamond using a binary solvent-catalyst of the Fe-Ti system
JPS58120505A (en) Cubic system boron nitride particle