JPS61218687A - Production of pitch for impregnation of high-density carbon material - Google Patents

Production of pitch for impregnation of high-density carbon material

Info

Publication number
JPS61218687A
JPS61218687A JP5822185A JP5822185A JPS61218687A JP S61218687 A JPS61218687 A JP S61218687A JP 5822185 A JP5822185 A JP 5822185A JP 5822185 A JP5822185 A JP 5822185A JP S61218687 A JPS61218687 A JP S61218687A
Authority
JP
Japan
Prior art keywords
pitch
impregnation
carbon material
quinoline
quinoline insoluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5822185A
Other languages
Japanese (ja)
Inventor
Takumi Kono
巧 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5822185A priority Critical patent/JPS61218687A/en
Publication of JPS61218687A publication Critical patent/JPS61218687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)

Abstract

PURPOSE:A pitch containing a trace amount of the fraction insoluble in quinoline is heat-treated to increase the content of the quinoline-insoluble fraction up to a specific level whereby the titled pitch for impregnation is obtained by improvement in impregnating properties. CONSTITUTION:Impregnation pitch containing a trace amount, e.g. 0.01-0.03% of quinoline-insoluble fraction is heat-treated in a polymerization tank 15 to effect polymerization to obtain pitch 17 containing 0.1-1.0%, preferably 0.1-0.5% of quinoline-insoluble fraction. Impregnation into a carbon material of higher than 1.7 bulk density is remarkably improved to produce high-density carbon material of high quality, namely densified from the surface to the core part.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度炭素材(嵩密度1.7以上)に対する含
浸性のすぐれた高密度炭素材用含浸ピッチの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an impregnated pitch for a high-density carbon material (having a bulk density of 1.7 or more) that has excellent impregnating properties.

従来の技術 炭素材1例えば電気炉用人造黒鉛電極の一般的な製造方
法は次の通りである。即ち、まず、骨材コークスとバイ
ンダーピッチを混練成形して生成形電極となし、該生成
形電極を焼成する。この焼成の工程でバインダーピッチ
中の低分子量成分が気化してしまい、電極は極めて気孔
の多いポーラスなものとなり、そのまま黒鉛化を行なえ
ば、機械的強度、電気抵抗の劣った電極が製造される。
BACKGROUND OF THE INVENTION A general method for manufacturing a carbon material 1, such as an artificial graphite electrode for an electric furnace, is as follows. That is, first, aggregate coke and binder pitch are kneaded and molded to form a green electrode, and the green electrode is fired. During this firing process, the low molecular weight components in the binder pitch vaporize, making the electrode extremely porous and, if graphitized as it is, an electrode with poor mechanical strength and electrical resistance will be produced. .

そこで、この気孔部分にピッチを含浸して、かさ比重を
増大させる含浸工程が行なわれる。ここで得られた含浸
電極は、さらに焼成されるb<、含浸ピッチの低分子量
成分が気化して再び気孔の多いポーラスなものとなる。
Therefore, an impregnation step is performed in which the pores are impregnated with pitch to increase the bulk specific gravity. The impregnated electrode thus obtained is further fired, and the low molecular weight components of the impregnated pitch are vaporized and become porous again with many pores.

この含浸、焼成をくり返すうちに気孔は除々に減少して
ち密な電極ができ上がる。
As this impregnation and firing process is repeated, the pores gradually decrease, creating a dense electrode.

一般的に、十分ち密な電極ができ上がるまで、この含浸
、焼成は工ないし3回くり返して行なわれる。この十分
にち密になった電極は、さらに高温で黒鉛化されて、製
品の電極が製造される。上記製品電極は、ち密で高機械
強度、高耐スポーリング性、低電気抵抗であるのが最良
である。
Generally, this impregnation and firing process is repeated one to three times until a sufficiently dense electrode is obtained. This sufficiently dense electrode is further graphitized at high temperatures to produce a product electrode. The product electrode is best if it is dense, has high mechanical strength, high spalling resistance, and low electrical resistance.

製品電極のち密さ、機械的強度、耐スポーリング性、電
気抵抗を決定する大きな要因の1つは、上記の電極製造
プロセスにおける含浸、焼成工程であり、含浸、焼成後
のかさ密度が大きい程、製品電極の種々の特性も向上す
る。
One of the major factors that determines the compactness, mechanical strength, spalling resistance, and electrical resistance of a product electrode is the impregnation and firing steps in the electrode manufacturing process mentioned above. , various properties of the product electrode are also improved.

L記の含浸、焼成後のかさ密度を決定する大きな要因は
、この含浸工程で使用される含浸ピッチの性状である。
A major factor in determining the bulk density after impregnation and firing in Section L is the properties of the impregnated pitch used in this impregnation step.

即ち、電極の気孔への含浸速度が早く、かつ微細な気孔
にまで含浸し、更に焼成時に炭化歩留りが高い含浸ピッ
チを使用すると高品質の電極の製造が可能となる。さら
にかかる高品質の含浸ピッチを使用すれば、含浸速度が
速いために含浸工程に要する時間の短縮が可能である。
That is, by using an impregnated pitch that impregnates the pores of the electrode quickly, impregnates even the minute pores, and has a high carbonization yield during firing, it becomes possible to manufacture a high-quality electrode. Furthermore, if such high-quality impregnated pitch is used, the time required for the impregnation process can be shortened due to the high impregnation rate.

また、微細な気孔にまで含浸し、更に焼成時の炭化歩留
りが高いと、電極を所定のかさ密度にするまでに行なう
含浸−焼成のサイクル数を減少させる事も可能である。
In addition, if even minute pores are impregnated and the carbonization yield during firing is high, it is possible to reduce the number of impregnation-firing cycles required to reach a predetermined bulk density of the electrode.

従来、この含浸工程に用いられる含浸用ピッチとしては
、通常、キノリン不溶分を5〜20%程度含有するもの
が使用されていた。しかし、このピッチ中のキノリン不
溶分は含浸性を限外するもの、として知られていた。
Conventionally, the impregnating pitch used in this impregnation process has usually contained about 5 to 20% of quinoline insoluble matter. However, it has been known that the quinoline insoluble content in this pitch limits its impregnating properties.

そこで、最近、例えば特開昭53−147694号公報
に示される含浸ピッチ製造方法、又は本出願人による遠
心分離法(特願昭59−141884号)により、キノ
リン不溶分を瓜跡量にしたピッチが用いられる様になっ
てきた。しかし、この様なピッチは嵩密度1.7未満の
炭素材に対しては良好な含浸性を示すが、嵩密度1.7
以上のち害な炭素材に対しての含浸性は不十分なもので
あることがわかった。
Therefore, recently, the impregnated pitch manufacturing method disclosed in Japanese Patent Application Laid-open No. 53-147694, or the centrifugation method (Japanese Patent Application No. 59-141884) by the present applicant, has been developed to produce pitch in which the insoluble quinoline content is reduced to a melon trace amount. has come to be used. However, such pitch shows good impregnating properties for carbon materials with a bulk density of less than 1.7;
As described above, it was found that the impregnating property for harmful carbon materials was insufficient.

そして、その結果、高密度炭素材製造工程において、含
浸、焼成サイクル数の減少、並びに含浸時間の短縮が不
可能であり、高密度炭素材の製造コスト高の原因となっ
ていること、また同時に炭素材の表面部分と内部の密度
の異なる不均質な製品が製造される原因にもなっている
ことがわかった。
As a result, in the high-density carbon material manufacturing process, it is impossible to reduce the number of impregnation and firing cycles, as well as shorten the impregnation time, which causes high manufacturing costs for high-density carbon materials. It was also found that this was the cause of the manufacturing of non-uniform products with different densities on the surface and inside of the carbon material.

発明が解決しようとする問題点 本発明者は、上記問題点の解消のため鋭意検討を重ねた
結果、含浸ピッチ中の固体成分の量が含浸速度、飽和含
浸量におよぼす影響を明確にした。即ち、従来ピッチ中
のキノリン不溶分の量が少ない程合漫性が向上するとい
う定説を打ち破り、嵩密度1,7以上の高密度炭素材に
対しては適切な大きさの粒子が適量入っている方が含浸
性が飛躍的に向上する事を見い出したものである。
Problems to be Solved by the Invention As a result of intensive studies to solve the above problems, the present inventor clarified the influence of the amount of solid components in the impregnated pitch on the impregnation rate and saturated impregnation amount. In other words, the conventional theory that the smaller the amount of quinoline insoluble matter in the pitch, the better the compatibility is broken, and for high-density carbon materials with a bulk density of 1.7 or more, it is better to have an appropriate amount of particles of an appropriate size. It was discovered that the impregnating properties were dramatically improved.

即ち、第1図にピッチ中の0.5μ〜50gの固体成分
の量と含浸性の関係を示したが、0゜1%〜1%の固体
粒子成分を含んでいるピッチの含浸性が最良であること
を見い出した。なお第1図の実験条件は第1表の通りで
ある。
That is, Figure 1 shows the relationship between the amount of solid particles of 0.5μ to 50g in pitch and the impregnating property, and the impregnating property of pitch containing 0.1% to 1% of solid particles is the best. I found that. The experimental conditions shown in FIG. 1 are as shown in Table 1.

第1表 ピッチ中に上記固体成分を含んでいると含浸性が向上す
る理由は明確ではないが、次の様な事と考えられる。コ
ールタール、ピッチ類はよく言われる様に数千の炭化水
素類、炭素類の混合物であるが、そのうち、約0.1ル
以上の大きさの固体粒子は、キノリン不溶分と呼ばれて
いる。0.1ル以下の粒子もピッチ中に含まれているが
、現在の分離技術(特開昭53−147894、特願昭
59−141884)では、これら061角以下の粒子
を痕跡量にまで除去する事は不可能であり、模式的に第
2図に示す様に、キノリン不溶分を痕跡量まで除去され
たピッチ中の081体以下の粒子(3)が、ピッチを炭
素材(1)に含浸する時に、炭素材の微細な気孔(2)
を閉塞させて含浸速度、飽和含浸率が低下する原因とな
る。
The reason why the impregnability is improved when the pitch shown in Table 1 contains the above solid components is not clear, but it is thought to be as follows. Coal tar and pitches are often said to be mixtures of several thousand hydrocarbons and carbons, among which solid particles with a size of about 0.1 l or more are called quinoline insoluble matter. . Particles smaller than 0.1 square are also included in pitch, but current separation technology (Japanese Unexamined Patent Publication No. 147894/1983, Japanese Patent Application No. 141884/1984) removes these particles smaller than 061 square to trace amounts. As shown schematically in Figure 2, the particles (3) of 081 or less particles in the pitch from which trace amounts of quinoline insoluble matter have been removed convert the pitch into a carbon material (1). When impregnating, the fine pores of the carbon material (2)
This causes the impregnation rate and saturation impregnation rate to decrease.

また、従来ピッチの様に、+ノリン不溶分と呼ばれる固
体粒子が5%以上大量に含まれると逆に気孔へ含浸しな
い固体粒子の層が厚く形成され。
Furthermore, when a large amount of solid particles called +Norin insoluble matter is contained in a large amount of 5% or more, as in conventional pitch, a thick layer of solid particles that do not impregnate the pores is formed.

含浸の抵抗が大きくなり、やはり含浸速度が低下する。The impregnation resistance increases and the impregnation rate also decreases.

ところが、ピッチ中に0.5 JL〜50弘の固体粒子
を0.1%〜1%存在せしめると、それらの固体粒子が
濾過の際に用いられる濾過助剤の(動らきをするものと
考えられる。即ち、fjS3図に示すごとく、濾過にお
いては、濾過助剤(4)として、適当な粒径の固体粒子
を原液(5)に添加する事によって、濾材(6)の目づ
まりを起こす微細粒子(7)を、濾過助剤(4)のケー
キ部分(8)で予め除去する。それで、i材(8)を目
づまりさせることなく、濾過を短時間で行なうことが可
能となる。なお、第3図において、(11)は濾過槽、
(12)は濾材支持体、(13)は濾液を示す。
However, if 0.1% to 1% of solid particles of 0.5 JL to 50 JL are present in the pitch, it is assumed that these solid particles move (move) of the filter aid used during filtration. That is, as shown in Figure fjS3, in filtration, by adding solid particles of an appropriate particle size to the stock solution (5) as a filter aid (4), fine particles that cause clogging of the filter medium (6) can be removed. (7) is removed in advance by the cake portion (8) of the filter aid (4).This makes it possible to perform filtration in a short time without clogging the i material (8). In FIG. 3, (11) is a filter tank;
(12) represents a filter medium support, and (13) represents a filtrate.

ピッチ中に0.1%〜1%存在する0、5 p、〜50
ILの固体粒子も濾過における濾過助剤の役割を果して
いると考えられる。即ち、ピッチ中の上記固体粒子が第
4図に示す様に炭素材表面(1)に薄い層(9)を形成
して、炭素材(1)の気孔(2)の目詰りを起こすピッ
チ中微細粒子(10)を予め除去しているために、含浸
速度が速く、飽和含浸率も高い値を示すものと考えられ
る。
0.1% to 1% present in pitch, 5p, ~50
Solid particles of IL are also believed to play the role of filter aids in filtration. That is, as shown in FIG. 4, the solid particles in the pitch form a thin layer (9) on the surface (1) of the carbon material, causing clogging of the pores (2) of the carbon material (1). It is thought that because the fine particles (10) were removed in advance, the impregnation rate was fast and the saturation impregnation rate was high.

尚ピッチ中のキノリン不溶分のほとんどは、0.5戸〜
50ルの粒度範囲に属し、実際上ピッチ中のキノリン不
溶分の量とピッチ中の0.5ルー50gの固体粒子の量
とは等しいものとして差し支えない。
Most of the quinoline insoluble content in the pitch is 0.5~
In practice, the amount of quinoline insolubles in the pitch may be equal to the amount of 0.5 g solid particles in the pitch.

本発明は、上記新知見にもとづきなされたもので、含浸
性のすぐれた高密度炭素材用含浸ピッチを製造する方法
を提供するものである。
The present invention has been made based on the above-mentioned new findings, and provides a method for producing impregnated pitch for high-density carbon materials with excellent impregnating properties.

問題点を解決するための手段 本発明の要旨は、キノリン不溶分が0゜1%未満の含浸
用ピッチを熱処理してキノリン不溶分を生成して、キノ
リン不溶分が0.1−1.0%、好ましくは0.1〜0
゜5%の含浸用ピッチとすることを特徴とする嵩密度1
.7以上の高密度炭素材含浸用ピッチの製造方法にある
Means for Solving the Problems The gist of the present invention is to heat-treat pitch for impregnation with a quinoline insoluble content of less than 0.1% to produce a quinoline insoluble content, and to produce a quinoline insoluble content of 0.1-1.0%. %, preferably 0.1-0
Bulk density 1 characterized by having pitch for impregnation of ゜5%
.. A method for producing a pitch for impregnating a high density carbon material of 7 or more.

本発明の製造法で、原料に用いられるキノリン不溶分が
痕跡量のピッチ、詳しくはキノリン不溶分が痕跡量例え
ば0.01〜0.03%でo、tIL以下の固体粒子を
含むピッチは1例えば、特開昭53−147894号公
報で示される含浸ピッチの製造方法や本出願人提案によ
る遠心分離法(特願昭511−1411384号)によ
り製造される。
In the production method of the present invention, the pitch used as a raw material contains a trace amount of quinoline insoluble matter, more specifically, the pitch containing a trace amount of quinoline insoluble matter, for example, 0.01 to 0.03%, is 1. For example, it can be manufactured by the impregnated pitch manufacturing method disclosed in Japanese Patent Application Laid-Open No. 53-147894 or the centrifugation method proposed by the present applicant (Japanese Patent Application No. 511-1411384).

又本発明法で製造されるピッチ中のキノリン不溶分を0
.1〜0.5%とすることが好ましい理由は、次の通り
である。
In addition, the quinoline insoluble content in the pitch produced by the method of the present invention is reduced to 0.
.. The reason why it is preferable to set it to 1 to 0.5% is as follows.

嵩密度1゜7以上の炭素材に対するピッチの含浸性は、
キノリン不溶分が061〜1.0%の範囲において、は
ぼ同等であり、本発明法では、キノリン不溶分が瓜跡量
例えば0.O1〜0.03%のピッチを熱処理すること
によって、重合反応を起させ、キノリン不溶分を生成さ
せるものであり、ピッチ中の目標のキノリン不溶分が0
.1〜0.5%の方が。
The pitch impregnating property for carbon materials with a bulk density of 1°7 or more is:
In the range of 0.61% to 1.0%, the quinoline insoluble content is approximately the same, and in the method of the present invention, the quinoline insoluble content is reduced to a melon trace amount, for example, 0.0%. By heat-treating pitch with an O content of 1 to 0.03%, a polymerization reaction is caused to produce quinoline insoluble content, and the target quinoline insoluble content in the pitch is 0.
.. 1-0.5% is better.

0.5〜1.0%よりも生成量が少なくてすみ、低熱処
理費、高生産性で、即ち低コストで含浸性の優れたピッ
チを得ることができるためである。
This is because the amount produced is smaller than 0.5 to 1.0%, and pitch with excellent impregnation properties can be obtained at low heat treatment costs and high productivity, that is, at low cost.

以下本発明について詳細に説明する。第5図は本発明の
製造工程例を示したもので、14は本製造工程で原料に
用いるキノリン不溶分を痕跡量例えば0.01〜0.0
3%含有する含浸ピッチで、15は含浸ピッチ14を熱
処理して重合反応させる重合槽である。 1Bはピッチ
加熱装置であり、17は熱処理の結果できあがるキノリ
ン不溶分0.1〜1.0%の含浸ピッチである。
The present invention will be explained in detail below. FIG. 5 shows an example of the manufacturing process of the present invention, and 14 indicates a trace amount of quinoline insoluble matter used as a raw material in this manufacturing process, for example, 0.01 to 0.0.
The impregnated pitch contains 3%, and 15 is a polymerization tank in which the impregnated pitch 14 is heat-treated and subjected to a polymerization reaction. 1B is a pitch heating device, and 17 is pitch impregnated with a quinoline insoluble content of 0.1 to 1.0%, which is produced as a result of heat treatment.

本製造方法で用いられる重合槽15は、特別なものでは
ないが、一般的に熱処理操作を行なう際には槽内に温度
の分布があると製品の品質等の制御が困難となるので、
連続的に原料装入、製品抜取を行ない、攪拌羽根18が
ついている攪拌方式の槽が望ましい。
The polymerization tank 15 used in this manufacturing method is not special, but when performing heat treatment operations, it is generally difficult to control the quality of the product if there is a temperature distribution in the tank.
A stirring type tank is preferable, in which raw materials are continuously charged and products are taken out, and a stirring blade 18 is attached.

次に熱処理条件であるが、含浸ピッチ14を熱処理する
と第6図に示す様に、重合反応が起こりキノリン不溶分
が生成される。
Next, regarding the heat treatment conditions, when the impregnated pitch 14 is heat treated, a polymerization reaction occurs and quinoline insoluble matter is produced as shown in FIG.

前述の様にキノリン不溶分を0,1%〜1%含有する含
浸ピッチは、極めて良好な含浸性を示すことから、末法
では第6図に基づき熱処理温度と熱処理時間を適当に選
定して熱処理を行なえば、キノリン不溶分が0.1%〜
1%の含浸ピッチの製造が可能となる。又、前述の様に
、熱処理装置は連続型が望ましいから、この場合には、
熱処理時間として、平均滞留時間を採用する。
As mentioned above, impregnated pitch containing 0.1% to 1% of quinoline insoluble matter shows extremely good impregnating properties, so in the final method, the heat treatment temperature and heat treatment time are appropriately selected based on Figure 6. If you do this, the quinoline insoluble content will be 0.1%~
It becomes possible to produce 1% impregnated pitch. Also, as mentioned above, it is desirable that the heat treatment equipment be of a continuous type, so in this case,
The average residence time is used as the heat treatment time.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

実施例1 第2表で示される含浸用ピッチ(従来ピッチ(1))を
、370°C12時間、熱処理した。その結果、第3表
に示す性状のピッチ(本発明ピッチ(I))を得た。
Example 1 The pitch for impregnation (conventional pitch (1)) shown in Table 2 was heat treated at 370°C for 12 hours. As a result, a pitch (invention pitch (I)) having properties shown in Table 3 was obtained.

第2表 従来ピッチ(1) 第3表 本発明ピッチ(1) 実施例2 第2表で示される含浸用ピッチ(従来ピッチ(1))を
、38G”0.80分熱処理した。その結果。
Table 2: Conventional pitch (1) Table 3: Invention pitch (1) Example 2 The pitch for impregnation (conventional pitch (1)) shown in Table 2 was heat treated for 38G"0.80 minutes. Results.

第4表に示す性状のピッチ(本発明ピッチ(2))を得
た。
A pitch (invention pitch (2)) having the properties shown in Table 4 was obtained.

第4表 本発明ピッチ(2) 上記本発明ピッチ(1)1本発明ピッチ(2)と、上記
従来ピッチ(1)、キノリン不溶分が5%のピッチ(従
来ピッチ(2))の含浸性を第7図に示した。尚実験条
件は第1表に示す通りである。
Table 4 Invention Pitch (2) Impregnation properties of the above Invention Pitch (1), Invention Pitch (2), the above Conventional Pitch (1), and pitch with a quinoline insoluble content of 5% (Conventional Pitch (2)) is shown in Figure 7. The experimental conditions are as shown in Table 1.

実験結果は従来ピッチの含浸速度が遅い、飽和含浸率が
低い等の欠点が本発明ピッチでは全くなく、含浸速度が
飛躍的に増加し、さらに、飽和含浸率も、理論値である
5%(電極の気孔率)にほとんど等しい値を示した。
Experimental results show that the pitch of the present invention has no drawbacks such as slow impregnation speed and low saturation impregnation rate of conventional pitch, and the impregnation rate increases dramatically, and furthermore, the saturation impregnation rate is 5% (the theoretical value). The porosity of the electrode was almost the same as the porosity of the electrode.

また、第8,9.10111図は、それぞれ従来ピッチ
(1)、従来ピッチ(2)、本発明ピッチ(1)、本発
明ピッチ(2)の含浸時間4時間における電極への含浸
状態を示す断面図である。
Furthermore, Figures 8 and 9.10111 show the impregnated states of conventional pitch (1), conventional pitch (2), present invention pitch (1), and present invention pitch (2) into the electrode after an impregnation time of 4 hours, respectively. FIG.

なお、第8.9.1O111図は、実験に用いた電極の
中央部を半径方向に切断し、含浸状況を測定した(測定
法は特願昭58−103243号提案法)もので2斜線
部はピッチが含浸している領域を示す。
In Figure 8.9.1O111, the central part of the electrode used in the experiment was cut in the radial direction and the impregnation state was measured (the measurement method was the method proposed in Japanese Patent Application No. 103243/1983). indicates the area impregnated with pitch.

これらから本発明ピッチは、表面から内部に均質に含浸
することが明らかである。
From these, it is clear that the pitch of the present invention is uniformly impregnated from the surface to the inside.

発明の効果 以上詳述した様に、本発明は、キノリン不溶分が痕跡量
の従来ピッチを熱処理するだけの簡易法で、従来ピッチ
の高密度炭素材に対しての含浸性(含浸速度、飽和含浸
率)を飛躍的に向上することができる。
Effects of the Invention As detailed above, the present invention uses a simple method that only heat-treats conventional pitch containing trace amounts of quinoline insoluble matter, and improves the impregnation properties (impregnation rate, saturation rate, etc.) of conventional pitch into high-density carbon materials. impregnation rate) can be dramatically improved.

この結果高密度炭素材製造工程において、含浸、焼成サ
イクル数の減少、並びに含浸時間の短縮効果を得ること
ができ、高密度炭素材の製造コストを低減することがで
きる。
As a result, in the high-density carbon material manufacturing process, it is possible to reduce the number of impregnation and firing cycles and shorten the impregnation time, thereby reducing the manufacturing cost of the high-density carbon material.

また、表面から内部まで、均質にち密化された高品位高
密度炭素材を低コストで製造できる。
In addition, a high-quality, high-density carbon material that is uniformly densified from the surface to the inside can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は含浸用ピッチ中の0.5p〜50ルの固体粒子
量と含浸性の関係図、第2.3.4図は本発明によるピ
ッチの含浸性改善メカニズム説明図。 第5図は本発明の製造工程例の説明図、第6図は熱処理
温度とキノリン不溶分生成速度の関係図、第7図は従来
ピッチ及び本発明方法によるピッチの含浸特性を説明す
る含浸時間と含浸率の関係図、第8.9.1O111図
は含浸状況の断面図である。 1・・・炭素材、2・・・気孔、3−・・粒子、4・・
・癌過助剤、5・・・原液、6・・・濾材、7・・・微
細粒子、8・φΦケーキ部分。 9・番・層、lO・・・ピッチ中微細粒子、11・・・
濾過槽、12・Φ・濾体支持体、1311・・濾液、1
4・・・キノリン不溶分が痕跡量のピッチ、 15・Φ
e重合槽、IB・・・ピッチ加熱装置、17・・・キノ
リン不溶分0.1〜1.0%のピッチ、18・−・攪拌
羽根。
Fig. 1 is a diagram showing the relationship between the amount of solid particles of 0.5p to 50l in pitch for impregnation and impregnating property, and Fig. 2.3.4 is an explanatory diagram of the mechanism for improving the impregnating property of pitch according to the present invention. Fig. 5 is an explanatory diagram of an example of the manufacturing process of the present invention, Fig. 6 is a diagram showing the relationship between heat treatment temperature and quinoline insoluble matter production rate, and Fig. 7 is an illustration of impregnation time to explain the impregnation characteristics of conventional pitch and pitch according to the method of the present invention. Figure 8.9.1O111 is a cross-sectional view of the impregnation situation. 1... Carbon material, 2... Pore, 3-... Particle, 4...
- Cancer support agent, 5...Standard solution, 6...Filtering medium, 7...Fine particles, 8.φΦcake part. 9. No. layer, lO...fine particles in pitch, 11...
Filtration tank, 12, Φ, filter support, 1311...filtrate, 1
4...Pitch with trace amount of quinoline insoluble matter, 15・Φ
e Polymerization tank, IB... Pitch heating device, 17... Pitch with quinoline insoluble content of 0.1 to 1.0%, 18... Stirring blade.

Claims (1)

【特許請求の範囲】[Claims] キノリン不溶分が0.1%未満の含浸用ピッチを熱処理
してキノリン不溶分を生成させ、キノリン不溶分が0.
1〜1.0%の含浸用ピッチとすることを特徴とする嵩
密度1.7以上の高密度炭素材含浸用ピッチの製造方法
The pitch for impregnation with a quinoline insoluble content of less than 0.1% is heat-treated to produce a quinoline insoluble content, and the quinoline insoluble content is 0.1%.
A method for producing pitch for impregnation of a high-density carbon material having a bulk density of 1.7 or more, characterized in that the pitch for impregnation is 1 to 1.0%.
JP5822185A 1985-03-25 1985-03-25 Production of pitch for impregnation of high-density carbon material Pending JPS61218687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5822185A JPS61218687A (en) 1985-03-25 1985-03-25 Production of pitch for impregnation of high-density carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5822185A JPS61218687A (en) 1985-03-25 1985-03-25 Production of pitch for impregnation of high-density carbon material

Publications (1)

Publication Number Publication Date
JPS61218687A true JPS61218687A (en) 1986-09-29

Family

ID=13078018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5822185A Pending JPS61218687A (en) 1985-03-25 1985-03-25 Production of pitch for impregnation of high-density carbon material

Country Status (1)

Country Link
JP (1) JPS61218687A (en)

Similar Documents

Publication Publication Date Title
US4041116A (en) Method for the manufacture of carbon-carbon composites
EP2526075B1 (en) Method for production of graphite bodies
US3565980A (en) Slip casting aqueous slurries of high melting point pitch and carbonizing to form carbon articles
US1037901A (en) Carbon article.
EP0100846B1 (en) Ceramic fiber board
JPS61218687A (en) Production of pitch for impregnation of high-density carbon material
JPH0826709A (en) Production of carbon material
US5137667A (en) Process for producing elastic graphite molded products
US5283045A (en) Sinterable carbon powder and method of its production
JP2689509B2 (en) Method for producing needle coke for carbon molded body
JPS61152762A (en) Pitch for impregnation of high-density carbon material
JP2700798B2 (en) Manufacturing method of carbon and graphite materials
JPS636083A (en) Method of improving impregnating capability of impregnation pitch for high-density carbon material
JPS61251504A (en) Production of formed graphite
US20100314790A1 (en) Highly Oriented Graphite Product
JPS6131050B2 (en)
JPS61168691A (en) Preparation of impregnating pitch for high-density carbon stock
JPS61117109A (en) Preparation of impregnating pitch for electrode
JPH0269357A (en) Production of isotropic graphite material having high density and high strength
JPS594517B2 (en) Manufacturing method of graphite electrode material
JPH02172809A (en) Production of elastic graphite molded body
RU2055053C1 (en) Charge for production of foam-ceramic material
SU1189806A1 (en) Method of manufacturing moulded carbon blocks
JPH02208214A (en) Production of molded carbonaceous body excellent in compression elasticity
JPH0386043A (en) Manufacture of carbon brush for commutation