JPH02208214A - Production of molded carbonaceous body excellent in compression elasticity - Google Patents

Production of molded carbonaceous body excellent in compression elasticity

Info

Publication number
JPH02208214A
JPH02208214A JP1027875A JP2787589A JPH02208214A JP H02208214 A JPH02208214 A JP H02208214A JP 1027875 A JP1027875 A JP 1027875A JP 2787589 A JP2787589 A JP 2787589A JP H02208214 A JPH02208214 A JP H02208214A
Authority
JP
Japan
Prior art keywords
binder
molded
elastic graphite
elastic
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1027875A
Other languages
Japanese (ja)
Inventor
Masaki Fujii
政喜 藤井
Masanori Minohata
箕畑 正則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
Original Assignee
Koa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Oil Co Ltd filed Critical Koa Oil Co Ltd
Priority to JP1027875A priority Critical patent/JPH02208214A/en
Priority to AT90902688T priority patent/ATE121711T1/en
Priority to US07/582,837 priority patent/US5190696A/en
Priority to EP90902688A priority patent/EP0424537B1/en
Priority to DE69018923T priority patent/DE69018923T2/en
Priority to PCT/JP1990/000143 priority patent/WO1990009346A1/en
Priority to CA002026774A priority patent/CA2026774A1/en
Publication of JPH02208214A publication Critical patent/JPH02208214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a lightweight molded carbonaceous body excellent in elasticity by calcining or graphitizing a molded body of a mixture of elastic graphite particles with a binder. CONSTITUTION:Elastic graphite particles are mixed with a binder and the resultant mixture is molded and then subjected to calcining and/or graphitizing treatment to afford a molded carbonaceous body having <=1.0g/cm<3> bulk density and >=50% recovery ratio at 5-50% compression ratio. An elastic graphite substance prepared by treating carbonaceous mesophase produced by especially heat-treating pitches, such as petroleum-based or coal-based pitches, and/or raw coke with nitric acid or a mixed acid of the nitric acid and sulfuric acid, heat-treating and graphitizing the resultant product, etc., are preferably employed as the elastic graphite substance used. Pitches, such as coal tar pitch, bulk mesophase, thermosetting resin or thermoplastic resin is preferably used as the binder.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は炭素質材料に関し、特に軽量かつ弾性にすぐれ
た炭素質または黒鉛質よりなる炭素成形体の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a carbonaceous material, and particularly to a method for manufacturing a carbon molded body made of carbonaceous or graphite material that is lightweight and has excellent elasticity.

〔発明の背景〕[Background of the invention]

一般に、炭素質成形体は、黒鉛、コークスなどの炭素質
粉末に、結合剤を加え、混練した後、成形し、硬化させ
、さらに必要に応じて焼成、黒鉛化することによって製
造される。このときの成形法や結合剤の種類については
、製造された炭素質成形体の使用目的、用途等により、
要求される特性が異なるため、数多くの方法により製造
されており、またそのための多くの研究報告や提案がな
されている(例えば、「改訂炭素材料入門1135頁、
炭素材料協会;水鳥・岡山「炭素材料」55頁、共立出
版;石川・長油「新・炭素工学」173頁、近代編集社
)。
Generally, a carbonaceous molded body is manufactured by adding a binder to carbonaceous powder such as graphite or coke, kneading the mixture, shaping it, hardening it, and further firing and graphitizing it as necessary. The molding method and type of binder used at this time will depend on the purpose and use of the manufactured carbonaceous molded body.
Due to the different characteristics required, they are manufactured by many methods, and many research reports and proposals have been made for this purpose (for example, "Revised Introduction to Carbon Materials, p. 1135,
Carbon Materials Association; Mizutori and Okayama, ``Carbon Materials'', p. 55, Kyoritsu Shuppan; Ishikawa and Nagayu, ``New Carbon Engineering'', p. 173, Kindai Editorial Company).

これらの炭素質成形体は、炭素の持つ特性、すなわち、
軽量、高強度、高弾性率、導電性、耐食性、耐熱性、摺
動性などの緒特性を併せ持つ。しかしながら、特に弾性
率が高い点に関しては、従来の材料は剛性が要求される
ときは比較的有利ではあるが、一方では、しなやかさに
欠けるという欠点もあり、安全性の見地から、さらに高
強度のものが要求されて来ているのが現状である。
These carbonaceous molded bodies have the characteristics of carbon, namely:
It has properties such as light weight, high strength, high modulus of elasticity, electrical conductivity, corrosion resistance, heat resistance, and sliding properties. However, although conventional materials are relatively advantageous when rigidity is required, especially in terms of high modulus of elasticity, they also have the disadvantage of lacking flexibility, and from a safety standpoint, they require even higher strength. The current situation is that these are in demand.

本発明者らは、先に炭素質材料として、弾性特性にすぐ
れた弾性黒鉛体を提案している(特願昭62年1648
08号)。この弾性黒鉛体は、それ自体軽量でしかも良
好な弾性を示し、これまでの炭素質材料にないすぐれた
特性を持ったものである。
The present inventors had previously proposed an elastic graphite body with excellent elastic properties as a carbonaceous material (Patent Application No. 1648, 1982).
No. 08). This elastic graphite body is itself lightweight and exhibits good elasticity, and has excellent properties not found in conventional carbonaceous materials.

しかしながら、これらの炭素質材料は、炭素質材料自体
が良好な材料特性を有していたとしても、これは粉状物
ないし粒状物であるため、単独では使用できず、他の材
料と混合するか、なんらかの容器に充填して使用するな
どの制約があった。
However, even if these carbonaceous materials themselves have good material properties, they are powder or granular materials, so they cannot be used alone and must be mixed with other materials. However, there were restrictions such as having to fill it in some kind of container before use.

そこで、本発明者らは、結合剤の形状を選定することに
より、弾性黒鉛体粒子の弾性を損わずに、粒子同士を結
合する方法を見い出し、弾性黒鉛成形体の製造方法につ
いて特許出願を行なった。しかしながら、当該成形体は
、結合剤として、樹脂、ピッチ類等を用いているため、
炭素質材料の持つ特性のうち、耐熱性、耐食性、導電性
などについては、結合剤の性質に起因して影響を受ける
ため、炭素材のそれより劣るものであった。
Therefore, the present inventors discovered a method of binding elastic graphite particles to each other without impairing their elasticity by selecting the shape of the binder, and filed a patent application for the method for producing elastic graphite molded bodies. I did it. However, since the molded body uses resin, pitch, etc. as a binder,
Among the properties of carbonaceous materials, heat resistance, corrosion resistance, electrical conductivity, etc. are affected by the properties of the binder and are therefore inferior to those of carbon materials.

〔発明の概要〕[Summary of the invention]

本発明は、上記事情に鑑みてなされたものであって、軽
量かつ圧縮弾性にすぐれた新規な炭素質または黒鉛質か
らなる炭素成形体を提供することを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel carbon molded body made of carbon or graphite that is lightweight and has excellent compressive elasticity.

本発明の特徴は、構成材料としての弾性黒鉛体粒子が本
来的に有する弾性特性を損なわずに成形し、焼成および
(または)黒鉛化する製造法にある。すなわち、本発明
の炭素質または黒鉛質からなる炭素成形体の製造方法は
、弾性黒鉛体粒子と結合剤とを混合し、成形したのち、
該成形物を焼成および(または)黒鉛化処理することに
よって、嵩密度が1.0g/cut以下であって、圧縮
率5〜50%における回復率が50%以上である軽量か
つ弾性にすぐれた炭素質または黒鉛質からなる炭素成形
体を得ることを特徴とするものである。
A feature of the present invention is a manufacturing method in which elastic graphite particles as a constituent material are shaped, fired, and/or graphitized without impairing their inherent elastic properties. That is, the method for producing a carbon molded body made of carbon or graphite according to the present invention involves mixing elastic graphite particles and a binder, shaping the mixture, and then
By firing and/or graphitizing the molded product, a lightweight and highly elastic product with a bulk density of 1.0 g/cut or less and a recovery rate of 50% or more at a compression ratio of 5 to 50% can be obtained. This method is characterized in that a carbon molded body made of carbonaceous or graphite is obtained.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明に原料として用いる弾性黒鉛体としては、従来公
知のものが用いられ得るが、特に、石油系または石炭系
等のピッチ類を熱処理して製造される炭素質メソフェー
スおよび(または)生コークスを、硝酸もしくは硝酸と
硫酸との混酸中で処理し、熱処理、黒鉛化処理して得ら
れたもの、あるいは、炭素質メソフェースおよび(また
は)生コークスの硝酸もしくは硝酸と硫酸との混酸によ
る処理物を、塩基性水溶液と接触させて、可溶分とした
後、酸水溶液を加えて析出した炭素質成分を、熱処理、
黒鉛化処理して得られた黒鉛体が好ましく用いられ得る
As the elastic graphite body used as a raw material in the present invention, conventionally known ones can be used, but in particular, carbonaceous mesophase and/or raw coke produced by heat treating petroleum-based or coal-based pitches are used. , those obtained by treatment in nitric acid or a mixed acid of nitric acid and sulfuric acid, heat treatment, and graphitization, or those obtained by treating carbonaceous mesophase and/or raw coke with nitric acid or a mixed acid of nitric acid and sulfuric acid. After contacting with a basic aqueous solution to form a soluble component, an acid aqueous solution was added to precipitate the carbonaceous component, which was heat-treated.
A graphite body obtained by graphitization treatment may be preferably used.

これら弾性特性にすぐれた黒鉛体の製造方法については
、例えば、特願昭62年164808号明細書にその詳
細が記載されている。
The details of the method for producing graphite bodies having excellent elastic properties are described in, for example, Japanese Patent Application No. 164808/1982.

本発明においては、上記のような弾性黒鉛体の粒状物を
原料として用いるか、この黒鉛体粒子は、10μm〜1
mm程度が成形操作性の点で好ましい。
In the present invention, the elastic graphite particles as described above are used as raw materials, or the graphite particles have a diameter of 10 μm to 1 μm.
A thickness of about mm is preferable from the viewpoint of molding operability.

一方、結合剤として用いるものは、コールタールピッチ
等のピッチ類、バルクメソフェース、熱硬化性樹脂もし
くは熱可塑性樹脂が好ましく用いられ得る。結合剤とし
て用いる形態は、粉末状または(および)シートないし
フィルム状のもの、あるいは分散媒中に樹脂等を分散さ
せてなる分散状樹脂を添加形態として用いることが肝要
である。
On the other hand, as the binder, pitches such as coal tar pitch, bulk mesophase, thermosetting resins, or thermoplastic resins can be preferably used. It is important that the binder be used in the form of a powder, sheet or film, or a dispersed resin prepared by dispersing a resin in a dispersion medium.

従来、炭素材等の成形体の製造において、バインダーと
して用いられるものには、コールタールピッチ、フェノ
ール樹脂、フラン樹脂等が知られている。これらは10
0℃前後で溶融性であり、溶融状態において、骨材と混
練した後、硬化、成形、焼成および(もしくは)黒鉛化
することにより成形体を得ている。
Conventionally, coal tar pitch, phenol resin, furan resin, and the like are known as binders used in the production of molded bodies of carbon materials and the like. These are 10
It is meltable at around 0°C, and in the molten state, it is kneaded with aggregate, then hardened, molded, fired, and/or graphitized to obtain a molded body.

しかし、前述の弾性黒鉛体粒子は、内部の隔壁が、炭素
薄膜で仕切られた、スポンジ状の微細構造を有しており
、このことが、軽量で圧縮弾性に優れた特性を発現する
要因であると考えられている。従って、従来の結合剤を
用いた成形方法により製造した成形体においては、溶融
状態となったバインダーが、弾性黒鉛体粒子の内部へ入
り込み、弾性黒鉛体の弾性を損なうという欠点があった
However, the aforementioned elastic graphite particles have a spongy microstructure in which the internal partition walls are partitioned by thin carbon films, and this is the reason why they are lightweight and exhibit excellent compressive elasticity. It is thought that there is. Therefore, in molded bodies manufactured by conventional molding methods using binders, the molten binder enters inside the elastic graphite particles and impairs the elasticity of the elastic graphite particles.

本発明者は上記の欠点に着目しつつ更に研究した結果、
粉末状結合剤をバインダーとして用いることにより、結
合剤か弾性黒鉛体粒子に一部接触した状態で結合がおこ
るため、結合剤が弾性黒鉛体のスポンジ構造内部へ侵入
して構造ひいては弾性特性を損なうような状態をひき起
こすことなく、良好な成形体を得ることが可能となるこ
とを見出した。
As a result of further research focusing on the above drawbacks, the present inventor found that
By using a powdered binder as a binder, bonding occurs while the binder is in partial contact with the elastic graphite particles, so the binder penetrates into the sponge structure of the elastic graphite and impairs the structure and its elastic properties. It has been found that it is possible to obtain a good molded article without causing such a condition.

本発明で用いる粉末状結合剤としては、主としてコール
タールピッチ等のピッチ類、バルクメソフェース、熱硬
化性樹脂(例えばフェノール樹脂、フラン樹脂、エポキ
シ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂等)
もしくは熱可塑性樹脂(塩化ビニル樹脂、フッ化ビニル
樹脂、アクリロニトリル樹脂等)か用いらる。シート状
結合剤としては、主として先述の熱硬化性樹脂もしくは
熱可塑性樹脂のシート、フィルム等が好ましく用いられ
得る。
The powdery binder used in the present invention mainly includes pitches such as coal tar pitch, bulk mesophase, and thermosetting resins (e.g., phenolic resins, furan resins, epoxy resins, unsaturated polyester resins, polyimide resins, etc.)
Alternatively, thermoplastic resins (vinyl chloride resin, vinyl fluoride resin, acrylonitrile resin, etc.) are used. As the sheet-like binder, the above-mentioned thermosetting resin or thermoplastic resin sheets, films, etc. can be preferably used.

また、分散状結合剤を用いる場合にあっては、当該結合
剤を構成する樹脂等の種類は、目的とする成形体の種類
に応じて適宜選択することができるが、ポリエチレン、
アクリル樹脂、エポキシ樹脂、フェノール樹脂、不飽和
ポリエステル樹脂など繊維状となる鎖状高分子が好まし
い。さらに、この場合の分散媒としては、水、アルコー
ル、無機酸などが好ましい。また、この場合において、
分散媒1重量部に対して、樹脂0.1〜4.0重量部、
好ましくは0. 2〜1.5重量部を添加したものが望
ましい。
In addition, when using a dispersed binder, the type of resin etc. constituting the binder can be appropriately selected depending on the type of the intended molded product, but polyethylene,
Preferred are chain polymers that become fibrous, such as acrylic resins, epoxy resins, phenolic resins, and unsaturated polyester resins. Further, as the dispersion medium in this case, water, alcohol, inorganic acid, etc. are preferable. Also, in this case,
0.1 to 4.0 parts by weight of resin per 1 part by weight of dispersion medium,
Preferably 0. It is desirable to add 2 to 1.5 parts by weight.

本発明においては、上記のような弾性黒鉛体粒子を骨材
とし、これに上記の結合剤を混合する。
In the present invention, the above-mentioned elastic graphite particles are used as an aggregate, and the above-mentioned binder is mixed therein.

この場合、弾性黒鉛体粒子1重量部に対して、樹脂の量
が、0. 1〜5重量部、特に好ましくは0.5〜5重
量部となるように配合する。弾性黒鉛体粒子1重量部に
対して、樹脂の量が、5重量部を超えると、得られる成
形体の嵩密度が逆に増大する傾向になるので好ましくな
い。
In this case, the amount of resin is 0.00 parts by weight for 1 part by weight of elastic graphite particles. It is blended in an amount of 1 to 5 parts by weight, particularly preferably 0.5 to 5 parts by weight. If the amount of resin exceeds 5 parts by weight per 1 part by weight of elastic graphite particles, the bulk density of the resulting molded product tends to increase, which is not preferable.

結合剤として粉末状結合剤を用いる場合には、弾性黒鉛
体に結合剤を添加して、充分混合し、これを所望のモー
ルドに入れて加圧成形する。この際、これを再び粉砕し
た後に、再度、成形操作を行う方か、成形体の特性を向
上させる上で好ましい。また、この場合、加熱下で加圧
成形することも可能である。成形体は、その後、加熱な
どによって結合剤の硬化、炭素化を行なってもよく、さ
らに、焼成および(または)黒鉛化処理を行う。
When a powdered binder is used as the binder, the binder is added to the elastic graphite body, thoroughly mixed, and then placed in a desired mold and pressure-molded. In this case, it is preferable to crush the powder again and then perform the molding operation again in order to improve the properties of the molded product. Moreover, in this case, it is also possible to perform pressure molding under heating. The molded body may then be subjected to hardening of the binder and carbonization by heating, etc., and further subjected to firing and/or graphitization treatment.

結合剤としてシート状結合剤を用いる場合には、一定の
大きさに切断したシート上に、弾性黒鉛体粒子を均一に
なるように分散させ、この上にさらにシートを重ねる。
When a sheet-like binder is used as the binder, elastic graphite particles are uniformly dispersed on a sheet cut to a certain size, and another sheet is stacked on top of this.

この操作を繰返すことにより、弾性黒鉛体とシートを交
互に積層し、さらに上記と同様の成形工程を経て本発明
の成形体を製造することができる。また、この場合にお
いては、結合剤と弾性黒鉛体の接触を一層良好なものと
するため、上記の積層物に一定荷重を加えた後、硬化し
、さらに焼成および(または)黒鉛化処理を行うことが
より好ましい。
By repeating this operation, the elastic graphite body and the sheet are alternately laminated, and the molded body of the present invention can be manufactured through the same molding process as above. In addition, in this case, in order to improve the contact between the binder and the elastic graphite body, after applying a certain load to the above laminate, it is cured, and then subjected to firing and/or graphitization treatment. It is more preferable.

上述した成形物の焼成および(または)黒鉛化処理は、
通常2000〜3000℃、特に2600〜3000°
Cに加熱することによって行われ得る。
The above-mentioned firing and/or graphitization treatment of the molded product is
Usually 2000-3000°C, especially 2600-3000°
This can be done by heating to C.

上述した態様のうち、結合剤として前述した分散状結合
剤を用いることは、得られる成形体の弾性特性を向上さ
せる上で好ましい。分散状結合剤は、低粘度の結合剤が
球状で分散媒中に分散してしているため、このような結
合剤と骨材である弾性黒鉛体粒子とを混合し混練するこ
とによって結合剤は糸状に延伸され、弾性黒鉛体粒子の
周囲にあたかも蜘の巣状に付着し絡みつく状態が発現す
る。しかも、この場合の糸状ないし蜘の巣状に付着し絡
みついた結合剤は、黒鉛粒子のスポンジ構造内部には侵
入することなく、黒鉛粒子の表面のみを覆うように付着
して結合剤として機能する状態となるため、骨材として
の弾性黒鉛体粒子自体が有する弾性特性を減少させるこ
ともない。
Among the above-mentioned embodiments, it is preferable to use the above-mentioned dispersed binder as the binder in order to improve the elastic properties of the obtained molded article. Dispersed binder is a low-viscosity binder that is spherical and dispersed in a dispersion medium, so by mixing and kneading such a binder and elastic graphite particles that are aggregate, the binder is is stretched into a filament, and appears to be attached and entangled around the elastic graphite particles like a spider's web. Furthermore, in this case, the binder attached and entangled in a thread-like or spider web-like manner does not penetrate into the sponge structure of the graphite particles, but instead adheres to cover only the surface of the graphite particles and functions as a binder. Therefore, the elastic properties of the elastic graphite particles themselves as aggregates are not reduced.

上記のような分散状結合剤を用いる場合は、そ07□ の混合に際しては、混合物が良好なモチ状になるように
、水を適量添加することもできる。この水は、予め結合
剤液に添加しておいてもよい。また、結合剤の量が多す
ぎて、混合物が泥状になる場合には、混合後、−旦、乾
燥することによって適宜水分を除去することも可能であ
る。
When using the above-mentioned dispersion binder, an appropriate amount of water may be added during mixing so that the mixture becomes a good sticky consistency. This water may be added to the binder liquid in advance. In addition, if the amount of binder is too large and the mixture becomes muddy, it is possible to remove moisture as appropriate by drying the mixture after mixing.

本発明においては、結合剤としてシート状結合剤を用い
る場合を除き、結合剤の混合に際しては、せん断応力を
加えた混合法を採用することができ、このせん断湿合法
を採用することによって、上述したような結合剤が黒鉛
体粒子を包み込んだ微細構造の発現を一層促進すること
ができる。このような混合は、スタティックミキサー、
ヘンシェルミキサー等の種々の装置で行うことができる
が、ボールミル、ライカイキ等の粉砕機を用いることも
可能である。
In the present invention, except when a sheet-like binder is used as the binder, a mixing method that applies shear stress can be adopted when mixing the binder, and by adopting this shear wetting method, the above-mentioned Such a binder can further promote the development of a fine structure in which graphite particles are encapsulated. Such mixing can be done using static mixers,
This can be carried out using various devices such as a Henschel mixer, but it is also possible to use a pulverizer such as a ball mill or a pulverizer such as a Laikaiki.

このようにして得られた成形体は、これまでの炭素質成
形体にない、軽量かつ弾性にすぐれた性質を有している
The molded body thus obtained has properties that are lightweight and excellent in elasticity, which are not found in conventional carbonaceous molded bodies.

以下、実施例にて本発明の内容を更に詳細に説明する。Hereinafter, the content of the present invention will be explained in more detail with reference to Examples.

実施例1 デイレードコーカー法で得られた生コークスを微粉砕し
、平均粒径を10μmとした。この元素組成は、炭素9
5.1wt%、水素3.1wt%、窒素0.6wt%で
あった。この5gを300m1の容量の三角フラスコに
96%濃硫酸と70%濃硝酸の50 : 50容量比の
混酸100m1の中に少量ずつ加えた。全量加えた後、
あらかじめ80°Cに加熱した油浴てで4時間加熱した
。ついで、ガラスフィルター(No、4)でン濾過し、
水で充分洗浄した後、乾燥した。収率は140重量%て
あった。
Example 1 Raw coke obtained by a delayed coker method was finely pulverized to have an average particle size of 10 μm. This elemental composition is carbon 9
5.1 wt%, hydrogen 3.1 wt%, and nitrogen 0.6 wt%. 5 g of this was added little by little to 100 ml of a mixed acid of 96% concentrated sulfuric acid and 70% concentrated nitric acid in a volume ratio of 50:50 in a 300 ml Erlenmeyer flask. After adding the entire amount,
The mixture was heated for 4 hours in an oil bath preheated to 80°C. Then, filter it with a glass filter (No. 4),
After thoroughly washing with water, it was dried. The yield was 140% by weight.

これを水に分散させ、攪拌しながらpH10となるまで
2.5N−NaOHを加えた。ついでガラスフィルター
(No、 4 )で濾過し、ろ液にlNHNO3をpH
1以下となるように加えた(以下、沈殿物をアクアメソ
フェースと称する)。アクアメソフェースをガラスフィ
ルター(No、 4 )でン濾過し、乾燥した。このと
き、アクアメソフェースの収率は、生コークスに対して
133重量%であつ1ま た。このアクアメソフェースを500m1の円筒状ガラ
ス容器に入れ、あらかじめ300℃に加熱した塩浴中へ
投入し、30分間保持した。ついで、アルゴン気流中、
400℃/ h rの昇温速度で2800℃まで加熱し
て、30分間保持して、黒鉛化処理した。生コークスに
対する収率は、それぞれ、85.52重量%であった。
This was dispersed in water, and 2.5N-NaOH was added while stirring until the pH reached 10. Then, it was filtered through a glass filter (No. 4), and the filtrate was diluted with lNHNO3 to pH
(hereinafter, the precipitate is referred to as aqua mesoface). Aqua Mesoface was filtered through a glass filter (No. 4) and dried. At this time, the yield of aqua mesophase was 133% by weight based on the raw coke. This Aqua Mesoface was placed in a 500 ml cylindrical glass container, placed in a salt bath preheated to 300°C, and held for 30 minutes. Then, in an argon stream,
It was heated to 2800°C at a temperature increase rate of 400°C/hr and held for 30 minutes to perform graphitization treatment. The yield based on raw coke was 85.52% by weight, respectively.

黒鉛化した試料(弾性黒鉛体)について、圧縮弾性(圧
縮率、回復率)を、以下のようにして測定した。
Compressive elasticity (compressibility, recovery rate) of the graphitized sample (elastic graphite body) was measured as follows.

0.30++++n以下に粉砕した試料の0.5gを内
径10mmのシリンダー状容器に入れ、上部から1kg
/c−の荷重を加えた。このときの試料体積を基準(h
o)とした。そして、所定の荷重を加え体積を測定した
。この体積をhlとした。次いで、荷重を除き、そのと
きの体積をh2としたこれらの値から、次式によって圧
縮率と回復率を求めた。
Put 0.5g of the sample crushed to 0.30++++n or less into a cylindrical container with an inner diameter of 10mm, and add 1kg from the top.
A load of /c- was applied. The sample volume at this time is the standard (h
o). Then, a predetermined load was applied and the volume was measured. This volume was defined as hl. Next, the load was removed, and the compressibility and recovery rate were determined from these values using the following equations, with the volume at that time being h2.

圧縮率(%)= ((ho−h、)/ho)x100回
復率(%)−((h  −h  )/ (ho−h、)
)x100また、hoより充填密度を求めた。
Compression rate (%) = ((ho-h,)/ho) x 100 Recovery rate (%) - ((h - h )/ (ho-h,)
)x100 Also, the packing density was determined from ho.

充填密度Cg/cI)−試料重量子り。Packing density Cg/cI) - Sample weight.

その結果を表1に示す。The results are shown in Table 1.

実施例1 0、23 実施例2 0.18 実施例3 0.35 この弾性黒鉛体を0.15m+n以下に粉砕し、フェノ
ール樹脂(群栄化学■社製ニレシト・ツブPG3518
)粉末と表2に示す配合組成で均一に混合した後、直径
13mmのモールドに充填し、2Ton/c−の圧力で
成形した。成形体の特性を向上させるため、これを再び
粉砕した後、成形ず乙操作を4回繰返した。得られた成
形体を18[ビ(゛て3hr保持して〕Jノール樹脂を
硬化させた後、60℃/hrのlr温速度で80しビC
まで加勢し、1時間保持して炭素化した3゜ さらに、400℃/hrの昇温速i′7’ 28 OL
1℃まで加熱し、30分保持して黒鉛化し7成形体4得
た。
Example 1 0, 23 Example 2 0.18 Example 3 0.35 This elastic graphite body was crushed to 0.15 m+n or less, and phenol resin (Nireshito Tsubu PG3518 manufactured by Gunei Chemical Co., Ltd.
) After uniformly mixing the powder with the composition shown in Table 2, it was filled into a mold with a diameter of 13 mm and molded at a pressure of 2 Ton/c-. In order to improve the properties of the molded product, it was ground again and the molding operation was repeated four times. The obtained molded body was heated for 18 hours (held for 3 hours) to cure the J-nor resin, and then heated for 80 hours at an lr temperature rate of 60°C/hr.
The heating rate was increased to 3° and held for 1 hour to carbonize.Furthermore, the heating rate was 400°C/hr i'7' 28 OL
The mixture was heated to 1° C. and maintained for 30 minutes to graphitize to obtain molded product 7.

これらの圧縮特性を表3に示す2、 表   2 No、    フェノール樹脂(wL%)  弾性りA
鉛体(、Wi%)1      75        
  2 ’)表 No、  寸法(mm)  嵩密度 直径×高さ(g/cc) 1 9.6 4.0  0.81 2 10.6 4.7  0.68 荷 重 圧縮率 (kg/cJl  (%) 実施例2 あらかじめ減圧蒸溜により、沸点約500℃以下の低沸
点成分を除去したFCCデカントオイル2kgを5リツ
トルの容器に入れ、窒素ガス気流中、かくはんしながら
500℃まで加熱し、2時間保持した後、加熱とかくは
んを停止し、放冷した。
These compression properties are shown in Table 32. Table 2 No. Phenolic resin (wL%) Elasticity A
Lead body (, Wi%) 1 75
2') Table No., Dimensions (mm) Bulk density diameter x height (g/cc) 1 9.6 4.0 0.81 2 10.6 4.7 0.68 Load Compressibility (kg/cJl ( %) Example 2 2 kg of FCC decant oil, from which low-boiling components with a boiling point of about 500°C or less were removed in advance by vacuum distillation, was placed in a 5-liter container, heated to 500°C with stirring in a nitrogen gas stream, and heated for 2 hours. After holding, heating and stirring were stopped, and the mixture was allowed to cool.

内部の温度が400℃に達した時、加熱によってこの温
度に保持しながら、放冷を開始して合計3時間経過後、
容器下部に設けた抜き出し孔より、約1.6kgのピッ
チ状物を取り出した。このピッチ状物にキノリンを約3
倍量加え、約300℃に加熱し、キノリンの還流下で3
時間処理した。次いで、遠心分離器で不溶成分を分離し
、この不溶成分に新たなキノリンを加えて90℃に加熱
した後、遠心分離した。不溶成分はベンゼン、アセトン
で十分洗浄し、乾燥した。得られた不溶成分の瓜は]、
C1kgであり、偏光顕微鏡によって組織を観察したと
ころ、全面、流れ構造の異方外相であった。そこで、こ
の不溶成分を炭素質メソフェースとして用いた。
When the internal temperature reached 400℃, after a total of 3 hours had elapsed after starting cooling while maintaining this temperature by heating,
Approximately 1.6 kg of pitch-like material was taken out from the extraction hole provided at the bottom of the container. Add about 3 quinolines to this pitch-like material.
Add twice the amount, heat to about 300℃, and add quinoline under reflux for 30 minutes.
Time processed. Next, insoluble components were separated using a centrifuge, fresh quinoline was added to the insoluble components, heated to 90° C., and then centrifuged. Insoluble components were thoroughly washed with benzene and acetone and dried. The obtained melon with insoluble components is]
When the structure was observed using a polarizing microscope, it was found that the entire surface had an anisotropic outer phase with a flow structure. Therefore, this insoluble component was used as a carbonaceous mesophase.

]5 このようにして調製した炭素質メソフゴースの元素組成
は炭素93,4%、水素3,6%、窒素0.5%であっ
た。そして、]、17〜0.70m1]lの粒度の5g
を300 mlの容量の3角フラスコに96%濃硫酸と
70%濃硝酸の50 : 50容hλ比の混酸100m
1の中に少量ずつ加えた。全量加えた後、あらかじめ5
0℃に加熱した油浴て60分間加熱したた。ついで、ガ
ラスフィルター(No、 4 )でろ過し、水で十分洗
浄した後、乾燥した。収率は]、38.6重量%であっ
た。これを500m1の円筒状ガラス容器に入れ、あら
かじめ300℃の加熱した塩浴中に投入し、30分間保
持した。収率は原料炭素質メソフェースに対して95.
9重量%であった。
]5 The elemental composition of the carbonaceous mesofugose thus prepared was 93.4% carbon, 3.6% hydrogen, and 0.5% nitrogen. and ], 5 g of particle size of 17-0.70 ml]l
In a 300 ml Erlenmeyer flask, add 100 ml of a mixed acid of 96% concentrated sulfuric acid and 70% concentrated nitric acid at a ratio of 50:50 hλ.
1 was added little by little. After adding the entire amount, add 5
It was heated for 60 minutes in an oil bath heated to 0°C. Then, it was filtered through a glass filter (No. 4), thoroughly washed with water, and then dried. The yield was 38.6% by weight. This was placed in a 500 ml cylindrical glass container, placed in a salt bath preheated to 300°C, and held for 30 minutes. The yield is 95% based on the raw carbonaceous mesophase.
It was 9% by weight.

次いで、アルゴン気流中、400℃/分の昇温速度で2
800℃まで加熱し、30分間保持して黒鉛化処理した
。収率は炭素質メソフェースに対して65.0重量%で
あった。
Then, in an argon stream, the temperature was increased at a heating rate of 400°C/min for 2 hours.
It was heated to 800°C and held for 30 minutes to perform graphitization treatment. The yield was 65.0% by weight based on the carbonaceous mesophase.

この弾性黒鉛体について、実施例1と同様にして、充填
密度、圧縮弾性(圧縮率、回復率)を測]6 定した。その結果を表]に示す。
Regarding this elastic graphite body, the packing density and compressive elasticity (compressibility, recovery rate) were measured in the same manner as in Example 1. The results are shown in Table].

この弾性黒鉛体を0.10mm以下に粉砕し、実施例1
と同様の方法で成形した後、焼成、黒鉛化(7、成形体
を得た。そのときの、フェノール樹脂粉末と弾性黒鉛体
の配合比を表4に示す。これらの成形体の圧縮特性を表
5に示す。
This elastic graphite body was crushed to 0.10 mm or less, and Example 1
After molding in the same manner as above, sintering and graphitization (7) A molded body was obtained. The blending ratio of the phenolic resin powder and the elastic graphite body at that time is shown in Table 4. The compression characteristics of these molded bodies were It is shown in Table 5.

No。No.

表   4 フェノール樹脂(vt%)  弾性黒鉛体(wt%)表 No、  寸法(mm)  嵩密度 直径×高さ(g/cc) 3  C2,13,50,97 412,92,90,94 荷 重 圧縮率 (kg/cJ)  (%) 実施例3 96%濃硫酸と70%濃硝酸の50 : 50容量比の
混酸100m1を300m1の容量の三角フラスコに取
り、予め水浴中で冷却しておく。これに、実施例1に用
いたと同じ原料生コークスを、0.15〜0.30順に
粉砕、調整したもの5gを少量ずつ加えた。全量、加え
た後、1時間保持した。ついで、氷で冷却した500m
1の水中へ注ぎ入れ、ガラスフィルター(No、 4 
)で濾過し、水で充分洗浄した後、乾燥した。収率は1
54.0重量%であった。これを、実施例1に示したと
同様の方法で、熱処理および黒鉛化した。生コークスに
対する収率は、それぞれ、89.5.57.6重量%で
あった。得られた弾性黒鉛体の圧縮弾性(圧縮率、回復
率)の測定結果を表1に示す。
Table 4 Phenolic resin (vt%) Elastic graphite (wt%) Table No. Dimensions (mm) Bulk density diameter x height (g/cc) 3 C2, 13, 50, 97 412, 92, 90, 94 Load Compressibility (kg/cJ) (%) Example 3 100 ml of a mixed acid with a 50:50 volume ratio of 96% concentrated sulfuric acid and 70% concentrated nitric acid is placed in a 300 ml Erlenmeyer flask and cooled in a water bath in advance. To this, 5 g of raw coke, which was the same as that used in Example 1, was crushed and adjusted in the order of 0.15 to 0.30, and was added little by little. After adding the entire amount, it was held for 1 hour. Then, 500m cooled with ice
Pour into the water from No. 1 and use a glass filter (No. 4).
), washed thoroughly with water, and dried. The yield is 1
It was 54.0% by weight. This was heat treated and graphitized in the same manner as shown in Example 1. The yields based on raw coke were 89.5 and 57.6% by weight, respectively. Table 1 shows the measurement results of the compressive elasticity (compressibility, recovery rate) of the obtained elastic graphite body.

0.30mm以下に粉砕した弾性黒鉛体を、実施例1に
用いたと同じフェノール樹脂と表6に示す配合組成で均
一に混合した後、100℃に加熱したモールドに充填し
、50kg/cJ圧力で5分間加圧し、冷却後、取り出
した。得られた成形体を30℃/ h rの昇温速度で
1000℃まで加熱し、1時間保持して炭素化し、成形
体を得た。この圧縮特性を表7に示す。
After uniformly mixing the elastic graphite body crushed to 0.30 mm or less with the same phenol resin used in Example 1 and the composition shown in Table 6, it was filled into a mold heated to 100°C and heated at a pressure of 50 kg/cJ. After pressurizing for 5 minutes and cooling, it was taken out. The obtained molded body was heated to 1000° C. at a temperature increase rate of 30° C./hr and held for 1 hour to carbonize, thereby obtaining a molded body. The compression characteristics are shown in Table 7.

比較例1 実施例3に用いたと同じ原料生コークスを0.15〜0
.30mmに粉砕、調整したものを、200℃/hrの
昇温速度で1000℃まで加熱し、1時間保持して力焼
した後、400℃/hrの昇温速度で2800℃まで加
熱し、30分間保持して黒鉛化処理した。このときの収
率は原料生コークスに対して90.1重量%であった。
Comparative Example 1 The same raw coke used in Example 3 was used at 0.15 to 0.
.. The powder was crushed and adjusted to 30 mm, heated to 1000 °C at a temperature increase rate of 200 °C/hr, held for 1 hour and calcined, then heated to 2800 °C at a temperature increase rate of 400 °C/hr, and heated to 2800 °C at a temperature increase rate of 30 It was held for a minute and graphitized. The yield at this time was 90.1% by weight based on the raw material raw coke.

これを0.30mm以下に粉砕したものを、実施例3で
述べたと同様の方法で成形、炭素化して、成形体を得た
。この成形体の圧縮特性を表7に示す。
This was pulverized to 0.30 mm or less, which was then molded and carbonized in the same manner as described in Example 3 to obtain a molded body. Table 7 shows the compression properties of this molded body.

比較例2 実施例2に用いたと同じ弾性黒鉛体の0.30以下のも
のを、フェノール樹脂(日立化成工業■社製:VP80
P)とそれぞれ重量比が弾性黒鉛体:樹脂−(40: 
60,50 : 50)となるように均一に混合した後
、モールドに充填して、80kg/c+Ifの加圧下、
180℃ 30分硬化した。
Comparative Example 2 The same elastic graphite used in Example 2 with a particle diameter of 0.30 or less was treated with phenol resin (manufactured by Hitachi Chemical Co., Ltd.: VP80).
P) and the weight ratio of elastic graphite body:resin-(40:
60,50:50), then filled into a mold and heated under a pressure of 80kg/c+If.
It was cured at 180°C for 30 minutes.

さらに、180℃ 3時間保持してフェノール樹脂を後
硬化した後、60℃/ h rの昇温速度で800℃ま
で加熱し、1時間保持して炭素化した。
Furthermore, after post-curing the phenol resin by holding at 180°C for 3 hours, it was heated to 800°C at a temperature increase rate of 60°C/hr and held for 1 hour to carbonize.

さらに、400℃/ h rの昇温速度で2800℃ま
で加熱し、30分保持して黒鉛化し成形体を得た。この
成形体の圧縮特性を表7に示す。
Furthermore, it was heated to 2800°C at a temperature increase rate of 400°C/hr and held for 30 minutes to graphitize to obtain a molded body. Table 7 shows the compression properties of this molded body.

表   7 寸法(關)  嵩密度  荷 重 圧縮率 回復率直径
×高さ(g/ee)  (kg/crl)  (%) 
 (%)実施例3  liB  5.8  0.49 
   15  18   51比較例1 13.4 5
.2  1.13    50  1.2  67比較
例2 ■9.7 4.0 ■9.9 4.8 0.86 0.64 2.6 1.0 表   6 フェノール樹脂(vt%)  弾性黒鉛体(νt%)実
施例3     40          60比較例
1     40          60比較例2 
■   40         60■   50  
       50
Table 7 Dimensions (related) Bulk density Load Compressibility Recovery rate Diameter x height (g/ee) (kg/crl) (%)
(%) Example 3 liB 5.8 0.49
15 18 51 Comparative Example 1 13.4 5
.. 2 1.13 50 1.2 67 Comparative Example 2 ■9.7 4.0 ■9.9 4.8 0.86 0.64 2.6 1.0 Table 6 Phenolic resin (vt%) Elastic graphite ( νt%) Example 3 40 60 Comparative Example 1 40 60 Comparative Example 2
■ 40 60■ 50
50

Claims (2)

【特許請求の範囲】[Claims] 1.弾性黒鉛体粒子と結合剤とを混合し、成形したのち
、該成形物を焼成および(または)黒鉛化処理すること
によって、嵩密度が1.0g/cm^3以下であって、
圧縮率5〜50%における回復率が50%以上である軽
量かつ弾性にすぐれた炭素成形体を得ることを特徴とす
る、炭素成形体の製造方法。
1. After mixing elastic graphite particles and a binder and molding, the molded product is fired and/or graphitized to give a bulk density of 1.0 g/cm^3 or less,
A method for producing a carbon molded body, which is characterized by obtaining a lightweight and highly elastic carbon molded body having a recovery rate of 50% or more at a compression ratio of 5 to 50%.
2.弾性黒鉛体と炭素質または黒鉛質炭素からなる、嵩
密度が1.0g/cm^3以下であって、圧縮率5〜5
0%における回復率が50%以上である軽量かつ弾性に
すぐれた炭素成形体。
2. Composed of an elastic graphite body and carbonaceous or graphitic carbon, with a bulk density of 1.0 g/cm^3 or less and a compressibility of 5 to 5
A lightweight and highly elastic carbon molded body having a recovery rate of 50% or more at 0%.
JP1027875A 1989-02-07 1989-02-07 Production of molded carbonaceous body excellent in compression elasticity Pending JPH02208214A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1027875A JPH02208214A (en) 1989-02-07 1989-02-07 Production of molded carbonaceous body excellent in compression elasticity
AT90902688T ATE121711T1 (en) 1989-02-07 1990-02-06 METHOD FOR PRODUCING A CARBON MOLDED BODY WITH EXCELLENT COMPRESSION ELASTICITY.
US07/582,837 US5190696A (en) 1989-02-07 1990-02-06 Process for preparation of carbonaceous molded body having excellent compressive elasticity
EP90902688A EP0424537B1 (en) 1989-02-07 1990-02-06 Process for preparation of carbonaceous molded body having excellent compressive elasticity
DE69018923T DE69018923T2 (en) 1989-02-07 1990-02-06 METHOD FOR PRODUCING A CARBON SHAPED BODY WITH EXCELLENT COMPRESSION ELASTICITY.
PCT/JP1990/000143 WO1990009346A1 (en) 1989-02-07 1990-02-06 Production of carbonaceous molding having excellent compressive modulus
CA002026774A CA2026774A1 (en) 1989-02-07 1990-02-06 Process for preparation of carbonaceous molded body having excellent compressive elasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1027875A JPH02208214A (en) 1989-02-07 1989-02-07 Production of molded carbonaceous body excellent in compression elasticity

Publications (1)

Publication Number Publication Date
JPH02208214A true JPH02208214A (en) 1990-08-17

Family

ID=12233068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1027875A Pending JPH02208214A (en) 1989-02-07 1989-02-07 Production of molded carbonaceous body excellent in compression elasticity

Country Status (1)

Country Link
JP (1) JPH02208214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075422A1 (en) * 2005-01-14 2006-07-20 Yamamoto Plastics Co., Ltd. Synthetic resin composition for molding, method of molding the same, and molded object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075422A1 (en) * 2005-01-14 2006-07-20 Yamamoto Plastics Co., Ltd. Synthetic resin composition for molding, method of molding the same, and molded object

Similar Documents

Publication Publication Date Title
JPH09132846A (en) Carbon fiber material and its production
EP0424537B1 (en) Process for preparation of carbonaceous molded body having excellent compressive elasticity
JPH02208214A (en) Production of molded carbonaceous body excellent in compression elasticity
US5137667A (en) Process for producing elastic graphite molded products
JPH02172809A (en) Production of elastic graphite molded body
JPH0234902B2 (en)
JPS5978914A (en) Manufacture of special carbonaceous material
JP2689509B2 (en) Method for producing needle coke for carbon molded body
JPH04321559A (en) Composition for carbon material, composite carbon material and their production
JPH01305859A (en) Production of high-density carbon material
JPS61295216A (en) Preparation of isotropic graphite material having high density and high strength
JPS60127264A (en) Phenol resin coated carbonaceous fiber
JPH0791107B2 (en) Method for producing isotropic graphite material having high density and high strength
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH02208213A (en) Production of molded carbonaceous body excellent in compression elasticity
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPS61251504A (en) Production of formed graphite
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JP2003055057A (en) Method of manufacturing carbon fiber reinforced carbon material
JPS6374961A (en) Manufacture of artificial graphitic electrode
JPH0551258A (en) Production of high density and high strength graphite material
JPH0288464A (en) Production of density and high strength carbon material and graphite electrode material for electric spark machining
JPH0669077A (en) Manufacture of polarizing electrode for electric double layer capacitor
JPS6241707A (en) Production of raw material for isotropic high-density carbonaceous material
JPS63242911A (en) Production of raw material for carbon material