JPS6121861B2 - - Google Patents

Info

Publication number
JPS6121861B2
JPS6121861B2 JP7327277A JP7327277A JPS6121861B2 JP S6121861 B2 JPS6121861 B2 JP S6121861B2 JP 7327277 A JP7327277 A JP 7327277A JP 7327277 A JP7327277 A JP 7327277A JP S6121861 B2 JPS6121861 B2 JP S6121861B2
Authority
JP
Japan
Prior art keywords
spring
bogie frame
bogie
car body
axle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7327277A
Other languages
Japanese (ja)
Other versions
JPS548318A (en
Inventor
Kenjiro Kasai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7327277A priority Critical patent/JPS548318A/en
Publication of JPS548318A publication Critical patent/JPS548318A/en
Publication of JPS6121861B2 publication Critical patent/JPS6121861B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】 本発明は車両用台車に係り、特に都市内高速鉄
道用電車に好適な鉄道車両用台車に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bogie for a vehicle, and particularly to a bogie for a railway vehicle suitable for an urban high-speed railway train.

従来の鉄道車両用台車としては各種の方式のも
のがあるが、最近は空気ばねとして本来の上下方
向の変位の他に大きな横方向変位の許せるものを
利用することによつて車体と台車とを直接結合す
る方式が試みられている。これは第1図及び第2
図に示す。輪軸1は、軸受を内蔵する軸箱2を有
し、1次ばね3を介して台車枠4と係合してい
る。台車枠4は輪軸1の相対位置を定め、また車
両進行方向に沿つて左右に各1個の2次ばね5を
持ち車体6と直結しており、車体荷重を輪軸1に
伝えている。またけん引力、制動力は車体6に設
けられた中心ピン7と台車枠中央の穴8とを弾性
的に結合することによつて、線路の曲線部分にお
いて台車枠中央付近を中心に台車は車体6に対し
水平面内で摺動自在となつている。台車が揺動し
た場合、2次ばね5は横変位とねじり変位の合成
された変形を受ける。最近は、それぞれ±120
mm、±8゜程度が許される空気ばねが開発されて
いる。このような台車構成は従来の構造に比較し
簡易化されており、また走行、振動性能にても優
れ軽量化、低コスト化に役立つている。
There are various types of conventional railway vehicle bogies, but recently, air springs that allow large lateral displacement in addition to the original vertical displacement have been used to improve the relationship between the car body and the bogie. A method of direct coupling has been attempted. This is shown in Figures 1 and 2.
As shown in the figure. The wheel set 1 has an axle box 2 containing a bearing, and is engaged with a bogie frame 4 via a primary spring 3. The bogie frame 4 determines the relative position of the wheel axle 1, and has one secondary spring 5 on each side along the vehicle traveling direction, and is directly connected to the vehicle body 6 to transmit the vehicle body load to the wheel axle 1. In addition, the traction force and braking force are generated by elastically connecting the center pin 7 provided on the car body 6 and the hole 8 in the center of the bogie frame. 6, it is slidable in a horizontal plane. When the truck swings, the secondary spring 5 undergoes a combined deformation of lateral displacement and torsional displacement. Recently, each ±120
mm, an air spring that allows about ±8° has been developed. This type of bogie structure is simpler than conventional structures, has excellent running and vibration performance, and is useful for reducing weight and cost.

しかし近年の都市内高速鉄道用電車では、高い
加速度、減速度が要求され、また使用電力量を削
減し省エネルギーおよびランニングコストの低減
を図るため車両の軽量化の要求が強くなつてきて
いる。ところが車両の加速時および減速時に、車
輪とレール間のスリツプを発生し易くなつてお
り、スリツプを生ずることなく電動機の発生する
トルクを十分に活用することが都市内高速鉄道用
電車の設計において特に重要である。
However, in recent years, trains for urban high-speed railways are required to have high acceleration and deceleration, and there is also a growing demand for lighter vehicles in order to reduce power consumption, save energy, and reduce running costs. However, slippage between the wheels and rails is becoming more likely to occur when the vehicle accelerates and decelerates, and it is especially important in the design of urban high-speed trains to fully utilize the torque generated by the electric motor without causing slippage. is important.

前記した台車においては軽量化されてはいるが
台車内軸重移動の防止策は採られておらず、高い
加速度、減速度の下で使用するのには適していな
い。軸重移動量は第2図で示すように、加速時を
例にとると、台車と車体6の結合点に働らく力を
F、レール面から結合点までの高さhとすれば、
軸重移動量を起すモーメントはFhとなり、軸重
移動量はΔWは、これを軸間距離lで割つた値、
即ち ΔW=Fh/l で示される。すなわち第1軸では−ΔW、第2軸
では+ΔWが台車内軸重移動量であり、第1軸で
はスリツプを発生しやすい。すなわち、レールと
車輪との間の最大摩擦係数をμとし、静止時の軸
重をWとすると、(W−ΔW)×μが最大の接線力
であり、 (W−ΔW)×μ<F/2 となると、レールと車輪との間にスリツプを生ず
る。車両の軽量化によりWは小さくなつて来てお
り、また高加速度の要求からFも増大しており、
スリツプし易い、スリツプを発生すると所定の加
速力が得られないばかりでなく、電動機の過大回
転による損傷、車輪・レールの激しい摩耗を発生
するなど不具合を生ずるので極力避ける必要があ
る。
Although the above-mentioned bogie is lightweight, no measures are taken to prevent the axle load from shifting within the bogie, and it is not suitable for use under high acceleration and deceleration conditions. As shown in Figure 2, the amount of axle load movement is as follows: Taking acceleration as an example, if the force acting on the connection point between the bogie and the car body 6 is F, and the height from the rail surface to the connection point is h, then
The moment that causes the axle load movement is Fh, and the axle load movement is ΔW, which is the value divided by the distance l between the axles.
That is, it is expressed as ΔW=Fh/l. That is, -ΔW for the first shaft and +ΔW for the second shaft are the amount of weight movement within the bogie, and slips are likely to occur in the first shaft. In other words, if the maximum coefficient of friction between the rail and the wheel is μ, and the axle load at rest is W, then (W-ΔW)×μ is the maximum tangential force, and (W-ΔW)×μ<F /2, slips occur between the rail and the wheels. Due to the weight reduction of vehicles, W is becoming smaller, and F is also increasing due to the requirement for high acceleration.
It is easy to slip, and if slip occurs, it is necessary to avoid it as much as possible because it not only makes it impossible to obtain the specified acceleration force, but also causes problems such as damage due to excessive rotation of the electric motor and severe wear of the wheels and rails.

このようなことより従来、軸重移動量ΔWを小
さくする種々の方式が試みられているが、いずれ
も軸重移動を起すモーメントを小さくするため、
レール面から車体、台車の結合点までの高さhを
小さくすることに力が注がれ、複雑なリンク機構
を用いて実現している。たとえば第3図は逆八リ
ンクと呼ばれるリンク11を介してけん引力を伝
えるもので、レール面上にけん引力伝達点がある
h=0の場合と同様な効果をねらつたものであ
る。これらは機関車用として効果を上げている
が、リンク機構の摩擦によつて効果が十分発揮さ
れない場合もあり、またこれら機構の重量が大き
い欠点や軽量電車用としてゆれまくらのない第1
図、第2図の構造の台車には使用できない欠点が
あつた。本発明は上述の点に鑑み成され、その目
的は簡単な機構で軸重移動を防止し得る軽量な車
両用台車を提供するにある。
For this reason, various methods have been tried to reduce the axle load movement amount ΔW, but all of them are designed to reduce the moment that causes the axle load movement.
Efforts have been made to reduce the height h from the rail surface to the connection point between the car body and bogie, and this has been achieved using a complex link mechanism. For example, FIG. 3 shows a system in which traction force is transmitted through a link 11 called a reverse eight link, and the aim is to achieve the same effect as in the case of h=0, where the traction force transmission point is on the rail surface. Although these have been effective for locomotives, they may not be as effective due to the friction of the link mechanism, and the drawback is that these mechanisms are heavy, and for lightweight trains, the first type without sway pillows is
The carts with the structures shown in Figures and 2 had drawbacks that made them unusable. The present invention has been made in view of the above points, and its object is to provide a lightweight vehicle bogie that can prevent axle load movement with a simple mechanism.

本発明は、2次ばねとして大きな横変位を許容
する空気ばねを、1次ばねの真上に配置し、前記
空気ばねによつて車体荷重を支持するとともに、
該空気ばねの高さ調整を行なうことによつて軸重
移動を防止できる構成としたことを特徴とするも
のである。
In the present invention, an air spring that allows large lateral displacement is arranged as a secondary spring directly above the primary spring, and the air spring supports the vehicle body load.
The present invention is characterized by a structure in which axle load movement can be prevented by adjusting the height of the air spring.

以下本発明の一実施例を図面によつて説明す
る。図面の実施例第4図及び第5図において、輪
軸1は軸受を内蔵する軸箱2を有し、1次ばね3
を介して台車枠4と係合している。台車枠4は輪
軸1の相対位置を定め、1次ばね3の直上に2次
ばね5(本実施例では空気ばね)を持ち車体6と
直結しており、車体荷重を輪軸に伝えている。ま
たけん引力、制動力は車体に設けられた中心ピン
7と台車枠中央の穴8とを弾性的に結合すること
によつて、線路の曲線部分において台車枠中央付
近を中心に台車は車体6に対し水平面内で摺動自
在となつている。なお、前記台車枠4は図示のよ
うに側梁と横梁を一体に接合した構成となつてい
る。2次ばねである空気ばね5には通常使用され
る高さ調整弁10がそれぞれ併設されており、あ
らかじめ設定した高さとなるように空気ばね5内
の空気量を調整する。
An embodiment of the present invention will be described below with reference to the drawings. Embodiments of the drawings In FIGS. 4 and 5, a wheel set 1 has an axle box 2 containing a bearing, and a primary spring 3.
It is engaged with the bogie frame 4 via. The bogie frame 4 determines the relative position of the wheel axle 1, has a secondary spring 5 (air spring in this embodiment) directly above the primary spring 3, is directly connected to the vehicle body 6, and transmits the vehicle body load to the wheel axle. In addition, the traction force and braking force are generated by elastically coupling the center pin 7 provided on the car body with the hole 8 in the center of the bogie frame. It can slide freely in the horizontal plane. The bogie frame 4 has a structure in which side beams and cross beams are integrally joined as shown. Each of the air springs 5, which are secondary springs, is provided with a commonly used height adjustment valve 10, which adjusts the amount of air in the air spring 5 to a preset height.

おのおのの空気ばね5への空気配管系統図を第
6図に示す。第1輪軸1aでは左右の空気ばね5
の間に差圧弁12を設け、左右の差圧の大きいと
きのみ連通させている。これは空気ばね5がパン
クしたような場合の荷重のアンバランスを避ける
ことを目的とし、普段は左右独立に作用する。第
2輪軸1bにては、左右の空気ばね5を連通さ
せ、これに絞り13を設けて車体のローリングに
対する減衰を与えている。
A diagram of the air piping system for each air spring 5 is shown in FIG. On the first wheel set 1a, left and right air springs 5
A differential pressure valve 12 is provided between the two, and communication is established only when the differential pressure between the left and right sides is large. This is intended to avoid load imbalance in the event that the air spring 5 is punctured, and usually acts independently on the left and right sides. At the second wheel axle 1b, left and right air springs 5 are communicated with each other, and a throttle 13 is provided thereto to provide damping against rolling of the vehicle body.

このような配置を採ることにより、第2輪軸1
bは静的には1点支持となり、1台車3点支持と
して4輪の輪重のアンバランスを極力減少させる
ようにしている。
By adopting such an arrangement, the second wheel set 1
b is statically supported at one point, and one bogie is supported at three points to reduce the unbalance of the four wheels as much as possible.

高さ調整弁10は通常用いられるもので、速い
振動現象には追ずいせぬようダンパを内在させ、
また3秒程度のおくれを持たせている。
The height adjustment valve 10 is normally used, and has a built-in damper to prevent it from responding to fast vibration phenomena.
Also, there is a delay of about 3 seconds.

上述した軸重移動を起すモーメントFhが生ず
ると第7図に示すように台車枠4は力学的中心0
点まわりに一点鎖線で示す如く傾斜し、第1輪軸
1aの空気ばね5は縮み、第2輪軸1bの空気ば
ね5は伸びる。このとき車体側に取付けた高さ調
整弁10はばね撓みを検出し、この信号をもとに
空気ばね5の空気量を制御し空気ばねの高さをも
との値に戻す。即ち、第8図a,b,cに示す如
く、通常の場合にはaの如く調整弁本体16、ア
ーム17及びロツド18は動作しないが、空気ば
ね5が縮んだ場合にはbの如く空気溜より矢印P
の如く空気が流れて来て、アーム17、ロツド1
8を上方向に変位させ矢印Qの如く空気ばねへ流
れる。また空気ばねが伸びた場合には、アーム1
7、ロツド18はcの如くbとは逆動作し、空気
ばねQ1よりの空気はRの如く排出される。この
ため、1次ばねの撓みは第1輪軸と第2輪軸とは
等しくなり、軸重移動がなくなる。前記Fhなる
モーメントは第1輪軸、第2輪軸の空気ばねの分
担荷重の変化によつてのみ負担したことを示して
いる。このような軸重移動現象は車両の振動現象
に比較しはるかに遅く、上記特性をもつ高さ調整
弁の使用が可能である。
When the moment Fh that causes the above-mentioned axle load shift occurs, the bogie frame 4 moves to its dynamic center 0, as shown in FIG.
The air spring 5 of the first wheel axle 1a contracts and the air spring 5 of the second wheel axle 1b expands. At this time, the height adjustment valve 10 attached to the vehicle body side detects the spring deflection, controls the amount of air in the air spring 5 based on this signal, and returns the height of the air spring to its original value. That is, as shown in FIGS. 8a, b, and c, in normal cases, the regulating valve body 16, arm 17, and rod 18 do not operate as shown in a, but when the air spring 5 is compressed, air is released as shown in b. Arrow P from Tame
Air flows like this, arm 17, rod 1
8 is displaced upward and flows into the air spring as shown by arrow Q. Also, if the air spring is extended, arm 1
7. The rod 18 operates in the opposite direction to b as shown in c, and the air from the air spring Q1 is discharged as shown in R. Therefore, the deflection of the primary spring becomes equal between the first wheel set and the second wheel set, and there is no axle weight shift. This shows that the moment Fh was borne only by the change in the load shared by the air springs of the first wheel axle and the second wheel axle. Such an axle load movement phenomenon is much slower than a vibration phenomenon of a vehicle, and it is therefore possible to use a height adjustment valve having the above-mentioned characteristics.

次に振動性能についてみると、本実施例では前
後振動性動に優れている。従来、台車枠の0点ま
わりに揺動であるピツチングに対して2次ばねの
効果は殆んどなかつたが、本実施例によると、2
次ばねの剛性が1次ばねの剛性に加算されるた
め、発生しにくい。従来の台車では台車と車体の
結合点を車軸中心線近くにおくことによつてピツ
チングを防いでいたが、このような対策の必要性
が薄くなり、結合点までの高さhを大きくとつて
も差支えないことになり、台車枠の側面形状を第
5図に示すように直線状の簡易なものとすること
ができる。
Next, regarding vibration performance, this example is excellent in longitudinal vibrational motion. Conventionally, secondary springs had almost no effect on pitching, which is rocking around the zero point of the bogie frame, but according to this embodiment,
Because the rigidity of the secondary spring is added to the rigidity of the primary spring, this is unlikely to occur. In conventional bogies, pitting was prevented by placing the connection point between the bogie and the car body close to the axle center line, but as the need for such measures became less important, the height h to the connection point was increased. There is no problem, and the side surface shape of the bogie frame can be made straight and simple as shown in FIG.

また上下振動については振動特性として従来の
台車をもつ車両と本質的な差はない。例えば段差
δのステツプ状のレール継目を第1軸が乗り上上
げたとき、従来の台車では2次ばねが2軸の中央
にあるため、段差δの1/2すなわちδ/2に乗り
上げたと同様の加振を受けるが、本実施例では2
次ばねが軸の直上にあるため、段差δに乗り上げ
たと同様な加振を受ける。しかし本実施例では従
来の台車と車体の振動特性を同一としており、2
次ばねのばね定数を従来の台車1/2としているた
め、段差の乗り上げに対する加振力は同一とな
る。
Furthermore, regarding vertical vibration, there is no essential difference in vibration characteristics from vehicles with conventional bogies. For example, when the first shaft runs over a step-shaped rail joint with a step difference δ, in a conventional bogie, the secondary spring is located in the center of the two shafts, so it is equivalent to running over 1/2 of the step δ, that is, δ/2. However, in this example, 2
Since the second spring is located directly above the shaft, it is subjected to vibrations similar to those caused by riding on a step δ. However, in this embodiment, the vibration characteristics of the conventional bogie and the car body are the same, and 2
Since the spring constant of the second spring is 1/2 that of the conventional trolley, the excitation force against running over a step is the same.

左右振動の点についても上下振動と全く同様で
あり、従来の台車と本質的な差はない。
The horizontal vibration is exactly the same as the vertical vibration, and there is no essential difference from the conventional trolley.

また本実施例によれば、車体荷重は2次ばね、
1次ばね、車輪と直線的に伝達されるため、台車
枠へは上下方向荷重がかからず、構造部材の断面
係数を大幅に低下させることが可能となり、軽量
化ができる。また車体側の取付部については従来
の1台車2点支持から4点支持となるため、車体
側取付部分の荷重がそれぞれ1/2となり強度面か
らみた車体構造の簡略化を図ることができる。
Further, according to this embodiment, the vehicle body load is caused by the secondary spring,
Since the load is transmitted linearly to the primary spring and the wheels, no vertical load is applied to the bogie frame, making it possible to significantly reduce the section modulus of the structural members, resulting in weight reduction. In addition, since the mounting parts on the car body side are supported at four points instead of the conventional two-point support on one bogie, the load on each mounting part on the car body side is halved, making it possible to simplify the car body structure from a strength standpoint.

本発明の他の実施例として2次ばねの空気ばね
に高さ調整弁を設けない場合がある。この場合は
軸重移動量は0とはならないが、軸重移動を起す
モーメントを、1次ばねと2次ばねが並列となつ
た剛いばねを受けるために、ばね撓みが小さくな
り軸重移動を軽減できる。1次ばね、2次ばねの
ばね定数が等しい場合、撓みは1/2となり、軸重
移動量は従来の1/2となる。これは空気ばねでな
くコイルばねで置き換えても同様の効果がある。
As another embodiment of the present invention, the air spring of the secondary spring may not be provided with a height adjustment valve. In this case, the amount of axle load movement will not be 0, but since the moment that causes axle load movement is absorbed by the rigid spring in which the primary spring and secondary spring are parallel, the spring deflection will be small and the axle load will shift. can be reduced. If the spring constants of the primary and secondary springs are equal, the deflection will be 1/2 and the amount of axle load movement will be 1/2 of the conventional one. The same effect can be obtained even if the air spring is replaced with a coil spring.

本発明によれば1次ばね真上に備えた空気ばね
の高さ制御を行うことにより軸重移動を防止で
き、本台車を装備した車両においては高加速、高
減速を伴う運転を行うことができる。また、車体
荷重が直接1次ばね、2次ばねを通つて車輪へ伝
えられるので台車枠の断面係数を下げることがで
き軽量化が図れる。
According to the present invention, axle load movement can be prevented by controlling the height of the air spring provided directly above the primary spring, and vehicles equipped with this bogie can operate with high acceleration and deceleration. can. Further, since the vehicle body load is directly transmitted to the wheels through the primary spring and the secondary spring, the section modulus of the bogie frame can be lowered and the weight can be reduced.

以上説明したように本発明によれば、1次ばね
の真上に設けた空気ばねによつて車体荷重を支持
するとともに、該空気ばねの高さ調整を行なうこ
とにより、簡単な構成で軸重移動を防止すること
ができる。また、前記空気ばねの高さ調整も高さ
調整弁を設けるだけで非常に簡単な構成によつて
行なえるものである。
As explained above, according to the present invention, the air spring provided directly above the primary spring supports the vehicle body load, and the height of the air spring is adjusted to support the axle load with a simple configuration. Movement can be prevented. Furthermore, the height of the air spring can be adjusted with a very simple structure by simply providing a height adjustment valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の車両用台車の平面図、第2図は
その側面図、第3図は他の従来例を示す車両用台
車の側面図、第4図は本発明の車両用台車の一実
施例を示す平面図、第5図はその側面図、第6図
は本発明の車両用台車に空気ばねの配管原理図、
第7図は、本実施例の車両用台車に軸重移動が生
じたときの台車枠の変位状態を示す側面図、第8
図は空気ばねの高さ調整弁のアーム変位と空気の
流れを示す説明図、aは正規の状態、bは空気ば
ねが縮んで空気が供給されている状態、cは空気
ばねが伸びて空気が排気されている状態を示す図
である。 1……輪軸、2……軸箱、3……1次ばね、4
……台車枠、5……2次ばね、6……車体、7…
…中心ピン、8……穴、10……高さ調整弁。
FIG. 1 is a plan view of a conventional vehicle bogie, FIG. 2 is a side view thereof, FIG. 3 is a side view of another conventional vehicle bogie, and FIG. 4 is one of the vehicle bogies of the present invention. FIG. 5 is a plan view showing the embodiment, FIG. 5 is a side view thereof, and FIG. 6 is a diagram showing the piping principle of the air spring in the vehicle bogie of the present invention.
FIG. 7 is a side view showing the displacement state of the bogie frame when an axle load shift occurs in the vehicle bogie of this embodiment;
The figure is an explanatory diagram showing the arm displacement of the air spring height adjustment valve and the air flow. A is the normal state, b is the state where the air spring is compressed and air is being supplied, and c is the state where the air spring is extended and air is being supplied. FIG. 1... wheel axle, 2... axle box, 3... primary spring, 4
...Bogie frame, 5...Secondary spring, 6...Car body, 7...
...Center pin, 8...hole, 10...height adjustment valve.

Claims (1)

【特許請求の範囲】[Claims] 1 車輪を有した2本の輪軸と、該輪軸の両側に
取付けられる軸箱と、該軸箱と一次ばねを介して
支持され、かつ、前記2本の輪軸の両端間を支持
するとともに側梁および横梁を一体に形成した台
車枠と、該台車枠の水平面内における回転を許容
するとともに台車枠と車体間の前後、左右力のみ
を伝達し、一端を車体下部に取付け他端を台車枠
に掛合した中心ピンと、前記軸箱真上の台車枠と
車体間に設けられ車体荷重を台車枠に伝達する空
気ばねと、該空気ばねの高さ調整を行なう高さ調
整弁とから構成したことを特徴とする車両用台
車。
1. Two wheel axles with wheels, an axle box attached to both sides of the axle, and a side beam that is supported via the axle box and a primary spring, and supports between both ends of the two axles. and a bogie frame integrally formed with a cross beam, which allows rotation in the horizontal plane of the bogie frame and transmits only longitudinal and lateral forces between the bogie frame and the car body, with one end attached to the lower part of the car body and the other end attached to the bogie frame. It is composed of an engaged center pin, an air spring provided between the bogie frame directly above the axle box and the car body to transmit the car body load to the bogie frame, and a height adjustment valve for adjusting the height of the air spring. Characteristic vehicle trolley.
JP7327277A 1977-06-22 1977-06-22 Truck for car Granted JPS548318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7327277A JPS548318A (en) 1977-06-22 1977-06-22 Truck for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7327277A JPS548318A (en) 1977-06-22 1977-06-22 Truck for car

Publications (2)

Publication Number Publication Date
JPS548318A JPS548318A (en) 1979-01-22
JPS6121861B2 true JPS6121861B2 (en) 1986-05-29

Family

ID=13513346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7327277A Granted JPS548318A (en) 1977-06-22 1977-06-22 Truck for car

Country Status (1)

Country Link
JP (1) JPS548318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218648U (en) * 1988-07-15 1990-02-07

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012165Y2 (en) 1979-12-21 1985-04-20 日産自動車株式会社 Automatic transmission operating device
JPS58141797A (en) * 1982-02-17 1983-08-23 Hitachi Ltd Reagent for automatic analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218648U (en) * 1988-07-15 1990-02-07

Also Published As

Publication number Publication date
JPS548318A (en) 1979-01-22

Similar Documents

Publication Publication Date Title
EP3473514B1 (en) Bolster of bogie
US11208123B2 (en) Frame of bogie
WO2017219556A1 (en) Bogie
CN105857332A (en) Tramcar bogie with swing bolster 100% floor
RU2201365C2 (en) Railway car running gear axle-box suspension system
EP0547010B1 (en) A multipurpose rail bogie truck
US4526107A (en) Railway truck for self-propelled railway vehicles
Orlova et al. The anatomy of railway vehicle running gear
EP4212402A1 (en) Bogie and locomotive having same
JPH043347B2 (en)
KR101498450B1 (en) Bogie installation with single axle type independent driving wheel for superhigh-speed railway vehicle
US4075950A (en) Railway locomotive truck with resilient suspension
JPH0687446A (en) Steering truck
JP3498258B2 (en) 2-axle bogie for railway vehicles
JPS6121861B2 (en)
US6276282B1 (en) Rail vehicle with engine and wagon
JPH01500259A (en) Mechanical control device for rail vehicles
JP4102601B2 (en) Articulated railcar
JP3845144B2 (en) Bolsterless trolley for vehicles
CN219544774U (en) Frame-type bogie frame suitable for track engineering vehicle
CN217198150U (en) Bogie for tourism and sightseeing train
SU525281A1 (en) Rail road rolling stock motor car
JPH0433668B2 (en)
JP4388883B2 (en) Railcar bogie
JPH0417814B2 (en)