JPS6121733A - Catalyst for converting carbon monoxide - Google Patents

Catalyst for converting carbon monoxide

Info

Publication number
JPS6121733A
JPS6121733A JP59142263A JP14226384A JPS6121733A JP S6121733 A JPS6121733 A JP S6121733A JP 59142263 A JP59142263 A JP 59142263A JP 14226384 A JP14226384 A JP 14226384A JP S6121733 A JPS6121733 A JP S6121733A
Authority
JP
Japan
Prior art keywords
catalyst
carbon monoxide
effective
pressure loss
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59142263A
Other languages
Japanese (ja)
Inventor
Yoshiaki Obayashi
良昭 尾林
Shigeaki Mitsuoka
光岡 薫明
Toshikuni Sera
世良 俊邦
Masahito Shimomura
下村 雅人
Masahiro Saito
斉藤 方弘
Tadanobu Miho
三保 忠信
Kozo Miura
三浦 幸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Hiroshima Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Hiroshima Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Hiroshima Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59142263A priority Critical patent/JPS6121733A/en
Publication of JPS6121733A publication Critical patent/JPS6121733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prevent the increase in the pressure loss in a catalyst bed with the elapse of time while keeping initial activity over a long period of time, by molding a monolithic catalyst for converting carbon monoxide so as to set the thickness of a catalyst activator layer to 0.5mm. or more. CONSTITUTION:A base material consisting of a plurality of parallel plates, a plurality of cylindrical base materials or a base material having a honeycomb shape is coated or impregnated with an effective catalyst component or the effective catalyst component and a sticking component are mixed and molded to obtain a monolithic catalyst for converting carbon monoxide wherein the thickness of a catalyst activation-containing layer is set to 0.5mm. or more, pref., 0.7mm. or more. This catalyst shows activity not inferior as compared with a conventional pellet catalyst and is effective for reducing power cost required in transferring gas. Further, this catalyst is effective even in aqueous gas converting reaction for preparing hydrogen for a fuel battery or ammonia synthesis.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一酸化炭素に水を作用させ二酸化炭素と水素と
にする転化反応用モノリス型触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a monolithic catalyst for a conversion reaction in which carbon monoxide is reacted with water to convert it into carbon dioxide and hydrogen.

(従来の技術) 今日の市民生活にとって都市ガスは欠くべからざるもの
となっている。従来から都市ガスの原料として用いられ
てきた石炭ならびに石油類が大都市およびその周辺部に
おいては液化石油ガスや液化天然ガスに置き換えられつ
つあるが、中小の都市においては石油改質ガスがいまだ
に主流をなしている。この改質ガスは毒性を有する一酸
化炭素を含有しているため、該−酸化炭素の含有量を低
減することが各方面から強く望まれておシ、現行のプロ
セスにおいては下艷の接触反応により一酸化炭素の低減
がなされている。
(Conventional technology) City gas has become indispensable for today's citizen life. Coal and petroleum, which have traditionally been used as raw materials for city gas, are being replaced by liquefied petroleum gas and liquefied natural gas in large cities and their surrounding areas, but reformed petroleum gas is still the mainstream in small and medium-sized cities. is doing. Since this reformed gas contains carbon monoxide, which is toxic, there is a strong desire from various quarters to reduce the content of carbon monoxide. This reduces carbon monoxide.

前記プロセスにおいては、一般にペレット状に成型した
酸化鉄−酸化クロム系触媒を充填した固定床式反応器に
よシー酸化炭素転化反応が行われているが、改質ガスが
転化反応器を通過する際の圧力損失が大きく、さらに、
触媒ペレットの粉化によって経時的に圧力損失が増大す
るという問題が生ずる。転化反応器での圧力損失はガス
移送に要する動力費増大の原因となるため、改質ガス製
造業界においては上記の問題点を解決する触媒の開発が
望まれている。
In the above process, the carbon oxide conversion reaction is generally carried out in a fixed bed reactor filled with an iron oxide-chromium oxide catalyst shaped into pellets, but the reformed gas passes through the conversion reactor. The pressure loss during the process is large, and
A problem arises in that the pressure loss increases over time due to the pulverization of the catalyst pellets. Since the pressure loss in the conversion reactor causes an increase in the power cost required for gas transfer, the reformed gas production industry is desiring the development of a catalyst that solves the above problems.

特許出願昭58−023476号には、この必要性を達
成するため、改質ガスを該改質ガスの流動方向と触媒表
面とが平行となる状態で該触媒表面と接触させるモノリ
ス型触媒が記載されている。上記特許出願の実施例で示
されているように、触媒層での圧力損失の経時的な上昇
傾向は従来の円柱状またはベレット触媒に比べ、かなシ
改善されたが、触媒層厚さが0.3−程度のモノリス型
触媒は一酸化炭素転化反応に対して初期は高活性を示す
けれども、経時的な活性低下傾向が著しいことが明らか
となった。
In order to achieve this need, patent application No. 58-023476 describes a monolith type catalyst in which the reformed gas is brought into contact with the catalyst surface in a state where the flow direction of the reformed gas is parallel to the catalyst surface. has been done. As shown in the examples of the above-mentioned patent application, the tendency for the pressure drop in the catalyst layer to increase over time has been significantly improved compared to conventional cylindrical or pellet catalysts, but when the catalyst layer thickness is 0. It has become clear that although the monolithic catalyst of about .3-degrees shows high activity in the carbon monoxide conversion reaction at the initial stage, there is a marked tendency for the activity to decrease over time.

(発明が解決しようとする問題点) 本発明は経時的な活性低下傾向を解消するためになされ
たもので、発明者らはこれらの活性低下現象について鋭
意検討を重ねた結果、触媒の活性低下と触媒層の厚さに
関係があることをつきとめた。
(Problems to be Solved by the Invention) The present invention has been made in order to eliminate the tendency for activity to decrease over time.As a result of intensive studies by the inventors regarding these activity decrease phenomena, It was found that there is a relationship between this and the thickness of the catalyst layer.

(問題点を解決するだめの手段) 本発明の一酸化炭素転化率モノリス型触媒とは第1.2
.3および4図に示すような複数の平行板から成る基材
、複数の筒状基材あるいはハニカム型の形状を有する基
材に有効触媒成分をコート、塗布または含浸させたもの
、あるいは該有効触媒成分と粘結成分とを混合し、第1
゜2.3及び4図に示すように成型したものであシ、触
媒の活性体含有層の厚さが0.5部以上、好ましくは0
.7部以上のものである。
(Means to solve the problem) What is the carbon monoxide conversion monolith type catalyst of the present invention? 1.2
.. A substrate consisting of a plurality of parallel plates, a plurality of cylindrical substrates, or a substrate having a honeycomb shape, as shown in Figures 3 and 4, coated, applied or impregnated with an effective catalyst component, or the effective catalyst. The components and the viscous component are mixed, and the first
゜It is molded as shown in Figures 2.3 and 4, and the thickness of the active substance-containing layer of the catalyst is 0.5 parts or more, preferably 0.
.. 7 or more copies.

本発明の一酸化炭素用モノリス型触媒は基材の種類、活
性成分の種類の如何にかかわらず適用できることは言う
までもない。以下高温用触媒として一般的に使用されて
いるF l!1203− Cr203系触媒について、
本発明を比較例および実施例で説明する。
It goes without saying that the monolithic catalyst for carbon monoxide of the present invention can be applied regardless of the type of substrate and the type of active component. The following F l! is commonly used as a high temperature catalyst. 1203- Regarding Cr203-based catalyst,
The present invention will be explained with comparative examples and examples.

く比較例1〉 酸化鉄−酸化クロム系の市販ペレット状触媒(9,5m
φx a o am )を中空円筒型触媒層(断面積1
&4m”、長さ06m)が2段直列に装填された反応器
に充填し、表1に示す条件下で触媒層における圧力損失
および一酸化炭素転化率の経時変化を・測定した。
Comparative Example 1> Iron oxide-chromium oxide commercially available pellet catalyst (9.5m
φx a o am ) into a hollow cylindrical catalyst layer (cross-sectional area 1
&4m'', length 06m) was packed in a reactor in which two stages were loaded in series, and the pressure loss in the catalyst bed and changes in carbon monoxide conversion over time were measured under the conditions shown in Table 1.

く比較例2〉 第5図中の寸法(21、(5+、 (41および(5)
をそれぞれ4.5 m 、 0.5 wm 、 75 
wm 、 500 mとしたコージェライト基材をFe
(NOI)3・9H1020kg 。
Comparative Example 2> Dimensions in Figure 5 (21, (5+, (41 and (5)
respectively 4.5 m, 0.5 wm, 75
Fe
(NOI) 3.9H1020kg.

Or(Hog )3 ・9 HI3 2 kg 、水2
0kgに溶解した水溶液に5分間浸漬したのち、110
℃で12時間乾燥を行なった。上記の浸漬、乾燥をさら
に2回繰り返したのち、500℃で5時間焼成した。
Or(Hog)3 ・9 HI3 2 kg, water 2
After immersing in an aqueous solution containing 0 kg for 5 minutes,
Drying was carried out at ℃ for 12 hours. After repeating the above-mentioned dipping and drying two more times, it was baked at 500° C. for 5 hours.

この触媒6個を直列に装填した反応器を用いて表1に示
す条件下で、触媒層における圧力損失および一酸化炭素
転化率の経時変化を測定した。
Using a reactor loaded with six of these catalysts in series, under the conditions shown in Table 1, the pressure loss in the catalyst layer and the change in carbon monoxide conversion over time were measured.

〈実施例1〉 第5図中の寸法(2) 、(31、(4)および(5燈
それぞれ4.5鰭、0.9雪、 75 m 、 500
瓢としたコージェライト基材を比較例2と同様に操作し
触媒化したのち、比較例2と同条件下で圧力損失および
一酸化炭素転化率の経時変化を測定した。
<Example 1> Dimensions (2), (31, (4) and (5 lights) in Fig. 5, respectively 4.5 fins, 0.9 snow, 75 m, 500
After the cordierite base material prepared as a gourd was operated and catalyzed in the same manner as in Comparative Example 2, changes in pressure loss and carbon monoxide conversion rate over time were measured under the same conditions as in Comparative Example 2.

〈実施例2〉 Fe(OH)3 、0r(OH)s、成形助剤として公
知の微 ゛結晶セルローズ粉末をそれぞれ80%、10
%。
<Example 2> Fe(OH)3, 0r(OH)s, and microcrystalline cellulose powder known as a forming aid were mixed at 80% and 10%, respectively.
%.

10%の重量比で均一に混合した後、第5図と同形状で
図中の寸法(2) 、 (3) 、 (4)および(5
)をそれぞれ4.5 tm + 0.7 wm 、 7
5 yes 、 500 mに成型し、300℃で3時
間焼成した。この触媒を比較例2と同条件下で圧力損失
および一酸化炭素転化率の経時変化を測定した。
After uniformly mixing at a weight ratio of 10%, the shape is the same as that in Figure 5 and the dimensions (2), (3), (4) and (5) are shown in the figure.
) are respectively 4.5 tm + 0.7 wm and 7
5 yes, molded to 500 m and fired at 300°C for 3 hours. Using this catalyst, pressure loss and changes in carbon monoxide conversion over time were measured under the same conditions as in Comparative Example 2.

〈実施例3〉 第5図中の寸法(2) 、(sl 、(4)および(5
)をそれぞれ45 m 、 0.5 m 、 75 m
 、 500 waとしたTie、基材を比較例2と同
様に操作し触媒化したのち、比較例2と同条件下で圧力
損失および一酸化炭素転化率の経時変化を測定した。
<Example 3> Dimensions (2), (sl, (4) and (5) in Fig. 5
) of 45 m, 0.5 m, and 75 m, respectively.
, 500 wa and the base material were operated and catalyzed in the same manner as in Comparative Example 2, and then changes in pressure loss and carbon monoxide conversion rate over time were measured under the same conditions as in Comparative Example 2.

〈実施例4〉 Fe(OH)375部、 0r(OH% 10部、シリ
カゾル15部、水50部を予め混合したスラリーをボー
ルミルにて1夜粉砕し、このスラリー中に実施例1で触
媒化したコージェライトを浸漬し、余剰スラリーを除去
した後乾燥し、300℃で3時間焼成した。この触媒層
の厚さを電子顕微鏡で測定したところ、コージェライト
へ新たに125、触媒層が認められた。この触媒を比較
例2と同条件下で圧力損失および一酸化炭素転化率の経
時変化を測定した。
<Example 4> A slurry prepared by pre-mixing 375 parts of Fe(OH), 10 parts of 0r(OH%), 15 parts of silica sol, and 50 parts of water was ground overnight in a ball mill, and the catalyst catalyzed in Example 1 was mixed into this slurry. After removing the excess slurry, the cordierite was dried and fired at 300°C for 3 hours.The thickness of this catalyst layer was measured using an electron microscope, and a new 125 catalyst layer was observed on the cordierite. Using this catalyst, pressure loss and changes in carbon monoxide conversion over time were measured under the same conditions as in Comparative Example 2.

〈実施例5〉 実施例4と同様にしてスラリーを調製し、スラリー中に
実施例2で用いたコージェライト基材を浸漬し、余剰ス
ラリーを除去した後乾燥1.、この操作を2回繰返した
のち、300℃で3時間焼成した。この触媒層の厚さを
電子顕微鏡で測定したところ、コージェライト基材へ0
.5咽触媒層が認められた。この触媒を比較例2と同条
件下で圧力損失および一酸化炭素転化率の経時変化を測
定した。
<Example 5> A slurry was prepared in the same manner as in Example 4, the cordierite base material used in Example 2 was immersed in the slurry, excess slurry was removed, and then dried 1. After repeating this operation twice, it was fired at 300° C. for 3 hours. When the thickness of this catalyst layer was measured using an electron microscope, it was found that the thickness of the catalyst layer was 0.
.. A five-pharyngeal catalyst layer was observed. Using this catalyst, pressure loss and changes in carbon monoxide conversion over time were measured under the same conditions as in Comparative Example 2.

表1  反応条件 なお原料ガス組成は表2のとおりである。Table 1 Reaction conditions Note that the raw material gas composition is as shown in Table 2.

表2  原料ガス組成 (vo1%、dry ’base) 比較例1,2および実施例1.2,3,4゜5について
触媒層での圧力損失の経時変化を第6図に、また−酸化
炭素転化率の経時変化を第7図に示す。第6図に示した
結果の如く、比較例1のペレット状触媒を用いた場合に
は触媒装填後4000時間を経過した時点から圧力損失
を増大し始め、10,000時間を経過した時点では1
85 tm H2Oに達する。これに対して比較例2お
よび実施例1.2,5,4.5のモノリス型触媒を用い
た場合、いずれも触媒装填時の圧力損失がペレット触媒
を用いた場合よシも低く、また触媒装填後10.000
時間を経過した時点においても圧力損失の増大が認めら
れない。
Table 2 Raw material gas composition (vo1%, dry 'base) Figure 6 shows the change in pressure loss over time in the catalyst layer for Comparative Examples 1 and 2 and Examples 1, 2, 3, and 4°5. Figure 7 shows the change in conversion rate over time. As shown in the results shown in Figure 6, when the pelletized catalyst of Comparative Example 1 was used, the pressure loss began to increase after 4000 hours had passed after loading the catalyst, and when 10,000 hours had passed, the pressure loss started to increase.
85 tm H2O is reached. On the other hand, when the monolithic catalysts of Comparative Example 2 and Examples 1.2, 5, and 4.5 were used, the pressure loss during catalyst loading was lower than when using pellet catalysts. 10.000 after loading
No increase in pressure loss was observed even after the passage of time.

−力筒7図に示したように比較例2の触媒層厚さがα3
雪のモノリス型触媒は4000時間を経過した時点から
一酸化炭素転化率の低下が認められる。これに対して実
施例1 、2 、3 、4゜5の触媒は比較例1のペレ
ット触媒と同様に長期間にわたって初期活性が維持され
、触媒装填後10.000時間を経過した時点において
も、初期と同程度の一酸化炭素転化率を示している。
- As shown in Figure 7, the catalyst layer thickness of Comparative Example 2 was α3
With the snow monolith catalyst, a decrease in carbon monoxide conversion rate was observed after 4000 hours had passed. On the other hand, the catalysts of Examples 1, 2, 3, and 4.5 maintained their initial activity for a long period of time, similar to the pellet catalyst of Comparative Example 1, and even after 10,000 hours had passed after loading the catalyst, The carbon monoxide conversion rate is comparable to that at the initial stage.

以上詳述したとおシ、本発明の触媒は一酸化炭素転化反
応において従来のペレット触媒と比較して遜色のない活
性を示し、従来のペレット状触媒を使用した場合に触媒
層での圧力損失が経時的に増大するという問題を解決す
るものでアシ、ガス移送に要する動力費の低減に有効で
ある。寿お本発明の方法で製造した触媒は燃料電池用水
素製造用、アンモニア合成用水素製造用等水性ガス転化
反応においても有効な触媒であシ、都市ガス製造用に限
定されるものではない。
As detailed above, the catalyst of the present invention exhibits comparable activity in carbon monoxide conversion reactions compared to conventional pellet catalysts, and the pressure loss in the catalyst layer is reduced when conventional pellet catalysts are used. This solves the problem of increase over time and is effective in reducing the power cost required for transporting reeds and gas. The catalyst produced by the method of the present invention is an effective catalyst in water gas conversion reactions such as hydrogen production for fuel cells and hydrogen production for ammonia synthesis, and is not limited to use in city gas production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は板状触媒の一形状例の説明図、第2図は筒状触
媒の一形状例の説明図、第3図および第4図はハニカム
状触媒の一形状例の説明図、 第5図は比較例卦よび実施例に記述したハニカム状触媒
の形状を具体的に示す図、 第6図は比較例および実施例の触媒を装填した転化反応
器の触媒層での圧力損失の経時変化を示す図、 第7図は比較例および実施例の触媒の一酸化炭素転化率
の経時変化を示す図、 第1〜第4図中(1)はガス流れ方向を、第5図中(2
)はピッチ(1つの孔と壁厚の和)、(3)は壁厚、(
4) 、 (5)は外寸法を示す。 復代理人  内 1)  明 復代理人  萩 原 亮 − 第5図
FIG. 1 is an explanatory diagram of an example of the shape of a plate-shaped catalyst, FIG. 2 is an explanatory diagram of an example of the shape of a cylindrical catalyst, FIGS. 3 and 4 are explanatory diagrams of an example of the shape of a honeycomb-shaped catalyst, Figure 5 is a diagram specifically showing the shape of the honeycomb-shaped catalyst described in Comparative Examples and Examples, and Figure 6 is a diagram showing the pressure loss over time in the catalyst bed of a conversion reactor loaded with the catalysts of Comparative Examples and Examples. Figure 7 is a diagram showing changes over time in the carbon monoxide conversion rates of catalysts of comparative examples and examples. (1) in Figures 1 to 4 indicates the gas flow direction, and (1) in Figure 5 2
) is the pitch (sum of one hole and wall thickness), (3) is the wall thickness, (
4) and (5) indicate external dimensions. Sub-Agent 1) Meifu Agent Ryo Hagiwara - Figure 5

Claims (1)

【特許請求の範囲】[Claims] 活性体層の厚さが0.5mm以上であることを特徴とす
る一酸化炭素転化用モノリス型触媒。
A monolithic catalyst for carbon monoxide conversion, characterized in that the thickness of the active layer is 0.5 mm or more.
JP59142263A 1984-07-11 1984-07-11 Catalyst for converting carbon monoxide Pending JPS6121733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59142263A JPS6121733A (en) 1984-07-11 1984-07-11 Catalyst for converting carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59142263A JPS6121733A (en) 1984-07-11 1984-07-11 Catalyst for converting carbon monoxide

Publications (1)

Publication Number Publication Date
JPS6121733A true JPS6121733A (en) 1986-01-30

Family

ID=15311272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59142263A Pending JPS6121733A (en) 1984-07-11 1984-07-11 Catalyst for converting carbon monoxide

Country Status (1)

Country Link
JP (1) JPS6121733A (en)

Similar Documents

Publication Publication Date Title
CA1304068C (en) Ceramic foam catalysts, or catalyst supports, particularly for steam reforming
JP2002529359A (en) Suppression of carbon deposition on the wall of fuel gas steam reformer
EP0762932B1 (en) Titania-based catalyst carriers
JPH02502444A (en) Catalyst and its manufacturing method
JPS5815013B2 (en) Steam reforming catalyst and its manufacturing method
US7176159B1 (en) Catalyst and sorbent material for the production of hydrogen
US4617060A (en) Silica catalyst supports
US4446250A (en) Plate catalyst body for denitration
US4966873A (en) Catalysts for the removal of nitrogen oxides
CN1236515C (en) Inhibition of carbon deposition on fuel gas steam reformer walls
US4937394A (en) Silica catalyst supports for hydration of ethylene to ethanol
JPH02502445A (en) Catalyst and its manufacturing method
US3216953A (en) Method of making vanadium oxide-potassium oxide catalysts of selected porosity
JPH0143573B2 (en)
JPS6121733A (en) Catalyst for converting carbon monoxide
CN113694920B (en) Cordierite-based SCR catalyst and preparation method and application thereof
US4783435A (en) Silica catalyst supports
US4062802A (en) Carbon monoxide treatment of a phosphorus-vanadium-zinc oxygen catalyst
JPS63248444A (en) Steam reforming and/or partial oxidation catalyst for hydrocarbon
US4024075A (en) Carbon and erosion-resistant catalyst
JPH05261279A (en) Production of desulfurizing agent
JPS60232246A (en) Catalyst for converting carbon monoxide
KR102600234B1 (en) Coating solution and manufacturing method for producing catalyst for reforming with insulation support material
JPS60143831A (en) Manufacture of monolithic carbon monoxide conversion catalyst
JPS58193737A (en) Catalyst for production of gas enriched with hydrogen