JPS6121701A - Flash evaporator - Google Patents

Flash evaporator

Info

Publication number
JPS6121701A
JPS6121701A JP14140484A JP14140484A JPS6121701A JP S6121701 A JPS6121701 A JP S6121701A JP 14140484 A JP14140484 A JP 14140484A JP 14140484 A JP14140484 A JP 14140484A JP S6121701 A JPS6121701 A JP S6121701A
Authority
JP
Japan
Prior art keywords
distilled water
tray
stage
nozzle
flash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14140484A
Other languages
Japanese (ja)
Inventor
Keiji Tanizaki
桂二 谷崎
Ritsuo Hashimoto
律男 橋本
Kazuhiro Tanaka
一宏 田中
Kazuo Hattori
服部 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14140484A priority Critical patent/JPS6121701A/en
Publication of JPS6121701A publication Critical patent/JPS6121701A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To minimize head pressure and strength by providing an overflow devide with a brine mist inhibiting mechanism in a distilled water tray or distilles water passage. CONSTITUTION:During regular operation, part of the vapor passes through demister 42 from a nozzle 41, and then flows condensed into a condenser chamber 21 after the removal of mist. At the time of abnormal operation, the abnormal increment of condensate overflows from the nozzle 41, passing through the demister 42. After this, it returns to a flash chamber 22, thus eliminating an abnormal load condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ゛ 本発明は、多段フラッシュ型造水装置に好適なフラ
ッシュエバポレータに関スる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a flash evaporator suitable for a multi-stage flash water generation device.

〔従来の技術〕[Conventional technology]

従来の多段フラッシュ型造水装置の概略を第9図に基づ
き説明する。第9図において、1は複数段の蒸発室を具
えた熱放出部、2は複数段の蒸発室を具えた熱回収部を
示し、3はプラインヒータで、ここで加熱されたプライ
ンは第1段蒸発室F’I に導入され、最終段蒸発室P
Lに向って順次各段の蒸発室を流過せしめられる。
An outline of a conventional multi-stage flash type freshwater generator will be explained based on FIG. 9. In FIG. 9, 1 is a heat dissipation section equipped with multiple stages of evaporation chambers, 2 is a heat recovery section equipped with multiple stages of evaporation chambers, and 3 is a pline heater, in which the heated plines are heated in the first It is introduced into the stage evaporation chamber F'I and the final stage evaporation chamber P.
It is made to flow through the evaporation chambers of each stage in sequence toward L.

各蒸発室の室内圧力は第1段蒸発室Fl  より順次最
終段蒸発室FLに向けて低下するよう維持されているの
で、プラインは、各段の蒸発室を流過する際各室内圧力
においてフラッシュ蒸発せしめられ、このフラッシュ蒸
気は各段のコンデンサにでプラインヒータ3に供給され
るプラインを予熱すると共に自からも凝縮して液化し、
凝縮液は各段のトレイ7に受は取られ、その下竣のトレ
イ7を順次経由して最終的に淡水取出しポンプ9より淡
水として取シ出される。
Since the indoor pressure of each evaporation chamber is maintained to decrease sequentially from the first stage evaporation chamber Fl to the final stage evaporation chamber FL, the pline flashes at each room pressure as it passes through the evaporation chambers of each stage. This flash vapor is evaporated and preheats the pline supplied to the pline heater 3 in the condenser of each stage, and also condenses and liquefies itself.
The condensed liquid is received by the trays 7 at each stage, sequentially passes through the trays 7 at the bottom of the trays 7, and is finally extracted as fresh water by the fresh water extraction pump 9.

濃縮されたプラインの1部は最終段蒸発室FLよシ抜出
されてポンプ5によって海水排出ライン12よシブロー
ダウンされ、残部は熱回収部2の最下段のコンデンサK
に送られ、次いでその上段のコンデンサKを順次流過し
て再循環する。新しい海水は冷却海水ライン6よシ熱放
出部1の最終段のコンデンサKに導入され、その上段の
いくつかのコンデンサKを流過した後、熱放出部1の最
上段のコンデンサによシ大部分は海水排出ライン15を
経て排出されるが、1部は補給海水として脱酸素塔4を
経てポンプ5に吸入される。ブラインは熱回収部2のコ
ンデンサKを順次流過する過程において予熱された後、
ブラインヒータ3の伝熱管内にいたシ該ヒータ3内にお
いて加熱蒸気ライン8から供給される加熱蒸気によって
加熱昇温される。加熱蒸気はブラインによって冷却され
て復水となシ、復水ライン10から排出される。
A part of the concentrated prine is extracted from the final stage evaporation chamber FL and blown down through the seawater discharge line 12 by the pump 5, and the remaining part is sent to the lowermost stage condenser K of the heat recovery section 2.
and then sequentially flows through the upper condenser K to be recirculated. Fresh seawater is introduced into the final stage condenser K of the heat dissipation section 1 through the cooling seawater line 6, and after passing through several condensers K in the upper stage, it is introduced into the top condenser K of the heat dissipation section 1. A portion is discharged via the seawater discharge line 15, while a portion is sucked into the pump 5 via the deoxygenation tower 4 as make-up seawater. After the brine is preheated in the process of sequentially passing through the condenser K of the heat recovery section 2,
The brine heater 3 inside the heat transfer tube is heated and heated by the heating steam supplied from the heating steam line 8. The heated steam is cooled by brine, becomes condensate, and is discharged from condensate line 10.

次に、プラインヒータ6において加熱昇温された海水は
、第1段蒸発室FI に導入され、前述のごとく各段の
蒸発室を流過して最終段蒸発室F’Lに至る。なお11
はエゼクタを示す。
Next, the seawater heated and heated in the prine heater 6 is introduced into the first stage evaporation chamber FI, and as described above, flows through the evaporation chambers of each stage and reaches the final stage evaporation chamber F'L. Note 11
indicates an ejector.

以上第9図に基づいて従来の多段フラッシュ型造水装置
を説明したが、この遣水装置に使用されている従来の多
段フラッシュエバポレータを、第10〜第12図に基づ
いてよシ詳細に説明する。第10図及び第11図は従来
の上記エバポレータの例を示し、第12図は第10図■
−■線断面図である3、 第10〜12図において、下部段間仕切板26に設けら
れたブライン開口35よシ流入したブラインはフラッシ
ュ室22でフラッシュ蒸発し蒸気となって、点線矢印の
経路を経て、デミスタ34を通シコンデンサ室21に至
シ、伝熱管60内を流通する冷却用の海水との熱交換に
よシ凝縮され淡水となル、蒸留水トレイ27によシ受け
られ、蒸留水通路28を経て蒸留水抜出しポンプによシ
外部へ取シ出される。なお、第10〜12図において、
23は天板、24は底板、25は上部段間仕切板、29
は補強材、31は管支持板、62は管支持板ラグを示す
8従来の上記エバポレータでは、蒸留水抜出しポンプの
トリップ等により、製造された淡水は蒸留水通路28お
よび蒸留水トレイ27にどんどん溜シ、やがては蒸留水
トレイ27の上端にまで達し、そこからオーバーフロー
することになる。
The conventional multi-stage flash type freshwater generation device has been explained above based on FIG. 9, and the conventional multi-stage flash evaporator used in this water supply device will be explained in detail based on FIGS. 10 to 12. . 10 and 11 show an example of the conventional evaporator mentioned above, and FIG.
3, which is a cross-sectional view taken along the -■ line, in Figures 10 to 12, the brine that has flowed in through the brine opening 35 provided in the lower stage partition plate 26 flash-evaporates in the flash chamber 22 and becomes steam, and the brine travels along the dotted line arrow. After that, the demister 34 is passed through the condenser chamber 21, where it is condensed by heat exchange with the cooling seawater flowing in the heat transfer tube 60, becomes fresh water, and is received by the distilled water tray 27. The distilled water is taken out to the outside through the distilled water passage 28 by a distilled water extraction pump. In addition, in FIGS. 10 to 12,
23 is a top plate, 24 is a bottom plate, 25 is an upper partition plate, 29
31 is a reinforcing material, 31 is a tube support plate, and 62 is a tube support plate lug. 8 In the conventional evaporator described above, the produced fresh water is rapidly transferred to the distilled water passage 28 and the distilled water tray 27 due to trips of the distilled water extraction pump, etc. The water reservoir eventually reaches the upper end of the distilled water tray 27 and overflows from there.

従来、蒸留水トレイ27および蒸留水通路28はこのこ
とを考慮して蒸留水トレイ27の上端まで淡水が溜って
もその水頭圧によシ破壊しないように厚くするか又は補
強材29を設けて堅固にしていた6、 又、水圧試験を行なう時のようにエバポレータ本体に水
を満たす場合は、逆に、フラッシュ室22から徐々に水
が溜っていき蒸留水トレイ27の上端まで達して、そこ
から蒸留水トレイ27および蒸留水通路28の中に流れ
込むまでは同様の水頭圧が蒸留水トレイ27および蒸留
水通路28に外部からかかるため、この方面からも堅固
にする必要があった。
Conventionally, in consideration of this, the distilled water tray 27 and the distilled water passage 28 have been made thicker or provided with a reinforcing material 29 so as not to be destroyed by the water head pressure even if fresh water accumulates up to the upper end of the distilled water tray 27. 6. Also, when filling the evaporator body with water, such as when performing a water pressure test, water gradually accumulates from the flash chamber 22 and reaches the top of the distilled water tray 27, where it reaches the top of the distilled water tray 27. Since the same water head pressure is applied from the outside to the distilled water tray 27 and the distilled water passage 28 until it flows into the distilled water tray 27 and the distilled water passage 28, it was necessary to make it rigid from this direction as well.

蒸留水トレイ27について、よシ詳細に説明すると、最
大負荷運転でも、蒸留水トレイ27の凝縮水液深は、浅
く、とのトレイ27の強度計算上考慮が必要な保持水重
量は小さい。しかし従来の多段フラッシュ型造水装置で
は、運転ミス、淡水取出しポンプ(第9図9)の故障等
のトラブルによシ、とのトレイ27の凝縮液深が上昇し
、蒸気流入口よシ凝縮液がオーバーフローする液深にな
シうるため、このトレイ27の強度はオーバーフローす
る液深までの全保持水重量に耐えるように設計されてい
る。このため、トレイ27の板厚が大きく構造的にもは
シ、リプ等の補強がなされているためコストアップとな
っているのが欠点の−っである。このことは、蒸留水通
路28に対しても同様であシ、同様の欠点を有している
ものである。
To explain the distilled water tray 27 in more detail, even in maximum load operation, the condensed water depth of the distilled water tray 27 is shallow, and the weight of retained water that needs to be taken into consideration in calculating the strength of the tray 27 is small. However, in conventional multi-stage flash freshwater generation equipment, due to troubles such as operational errors and failure of the freshwater extraction pump (Fig. 9), the depth of the condensate in the tray 27 rises and condenses from the steam inlet. The strength of this tray 27 is designed to withstand the entire weight of retained water at the depth where the liquid overflows. Therefore, the disadvantage is that the tray 27 has a large plate thickness and is structurally reinforced with ribs, ribs, etc., resulting in an increase in cost. This also applies to the distilled water passage 28, which has similar drawbacks.

近年、多段フラッジ型造水装置は名社においてコストダ
ウンをめざし、小型化、装置の簡略化、材量費の低減化
等の努力がなされている。
In recent years, major companies have been making efforts to reduce the cost of multi-stage flood-type freshwater generation equipment, such as downsizing, simplifying equipment, and reducing material costs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記従来のフラッシュエバポレータの有する
欠点を解消することを意図し、そのコストダウンの一環
として重量軽減を図シ、トラブル時の異常荷重条件を解
消するフラッシュエバポレータを提供することを目的と
する。よシ詳細には、本発明は、蒸留水トレイ又は蒸゛
留水通路にオーバーフロー装置を設けて、これら蒸留水
トレイおよび蒸留水通路にががる水頭圧を小さくシ、蒸
留水トレイおよび蒸留水通路を強度的に有利にし、それ
らの材料の軽減に役立てるようにしたフラッシュエバポ
レータを提供することを目的とする。
The present invention is intended to eliminate the drawbacks of the conventional flash evaporator described above, and aims to reduce the weight as part of cost reduction, and to provide a flash evaporator that eliminates abnormal load conditions in the event of trouble. do. More specifically, the present invention provides an overflow device in the distilled water tray or the distilled water passage to reduce the water head pressure flowing into the distilled water tray and the distilled water passage. It is an object of the present invention to provide a flash evaporator in which the passages are advantageous in terms of strength and are useful for reducing the materials used.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、蒸留水トレイ又は蒸留水通路にプ
ラインミスト侵入防止機構付のオーバーフロー装置を備
えたことを特徴とするフラッシュエバポレータでアル。
That is, the present invention provides a flash evaporator characterized in that the distilled water tray or the distilled water passage is equipped with an overflow device equipped with a mechanism for preventing intrusion of prine mist.

本発明では、オーバーフロー装置にプラインミスト侵入
防止機構を配設したものであるが、コレハオーバーフロ
ー装置にフラッシュプラインのミストが侵入しないよう
にするためであシ、このための機構としては、デミスタ
−を配設するのが最適である。
In the present invention, the overflow device is provided with a prine mist intrusion prevention mechanism, but this is to prevent flash pline mist from entering the overflow device, and a demister is used as a mechanism for this purpose. It is best to place

以下、本発明の実施例を第1〜6図に基づいて詳細に説
明する。第1〜3図は本発明の実施例である多段フラッ
シュエバポレータであって、第1図及び第3図の左半分
は蒸留水トレイにオーバーフロー装置を設けた場合、第
2図及び第3図の右半分は蒸留水通路にオーバーフロー
装置を設けた場合を示し、また、第4〜6図社オーバー
フロー装置の部分拡大断面図である。第1〜6図におい
て、符号20〜34は、第10〜12図に基づいて説明
した前述の従来の多段フラッシュエバポレータと同一部
分であシ、これらは同一作用をするものであるから、こ
こでは省略し、従来の前記エバポレータと異なる点につ
いてのみ説明すると、35はオーバーフロ装置であシ、
66はミスト侵入防止機構である。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 6. Figures 1 to 3 show a multistage flash evaporator according to an embodiment of the present invention, and the left half of Figures 1 and 3 shows the case where an overflow device is installed in the distilled water tray, The right half shows a case where an overflow device is provided in the distilled water passage, and Figures 4 to 6 are partially enlarged sectional views of the overflow device. In FIGS. 1 to 6, numerals 20 to 34 are the same parts as the conventional multistage flash evaporator described above described based on FIGS. To omit this and only explain the points that are different from the conventional evaporator, 35 is an overflow device;
66 is a mist intrusion prevention mechanism.

本発明において、多段フラッシュエバポレータに適用す
る場合、オーバーフロ装置35は各段に設けてもよいし
、数段に1個設けてもよい。
In the present invention, when applied to a multi-stage flash evaporator, the overflow device 35 may be provided in each stage, or one overflow device 35 may be provided in several stages.

本発明の他の実施例を第7図及び第8図に基づいて詳細
に説明する。第7図は、蒸留水トレイにオーバーフロー
装置(以下、ノズル)を設けた上記第1〜6図と異なる
本発明の他の実施例を示すものであシ、第8図は第7図
のノズル部分の拡大詳細図である。
Another embodiment of the present invention will be described in detail with reference to FIGS. 7 and 8. FIG. 7 shows another embodiment of the present invention, which is different from the above-mentioned FIGS. 1 to 6, in which an overflow device (hereinafter referred to as a nozzle) is provided in the distilled water tray, and FIG. 8 shows the nozzle in FIG. 7. It is an enlarged detailed view of a part.

第7.8図において、最大負荷時におけるトレイ4Dの
凝縮水レベル(A線)のわずか上方にノズル41を下向
きに取付ける。また、ノズル41内にはデミスタ42を
充填しデミスタ42の固定具43をノズル41の中央に
位置させデミスタ420前後に取付ける構造となってい
る。
In Figure 7.8, the nozzle 41 is mounted downward slightly above the condensed water level (line A) in tray 4D at maximum load. Further, the nozzle 41 is filled with a demister 42, and the fixture 43 of the demister 42 is positioned at the center of the nozzle 41 and attached to the front and rear of the demister 420.

なお予想としてノズル41は伝熱管60の長手方向に5
OA(直径50 mm )相当のパイプで約12本取付
ける。
As expected, the number of nozzles 41 is 5 in the longitudinal direction of the heat exchanger tube 60.
Install approximately 12 pipes equivalent to OA (50 mm diameter).

ノズル41を配設することによシ生ずる作用効果を説明
すると、まず、トラブル時には、凝縮水の異常増加分は
、ノズル41よジオ−バフローしデミスタ42を介しフ
ラッシュ室22へ至る。従来のトラブル時におけるトレ
イ40の異常荷重条件を解消できるため、トレイ40の
設計強度が緩和され、材料の低減となシ、コストダウン
となる。すなわち、従来型トレイに比べこのトレイ40
は約%の設計強度でよい事になる。
To explain the effects produced by arranging the nozzle 41, first, in the event of trouble, an abnormally increased amount of condensed water flows through the nozzle 41 and reaches the flash chamber 22 via the demister 42. Since the conventional abnormal load condition of the tray 40 at the time of trouble can be eliminated, the design strength of the tray 40 is relaxed, resulting in a reduction in materials and costs. That is, compared to the conventional tray, this tray 40
This means that a design strength of approximately % is sufficient.

一方、定常運転時には、一部蒸気はノズル41に流入し
、デミスタ42を通過する時ミストが除去され、コンデ
ンサ室21内に流入凝縮する。
On the other hand, during steady operation, a portion of the steam flows into the nozzle 41, the mist is removed when it passes through the demister 42, and it flows into the condenser chamber 21 and condenses.

このノズル41によシフラッシュ室22よシコンデンサ
室21に一部蒸気が流れ込む事により、フラッシュ室2
2とコンデンサ室21の圧力損失が低下する利点が生ず
る。また、既設デミスタ34の蒸気通過速度が低下しミ
スト除去が向上する。従来型ではコンデンサ室21の中
央部は、イナート濃度のこいものとなシ伝熱性能上不利
なものであったが、本発明のノズル41によシ中央部に
向はフレッシュ蒸気が流入するた“め、イナート濃度が
低下し伝熱性能上においても向上される。
Part of the steam flows into the flash chamber 22 and the condenser chamber 21 through this nozzle 41, causing the flash chamber 22 to flow into the condenser chamber 21.
2 and the condenser chamber 21 are advantageously reduced. Moreover, the steam passage speed through the existing demister 34 is reduced, and mist removal is improved. In the conventional type, the center part of the condenser chamber 21 has a dense inert concentration, which is disadvantageous in terms of heat transfer performance, but with the nozzle 41 of the present invention, fresh steam flows toward the center part. Therefore, the inert concentration is reduced and the heat transfer performance is also improved.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上詳記したように、蒸留水トレイ又は蒸留
水通路にプラインミスト侵入防止機構付のオーバーフロ
ー装置を備えたものであるから、これら蒸留水トレイ及
び蒸留水通路にかかる水頭圧を小さくすることができ、
その結果、これらの強度を従来のものよシ著し、く低く
設計することができ、これらの材料の軽減を可能にする
効果が生ずるものである。また、蒸留水トレイ及び蒸留
水通路内に凝縮水が異常に増加するのを防止できる効果
が生ずるものである。
As described in detail above, the present invention is equipped with an overflow device equipped with a mechanism for preventing intrusion of prine mist in the distilled water tray or the distilled water passage, so that the water head pressure applied to the distilled water tray and the distilled water passage can be reduced. can,
As a result, the strength of these components can be designed to be much lower than that of the conventional design, which has the effect of making it possible to reduce the need for these materials. Further, it is possible to prevent an abnormal increase in condensed water in the distilled water tray and the distilled water passage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の実施例である多段フラッシュ
エバポレータであって、第1図及び第3図の左半分は蒸
留水トレイにオーバーフロー装置を設けた場合、第2図
及び−$3図の右半分は蒸留水通路にオーバーフロー、
装置を設けた場合を示す。第4〜6図はオーバーフロー
装置の部分拡大断面図である。第7図は本発明の他の実
施例であって、蒸留水トレ・1にノズルを設けたもので
あシ、第8図は第7図のノズル部分の拡大詳細図である
。第9図は従来の多段フラッシュ型造水装置の概略図で
あシ、第10図及び第11図は従来の多段フラッシュエ
バポレータを示し、第12図は第10図III −II
I線断面図である。 1・・・熱放出部   2・・・熱回収部6・・・プラ
インヒータ 4・・・脱酸素基   5・・・ポンプ6・・・冷却海
水ライン 7・・・凝縮液トレイ 8・・・加熱蒸気ライン9・・
・淡水取出しポンプ 10・・・復水ライン 11・・・エゼクタ12二・・
海水排出ライン 13・・・海水排出ライン F工 ・・・第1段蒸発室 PL  ・・・最終段蒸発室 K・・・コンデンサ21
・・・コンテンザ室 22・・・フラッシュ室 26・・・天板    24・・・底板25・・・上部
段間仕切板 26・・・下部段間仕切板 27・・・蒸留水トレイ 28・・・蒸留水通路 29・・・補強材30・・・伝
熱管   31・・・管支持板52・・・管支持板ラグ 33・・・プライン開口 34・・・デミスタ 35・・・オーバーフロ装置 36・・・ミスト侵入防止機構 40・・・トレイ   41・・・ノズル42・・・デ
ミスタ   43・・・固定具復代理人  内 1) 
 明 後代理人  萩 原 亮 − 第2図
1 to 6 show a multi-stage flash evaporator according to an embodiment of the present invention, and the left half of FIGS. The right half of Figure 3 shows overflow into the distilled water passage.
This shows the case where a device is installed. 4 to 6 are partially enlarged sectional views of the overflow device. FIG. 7 shows another embodiment of the present invention, in which a nozzle is provided in the distilled water tray 1, and FIG. 8 is an enlarged detailed view of the nozzle portion of FIG. 7. FIG. 9 is a schematic diagram of a conventional multi-stage flash type freshwater generation device, FIG. 10 and FIG. 11 show a conventional multi-stage flash evaporator, and FIG. 12 is a schematic diagram of a conventional multi-stage flash evaporator.
It is an I line sectional view. 1... Heat release section 2... Heat recovery section 6... Pline heater 4... Oxygen removing group 5... Pump 6... Cooling seawater line 7... Condensate tray 8... Heating steam line 9...
・Fresh water extraction pump 10...Condensate line 11...Ejector 122...
Seawater discharge line 13...Seawater discharge line F construction...First stage evaporation chamber PL...Final stage evaporation chamber K...Condenser 21
... Contenza chamber 22 ... Flash chamber 26 ... Top plate 24 ... Bottom plate 25 ... Upper partition plate 26 ... Lower partition plate 27 ... Distilled water tray 28 ... Distillation Water passage 29... Reinforcement material 30... Heat exchanger tube 31... Tube support plate 52... Tube support plate lug 33... Pline opening 34... Demister 35... Overflow device 36...・Mist intrusion prevention mechanism 40...Tray 41...Nozzle 42...Demister 43...Fixing device sub-agent 1)
After tomorrow agent Ryo Hagiwara - Figure 2

Claims (1)

【特許請求の範囲】[Claims] 蒸留水トレイ又は蒸留水通路にプラインミスト侵入防止
機構付のオーバーフロー装置を備えたことを特徴とする
フラッシュエバポレータ。
A flash evaporator characterized in that a distilled water tray or a distilled water passage is equipped with an overflow device with a mechanism for preventing intrusion of prine mist.
JP14140484A 1984-07-10 1984-07-10 Flash evaporator Pending JPS6121701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14140484A JPS6121701A (en) 1984-07-10 1984-07-10 Flash evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14140484A JPS6121701A (en) 1984-07-10 1984-07-10 Flash evaporator

Publications (1)

Publication Number Publication Date
JPS6121701A true JPS6121701A (en) 1986-01-30

Family

ID=15291211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14140484A Pending JPS6121701A (en) 1984-07-10 1984-07-10 Flash evaporator

Country Status (1)

Country Link
JP (1) JPS6121701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131140A (en) * 1988-11-09 1990-05-18 Mitsubishi Petrochem Co Ltd Catalyst for preparing ethylene oxide
JP2011056371A (en) * 2009-09-09 2011-03-24 Hitachi Zosen Corp Multi-stage flash type fresh water generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514954A (en) * 1974-03-22 1976-01-16 Varian Associates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514954A (en) * 1974-03-22 1976-01-16 Varian Associates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131140A (en) * 1988-11-09 1990-05-18 Mitsubishi Petrochem Co Ltd Catalyst for preparing ethylene oxide
JP2011056371A (en) * 2009-09-09 2011-03-24 Hitachi Zosen Corp Multi-stage flash type fresh water generator

Similar Documents

Publication Publication Date Title
US3875988A (en) Multiple effect evaporator apparatus
US4595459A (en) Desalinization apparatus
US4536258A (en) Distilling apparatus operating on the thermocompressor principle
US2899366A (en) Compression distillation
US3219554A (en) Flash distillation apparatus with direct contact heat exchange
US10793494B2 (en) Method for separating materials by means of an extractive distillation process
US4511376A (en) Method of separating a noncondensable gas from a condensable vapor
US5139620A (en) Dimple plate horizontal evaporator effects and method of use
JPH04244202A (en) Multi-flash evaporator using plate heat exchanger of irregular surface type
CN105540626A (en) Alumina mother liquor MVR circulation evaporation device and process
JP3706571B2 (en) Multi-stage pressure condenser
US2934477A (en) Flash-type distillation system
CN202892947U (en) Integrated distillation device
US3155600A (en) Multi-stage process and apparatus for distilling sea water
US3174914A (en) Tandem flash distilling plant
US2542873A (en) Multistage deaerating and reheating hot well for steam condensers
JPS6121701A (en) Flash evaporator
US3074473A (en) Vertical tube evaporators with downward pressure liquid flow
US3214350A (en) Falling film still
US7306653B2 (en) Condensing deaerating vent line for steam generating systems
US4517805A (en) Vacuum producing condenser
CZ171897A3 (en) Process and apparatus for separating a substance from a liquid mixture by employing fractional crystallization
US4509591A (en) Vacuum producing condenser
EP0842688A1 (en) Integral deaerator for a condenser
JPH0549802A (en) Can effective in horizontal vaporizing device by plate heat exchanger of irregular surface type