JPS61216472A - Manufacture of charge transfer device - Google Patents

Manufacture of charge transfer device

Info

Publication number
JPS61216472A
JPS61216472A JP5772185A JP5772185A JPS61216472A JP S61216472 A JPS61216472 A JP S61216472A JP 5772185 A JP5772185 A JP 5772185A JP 5772185 A JP5772185 A JP 5772185A JP S61216472 A JPS61216472 A JP S61216472A
Authority
JP
Japan
Prior art keywords
oxide film
floating diffusion
diffusion region
gate
field oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5772185A
Other languages
Japanese (ja)
Inventor
Makoto Monoi
誠 物井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5772185A priority Critical patent/JPS61216472A/en
Publication of JPS61216472A publication Critical patent/JPS61216472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To enable to suppress the irregularity of charge voltage conversion gain at every element by implanting an impurity to a floating diffused region with a field oxide film, a mask material and the electrode of a gate region at a semiconductor substrate, thereby suppressing the variation in the etching amount of the field oxide film. CONSTITUTION:After a field oxide film 31 is formed at the prescribed portion on a P-type silicon substrate 1, a gate oxide film 22 is formed, and an output gate 7 for forming a gate region and a transfer electrode 8 are formed on the film 22. Then, a mask material 33 having a hole 32 is formed near a floating diffused region forming portion partly inside of the film 31. Then, with the resist pattern 33, the film 31 and the output gate 7 as masks N-type impurity ions are implanted to the substrate to form a floating diffused region 34, the pattern 33 is separated, a charge transfer device is formed. Thus, the variation in the etching amount of the field oxide film is suppressed to suppress the irregularity in the charge voltage conversion gain at every element.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は電荷転送装置の製造方法に関し、特に電荷検出
部の形成に改良を施したものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method of manufacturing a charge transfer device, and particularly improves the formation of a charge detection section.

〔発明の技術的背景〕[Technical background of the invention]

周知の如く、電荷転送装置の電荷検出部には、浮遊拡散
領域に信号電荷を蓄積し、その浮遊拡散領域♀電位を検
出するフローテング接合型検出回路グ高感度を得やすい
等の利点がめるため、しばしば使用されている。従来、
フローティング接合型検出回路としては、例えば第5図
に示すものが知られている。
As is well known, the charge detection section of a charge transfer device has advantages such as a floating junction type detection circuit that accumulates signal charges in a floating diffusion region and detects the potential of the floating diffusion region. , is often used. Conventionally,
As a floating junction type detection circuit, for example, one shown in FIG. 5 is known.

図中の1は、P型のシリコン基板である。この基板1に
は、埋込チャネルを形成するためのN型領域2、浮遊拡
散領域(N”型領域)3、この浮遊拡散領域3の電位を
リセットするためのN+型領領域4夫々設けられ、前記
N型領域2にはバリアを形成するN″″型領域5が設け
られている。前記基板1上には、浮遊拡散領域3の電位
リセットを行なうリセットゲート6、一定電圧が印加さ
れた出力ゲート7.211埋込チヤネル型CODレジス
タの転送電極8.9.10が夫々設けられている。また
、11は浮遊拡散領域3の電位を検出するソースフォロ
ク回路(N位検出手段)を、12は出力ゲート7に印加
するDC電位を発生するプリーダを夫々示す。
1 in the figure is a P-type silicon substrate. This substrate 1 is provided with an N type region 2 for forming a buried channel, a floating diffusion region (N'' type region) 3, and an N+ type region 4 for resetting the potential of this floating diffusion region 3. , an N″″ type region 5 forming a barrier is provided in the N type region 2. A reset gate 6 for resetting the potential of the floating diffusion region 3 is provided on the substrate 1, and a constant voltage is applied thereto. Output gates 7, 211 and transfer electrodes 8, 9 and 10 of the embedded channel type COD register are respectively provided.In addition, 11 is a source follower circuit (N position detection means) for detecting the potential of the floating diffusion region 3, and 12 is a source follower circuit (N position detection means) for detecting the potential of the floating diffusion region 3. 1 and 2 respectively indicate a leader that generates a DC potential to be applied to the output gate 7.

こうした構造の検出回路において、転送電極8〜10に
は第6図に示すクロックΦ1、Φ2が印加される。なお
、第6図において、(a)はΦ1のパルスを、(b)は
Φ2のパルスを、(C)はR3(リセット)のパルスを
夫々示す。そして、転送電極8〜10下の電位分布は第
7図に示される様に変化し、信号電荷は右から左へ転送
される。
In the detection circuit having such a structure, clocks Φ1 and Φ2 shown in FIG. 6 are applied to the transfer electrodes 8 to 10. In FIG. 6, (a) shows the pulse of Φ1, (b) shows the pulse of Φ2, and (C) shows the pulse of R3 (reset). Then, the potential distribution under the transfer electrodes 8 to 10 changes as shown in FIG. 7, and the signal charges are transferred from right to left.

転送電極8に達した信号電荷は、Φ1が低レベルの時、
出力ゲート7を通って浮遊拡散領域3に蓄積される。そ
の時、浮遊拡散領域3の電位は信号電荷に比例して減少
し、その電位変化をソースフオロク回路11で検出し、
出力信号を得る。ここで、浮遊拡散領域3の電位は、Φ
1パルスの立ち下がりから、RSパルスの立ち上がりの
間となる。
When Φ1 is at a low level, the signal charge that has reached the transfer electrode 8 is
It passes through the output gate 7 and is accumulated in the floating diffusion region 3. At that time, the potential of the floating diffusion region 3 decreases in proportion to the signal charge, and the source follower circuit 11 detects the potential change.
Get the output signal. Here, the potential of the floating diffusion region 3 is Φ
This occurs between the falling edge of one pulse and the rising edge of the RS pulse.

ところで、上記検出回路の浮遊拡散領域は、従来第3図
及び第4図の如く形成されている。ここで、第4図は第
3図のx−X線に沿う断面図である。即ち、まず、通常
の方法により基板1上にフィールド酸化[121,ゲー
ト酸化膜22を形成し、更に出力ゲート7、転送ゲート
8等を形成する。
Incidentally, the floating diffusion region of the detection circuit is conventionally formed as shown in FIGS. 3 and 4. Here, FIG. 4 is a sectional view taken along the line xx in FIG. 3. That is, first, a field oxidation film 121 and a gate oxide film 22 are formed on the substrate 1 by a conventional method, and then an output gate 7, a transfer gate 8, etc. are formed.

ここで、前記ゲート酸化膜22、出力ゲート7及び転送
ゲート8などを総称してゲート領域と呼ぶ。
Here, the gate oxide film 22, output gate 7, transfer gate 8, etc. are collectively referred to as a gate region.

つづいて、フィールド酸化膜21及び出力ゲート7上に
、浮遊拡散領域形成予定部の端部より一定の距離り分外
側に開口部23を有するレジストパターン24を形成す
る。次いで、前記フィールド酸化膜11、レジストパタ
ーン14及び出力ゲート7をマスクとして基板1に不純
物を導入して浮遊拡散領域3を形成する。
Subsequently, a resist pattern 24 is formed on the field oxide film 21 and the output gate 7, having an opening 23 a certain distance outward from the end of the portion where the floating diffusion region is to be formed. Next, using the field oxide film 11, resist pattern 14, and output gate 7 as masks, impurities are introduced into the substrate 1 to form a floating diffusion region 3.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来技術によれば、浮遊拡散領域3を、
浮遊拡散領域形成予定部の端部より距離り分外側に開口
部を有するレジストパタ・−ン24、フィールド酸化膜
21及び出力ゲート7をマスクとして基板1に不純物を
導入することにより形成するため、浮遊拡散領域3の面
積はフィールド酸化膜21のエツチング量の変動により
左右される。
However, according to the prior art, the floating diffusion region 3 is
The floating diffusion region is formed by introducing impurities into the substrate 1 using the resist pattern 24, the field oxide film 21, and the output gate 7 as masks, which have an opening a distance outward from the end of the part where the floating diffusion region is planned to be formed. The area of the diffusion region 3 depends on variations in the amount of etching of the field oxide film 21.

その結果、出力部の電荷電圧変換利得が素子ごとに変動
するという問題を有する。
As a result, there is a problem in that the charge-voltage conversion gain of the output section varies from element to element.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、フィールド
酸化膜のエツチング量の変動を抑制し、電荷電圧変換利
得の素子ごとのバラツキを抑制しえる電荷転送装置の製
造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing a charge transfer device that can suppress variations in the amount of etching of a field oxide film and suppress variations in charge-voltage conversion gain from element to element. shall be.

〔発明の概要〕[Summary of the invention]

本発明は、電荷転送部から転送される信号電荷を蓄積す
る浮遊拡散領域を、フィールド酸化膜と、一部がフィー
ルド酸化膜より内側に形成されたマスク材と。ゲート領
域の電極とを用いて半導体基板に不純物を導入すること
により形成することにより、フィールド酸化膜のエツチ
ング量のバラツキに起因する電荷電圧変換利得の素子ご
とのバラツキを抑制しようとするものである。
In the present invention, a floating diffusion region that accumulates signal charges transferred from a charge transfer section is formed by a field oxide film and a mask material partially formed inside the field oxide film. By introducing impurities into the semiconductor substrate using an electrode in the gate region, this method attempts to suppress variations in charge-voltage conversion gain from element to element due to variations in the amount of etching of the field oxide film. .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を製造工程順に第1図を参照し
て説明する。なお、ここでは浮遊拡散領域付近のみ説明
し、従来と同部材のものは同符号を付して説明を省略す
る。
Hereinafter, one embodiment of the present invention will be described in order of manufacturing steps with reference to FIG. Here, only the vicinity of the floating diffusion region will be explained, and the same members as those of the conventional one will be given the same reference numerals and the explanation will be omitted.

まず、P型のシリコン基板1上の所定の箇所に    
 □”フィールド酸化!l131を形成した後、ゲート
酸化膜22を形成する。つづいて、このゲート酸化膜2
2上にこれとゲート領域を構成する出力ゲート    
 パフ、°転送電極8等を形成する (第1図(a)図
     示)。次いで、一部がフィールド酸化膜31
より     (−5内側の浮遊拡散領域形成予定部寄
りに開口部32を有するレジストパターン(マスク材)
33を形     ′成した(第1図(b)図示)。こ
の侵、前記レジ     、ストパターン33、フィー
ルド酸化膜31及びゲ     ゛−ト領域の出力ゲー
ト7をマスクとして基板にn      パ型不純物を
イオン注入し、浮遊拡散領域(N+型領領域34を形成
した。この後、レジストパターン33を剥離した後、周
知の技術を用いて電荷転送装置を製造した (第1図(
C)及び第2図図示)。ここで、第2図は第1図(C)
の平面図で、第2図をx−X線に沿って切断すると第1
図(C)となる。なお、この装置の作用は、前述した第
5図と同様である。
First, at a predetermined location on a P-type silicon substrate 1
□"Field oxidation! After forming l131, a gate oxide film 22 is formed.Subsequently, this gate oxide film 2
2. On top of this is the output gate that forms the gate area.
A puff, a transfer electrode 8, etc. are formed (as shown in FIG. 1(a)). Then, a part of the field oxide film 31 is formed.
(-5 Resist pattern (mask material) having an opening 32 near the area where the floating diffusion region is planned to be formed
33 (as shown in FIG. 1(b)). After this attack, an n-type impurity was ion-implanted into the substrate using the resist pattern 33, field oxide film 31, and output gate 7 of the gate region as a mask to form a floating diffusion region (N+ type region 34). Thereafter, after peeling off the resist pattern 33, a charge transfer device was manufactured using a well-known technique (see Fig. 1 (
C) and as shown in Figure 2). Here, Figure 2 is Figure 1 (C)
In the plan view of , if Figure 2 is cut along the x-X line, the first
Figure (C) is shown. Note that the operation of this device is similar to that shown in FIG. 5 described above.

しかして、本発明によれば、浮遊拡散領域34の形成に
際し、一部がフィールド酸化膜31の内側の浮遊拡散領
域形成予定部寄りに開口部32を有するレジストパター
ン33をマスクの一部として用いるため、浮遊拡散領域
34と基板1との境界の一部はレジストパターン33に
よって規定される。従って、浮遊拡散領域34の面積は
フィールド酸化膜33のエツチング量の変動によって変
動することが小さくなり、電荷電圧変換利得の素子のバ
ラツキを小さく押えることができる。特に、浮遊拡散領
域34の面積に比較してフィールド酸化膜31で規定さ
れる周囲長の長い形状において、効果が大きい。なお、
本実施例において、浮遊拡散領域34の面積の変動要因
としてレジストパターン33のマスクずれが加わるが、
現在の技術し1ベルではそのマスクずれはフィールド酸
化膜のエツチング量より小さい。
Therefore, according to the present invention, when forming the floating diffusion region 34, the resist pattern 33 having the opening 32 partially inside the field oxide film 31 near the part where the floating diffusion region is planned to be formed is used as a part of the mask. Therefore, a part of the boundary between the floating diffusion region 34 and the substrate 1 is defined by the resist pattern 33. Therefore, the area of the floating diffusion region 34 is less likely to change due to changes in the amount of etching of the field oxide film 33, and variations in charge-voltage conversion gain between devices can be suppressed. This is particularly effective in a shape defined by the field oxide film 31 that has a longer perimeter than the area of the floating diffusion region 34. In addition,
In this embodiment, mask displacement of the resist pattern 33 is added as a factor for variation in the area of the floating diffusion region 34;
With current technology, the mask shift is smaller than the etching amount of the field oxide film at 1 Bel.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、フィールド酸化膜の
エツチング量の変動を抑制し、もって電荷電圧変換利得
の素子のどとのバラツキを抑制しえる電荷転送装置の製
造方法を提供できるものである。
As detailed above, according to the present invention, it is possible to provide a method for manufacturing a charge transfer device that can suppress variations in the amount of etching of a field oxide film, thereby suppressing variations in charge-voltage conversion gain with respect to the device throat. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明の一実施例に係る電荷転
送装置の製造方法を工程順に示す断面図、第2図は第1
図(C)の平面図、第3図は従来の電荷転送装置に係る
浮遊拡散領域の製造を説明するための平面図、第4図は
第3図のX−X線に沿う断面図、第5図は電荷転送装置
の電荷検出部に用いられる70−ティング接合型検出部
の断面図、第6図は第5図の検出回路に係るΦ1、Φ2
及びR8の各パルスのタイミング図、第7図は同検出回
路に係る転送電極の電位分布図である。 1・・・P型のシリコン基板、2・・・N型領域、4・
・・N4型領域、6・−N−型領域、7・・・出力ゲー
ト、8.9.10・・・転送ゲート、11・・・ソース
フォロク回路、12・・・プリーダ、22・・・ゲート
酸化膜、31・・・フィールド酸化膜、32・・・関口
部、33−・・レジストパターン、34・・・浮遊拡散
領域(N+型領領域。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第4図 第5 図 1ES  図
1(a) to 1(C) are cross-sectional views showing the manufacturing method of a charge transfer device according to an embodiment of the present invention in the order of steps, and FIG.
FIG. 3 is a plan view for explaining the manufacturing of a floating diffusion region related to a conventional charge transfer device; FIG. 4 is a cross-sectional view taken along line X-X in FIG. 3; Figure 5 is a cross-sectional view of a 70-Ting junction type detection unit used in a charge detection unit of a charge transfer device, and Figure 6 is a cross-sectional view of Φ1 and Φ2 related to the detection circuit of Figure 5.
FIG. 7 is a timing diagram of each pulse of R8 and R8, and FIG. 7 is a potential distribution diagram of a transfer electrode related to the detection circuit. 1... P-type silicon substrate, 2... N-type region, 4...
...N4 type region, 6.-N- type region, 7..output gate, 8.9.10..transfer gate, 11..source follower circuit, 12..reader, 22..gate Oxide film, 31...Field oxide film, 32...Sekiguchi portion, 33-...Resist pattern, 34...Floating diffusion region (N+ type region. Applicant's representative Patent attorney Takehiko Suzue Figure 1) Figure 2 Figure 4 Figure 5 Figure 1ES Figure

Claims (1)

【特許請求の範囲】[Claims] 半導体基板と、この基板上に設けられた信号電荷を転送
する電荷転送部と、電荷転送部から転送される信号電荷
を蓄積する浮遊拡散領域と、この浮遊拡散領域の電位を
検出する電位検出手段と、前記浮遊拡散領域を他の領域
から分離するフィールド領域と、前記浮遊拡散領域に隣
接し、該浮遊拡散領域への信号電荷の出入を制御するゲ
ート領域とを具備する電荷転送装置の製造方法において
、浮遊拡散領域を、フィールド酸化膜と、一部がフィー
ルド酸化膜より内側に形成されたマスク材と、ゲート領
域の電極とを用いて基板に不純物を導入することにより
形成することを特徴とする電荷転送装置の製造方法。
A semiconductor substrate, a charge transfer section provided on the substrate for transferring signal charges, a floating diffusion region for accumulating signal charges transferred from the charge transfer section, and potential detection means for detecting the potential of the floating diffusion region. a field region that separates the floating diffusion region from other regions; and a gate region that is adjacent to the floating diffusion region and controls input and output of signal charges to the floating diffusion region. The floating diffusion region is formed by introducing impurities into the substrate using a field oxide film, a mask material partially formed inside the field oxide film, and an electrode in the gate region. A method for manufacturing a charge transfer device.
JP5772185A 1985-03-22 1985-03-22 Manufacture of charge transfer device Pending JPS61216472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5772185A JPS61216472A (en) 1985-03-22 1985-03-22 Manufacture of charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5772185A JPS61216472A (en) 1985-03-22 1985-03-22 Manufacture of charge transfer device

Publications (1)

Publication Number Publication Date
JPS61216472A true JPS61216472A (en) 1986-09-26

Family

ID=13063803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5772185A Pending JPS61216472A (en) 1985-03-22 1985-03-22 Manufacture of charge transfer device

Country Status (1)

Country Link
JP (1) JPS61216472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246875A (en) * 1991-10-15 1993-09-21 Goldstar Electron Co., Ltd. Method of making charge coupled device image sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246875A (en) * 1991-10-15 1993-09-21 Goldstar Electron Co., Ltd. Method of making charge coupled device image sensor

Similar Documents

Publication Publication Date Title
US4316203A (en) Insulated gate field effect transistor
JPH0294455A (en) Semiconductor device
JP3200701B2 (en) Semiconductor device structure and manufacturing method
KR100211635B1 (en) Semiconductor device and fabrication thereof
KR930011473B1 (en) Pseudo different shape ccd with short channel effect
JPS61216472A (en) Manufacture of charge transfer device
JP5220970B2 (en) Manufacturing method of high voltage transistor
JPS60106142A (en) Manufacture of semiconductor element
JPH10189760A (en) Fabrication of semiconductor element
JPS62252933A (en) Method of forming improvrd contavt region in active region
JPS6253952B2 (en)
KR100359767B1 (en) Method for manufacturing solid state image sensor
JPS6125224B2 (en)
JPH0618263B2 (en) Charge transfer device
KR100252891B1 (en) Semiconductor device and method for fabricating the same
KR100223931B1 (en) Solid state image sensing device
EP0607874A1 (en) Solid state image sensor
JP2623907B2 (en) Method for manufacturing semiconductor device
JPS63302553A (en) Manufacture of charge transfer device
JP2724889B2 (en) Charge transfer element
JP2573182B2 (en) Charge transfer device
JPH04291965A (en) Solid-state image sensor and manufacture thereof
JP2660013B2 (en) Method for manufacturing semiconductor device
KR100252902B1 (en) method for fabricvating complementary metal oxide semiconductor device
JPS5924548B2 (en) Method for manufacturing semiconductor memory device