JPS61216223A - Impregnated type cathode composition - Google Patents

Impregnated type cathode composition

Info

Publication number
JPS61216223A
JPS61216223A JP60056022A JP5602285A JPS61216223A JP S61216223 A JPS61216223 A JP S61216223A JP 60056022 A JP60056022 A JP 60056022A JP 5602285 A JP5602285 A JP 5602285A JP S61216223 A JPS61216223 A JP S61216223A
Authority
JP
Japan
Prior art keywords
heater
cathode
heater container
container
heat conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60056022A
Other languages
Japanese (ja)
Inventor
Kazuo Kobayashi
一雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60056022A priority Critical patent/JPS61216223A/en
Publication of JPS61216223A publication Critical patent/JPS61216223A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Abstract

PURPOSE:To acquire an impregnated type cathode composition with little thermal loss, and with a stable performance in a low power expenditure, by furnishing a heat conduction decreasing portion at the connection between a heat container and a cathode supporter. CONSTITUTION:This cathode composition has a cathode base 2 with an electron radiating surface 1 at one end, a heater member 10 installed at the other end of the cathode base 2, and a supporter 11 to support the cathode base 2 and the heater member 10, arranged between the heater member 10 and a supporting tube 5. The supporter 11 is welded to the heater container 14, and the supporter tube 5 is welded to the supporter 11. Since a heat conduction decreasing portion is furnished at the connection between the side of the opening at the other end of the heater container, one end of which is installed to the cathode base, and the supporter, to decrease the thermal loss escaping through the supporter from the heater container, the impregnated type cathode composition with a stable performance in a low expenditure of power can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、高信頼性が要求される進行波管やクライス
トロンなどの電子管に好適な含浸型陰極構体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an impregnated cathode structure suitable for electron tubes such as traveling wave tubes and klystrons that require high reliability.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

人工衛星に搭載される高出力進行波管などは、高電流密
度であることが要求され、それに適した陰極として含浸
型陰極構体が用いられる。衛星用として特にこの陰極に
要求されることは、長寿命であることは勿論であるが、
そのほかに、太陽電池を電源とするので低消費電力型で
あること、さらに衛星打上げ時の衝撃に強いこと、すな
わち打上げ時の衝撃により変形やヒータ埋込剤が脱落す
ると、ヒータの発熱が有効に伝達されなくなり、陰極温
度が低下したり、また脱落した埋込剤が管内異物として
電子管を異常動作させるので、衝撃に十分耐える強度を
もつことが必要である。
High-power traveling wave tubes mounted on artificial satellites are required to have a high current density, and an impregnated cathode structure is used as a suitable cathode. What is particularly required of this cathode for use in satellites is, of course, a long life.
In addition, it uses solar cells as a power source, so it has low power consumption, and is resistant to shocks during satellite launches.In other words, if the heater embedding material is deformed or falls off due to shocks during launch, the heater's heat generation will be effective. It is necessary to have sufficient strength to withstand impact, since the electron beam may no longer be transmitted, causing the cathode temperature to drop, or the falling embedding agent may become a foreign object in the tube and cause the electron tube to operate abnormally.

しかしながら従来の含浸型陰極構体は、第6図に示すよ
うに、高融点多孔質の金属基体の空孔部に電子放射物質
を含浸させ、凹球面状に形成された一端面を電子放射面
(1)とする陰極基体(2)の他端部にヒータ部(3)
が設けられ、このヒータ部(3)に接合された支持体(
4)を介して支持筒(5)に支持された構造に形成され
、ヒータ容器(6)が一定の肉厚の筒体で構成され、が
っその開口部側面を取り囲む如く密接して支持体(4)
が溶接されているために、このヒータ容器(6)から支
持体(4)を伝わって逃げる熱損失が大きく、無駄な電
力を消費している。
However, in the conventional impregnated cathode structure, as shown in FIG. 1) A heater part (3) is attached to the other end of the cathode base (2).
is provided, and a support body (
The heater container (6) is formed of a cylindrical body with a certain wall thickness, and the heater container (6) is supported by the support tube (5) through the support tube (5) so as to surround the opening side of the heater container (6). (4)
Since the heater container (6) is welded, there is a large heat loss escaping from the heater container (6) through the support (4), resulting in wasted power consumption.

また上記ヒータ容器(6)中に挿入されたヒータ(7)
は、ヒータ容器(6)の開口端から一定深さの位置まで
充填された埋込剤(8)中に埋設されているが、この埋
込剤(8)は1.有機バインダおよび有機溶媒を加えて
泥状化したアルミナ粉末をヒータ容器(6)の開口から
流し込み、これを乾燥したのち、先の尖った金属棒やガ
ラス捧を用いて上記開口から余剰部分を取り去る方法で
充填量を調整するので、特にヒータ容器(6)の直径が
3〜5IIII11程度に細くなると、上記開口から延
出しているヒータ(7)の脚部をさけて、バインダによ
り強固に結着しているアルミナ粉末を除去することが困
難であった。
Also, a heater (7) inserted into the heater container (6)
is embedded in an embedding agent (8) filled to a certain depth from the open end of the heater container (6). Alumina powder made into a slurry by adding an organic binder and an organic solvent is poured into the opening of the heater container (6), and after drying, the excess portion is removed from the opening using a pointed metal rod or glass tip. Since the amount of filling is adjusted by the method, especially when the diameter of the heater container (6) is reduced to about 3 to 5III11, the legs of the heater (7) extending from the opening are avoided and firmly bound with the binder. It was difficult to remove the alumina powder.

そのため埋込剤(8)の量が一定にならず、ヒータ(7
)オン後陰極基体(2)が動作温度に達するまでの時間
やヒータ(7)の消費電力がばらつき、また余剰のアル
ミナを除去したあとの表面が平滑、平坦にならないため
に、衝撃により脱落しやすいという問題もあった。
Therefore, the amount of the embedding agent (8) is not constant, and the heater (7)
) After turning on, the time it takes for the cathode substrate (2) to reach the operating temperature and the power consumption of the heater (7) vary, and the surface after removing excess alumina is not smooth or flat, so it may fall off due to impact. There was also the problem that it was easy.

〔発明の目的〕[Purpose of the invention]

この発明は、熱損失が少く、低消費電力で安定に動作す
る含浸型陰極構体を構成することを目的とするものであ
る。
The object of the present invention is to construct an impregnated cathode structure that has little heat loss and operates stably with low power consumption.

〔発明の概要〕[Summary of the invention]

高融点多孔質金属基体の空孔部に電子放射物質が含浸さ
れ、一端面を電子放射面とする陰極基体と、この陰極基
体の他端面に一端部が取り付けられ、他端が開口した筒
状のヒータ容器、およびこのヒータ容器内に挿入された
ヒータ、および上記ヒータ容器の開口端から一牽深さの
非充填部が構成されるように上記ヒータ容器内に充填さ
れて上記ヒータを埋設する埋込剤を有するヒータ部と、
上記ヒータ容器の開口端部側面に接合される陰極支持体
とを備える含浸型陰極構体において、上記ヒータ容器と
上記陰極支持体との接合部に熱伝導減少部を設けること
により、熱損失を減らし、低消費電力で動作するように
構成した。
A cathode substrate in which the pores of a high-melting point porous metal substrate are impregnated with an electron emitting substance and one end surface serves as an electron emitting surface; one end is attached to the other end surface of the cathode substrate, and the other end is open. a heater container, a heater inserted into the heater container, and the heater container is filled and buried in the heater container so that an unfilled part is one inch deep from the open end of the heater container. a heater section having an embedding agent;
In an impregnated cathode assembly comprising a cathode support joined to the side surface of the opening end of the heater container, a heat conduction reducing portion is provided at the joint between the heater container and the cathode support to reduce heat loss. , configured to operate with low power consumption.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照してこの発明を実施例に基づいて説明
する。
Hereinafter, the present invention will be described based on embodiments with reference to the drawings.

第1図にこの発明の一実施である含浸型陰極構体を示す
。この陰極構体は、一端面を電子放射面(1)とする陰
極基体(2)と、この陰極基体(2)の他端部に取り付
けられたヒータ部(10)と、このヒータ部(10)と
支持筒(5)との間に介在して、上記陰極基体(2)お
よびヒータ部(10)を支持する支持体(11)とを有
する。
FIG. 1 shows an impregnated cathode structure which is one embodiment of the present invention. This cathode structure includes a cathode base (2) whose one end surface is an electron emission surface (1), a heater part (10) attached to the other end of this cathode base (2), and a heater part (10) attached to the other end of this cathode base (2). and a support body (11) that is interposed between the support tube (5) and supports the cathode base body (2) and the heater section (10).

上記陰極基体(2)は、タングステンからなる高融点多
孔質金属基体の空孔部に、BaO1CaO1i20.か
らなる電子放射物質を含浸させたものであって、電子放
射面(1)は、その一端面に凹球面状に形成され、また
他端面側には、ヒータ部(10)が取り付けられる径小
部が設けられている。
The cathode substrate (2) has BaO1CaO1i20. The electron emitting surface (1) is formed into a concave spherical shape on one end surface, and the other end surface is impregnated with an electron emitting material consisting of a heater portion (10). A section has been established.

ヒータ部(10)は、上記陰極基体(2)の径小部に嵌
合する筒状に形成され、上記陰極基体(2)の他端面を
被護するモリブデン・ルテニウム合金からなるろう材(
13)により陰極基体(2)と同軸に接合されたモリブ
デンからなるヒータ容器(14)と、このヒータ容器(
14)の開口から一対の脚部(15)が延出する如くヒ
ータ容器(14)内に挿入されたコイル状のヒータ(7
)と、このヒータ(7)を埋込む如く」二部ヒータ容器
(14)内に充填されたアルミナ粉末からなる埋込剤(
8)とからなる。この埋込剤(8)のヒータ容器(14
)の開口に対面する露出面(J6)は、ヒータ容器(1
4)の開口端から一定深さの位置にある。
The heater part (10) is formed into a cylindrical shape that fits into the small diameter part of the cathode base (2), and is made of a brazing material (made of molybdenum-ruthenium alloy) that protects the other end surface of the cathode base (2).
A heater container (14) made of molybdenum coaxially joined to the cathode substrate (2) by a heater container (13);
A coil-shaped heater (7) is inserted into the heater container (14) so that a pair of legs (15) extend from the opening of the heater (14).
) and an embedding agent (
8). The heater container (14) of this embedding agent (8)
) The exposed surface (J6) facing the opening of the heater container (1
4) is located at a certain depth from the opening end.

筒状のヒータ容器(14)の側壁は一定の肉厚に形成さ
れ、特にその他端開口部側の埋込剤(8)が充填されて
いない非充填部には、周縁が上記埋込剤(8)の露出面
に接する複数個の透孔(17)が形成されている。
The side wall of the cylindrical heater container (14) is formed to have a certain thickness, and the periphery of the embedding agent (8) in particular is not filled with the embedding agent (8) on the other end opening side. A plurality of through holes (17) are formed in contact with the exposed surface of 8).

支持体(11)は、上記ヒータ容器(14)の外側に嵌
合する径小端部を有する截頭円錐状に形成され、その径
小端部を上記ヒータ容器(14)の非充填部に嵌合し、
溶接によってヒータ容器(14)に取り付けられている
。なおこの支持体(11)の他端部は、上記ヒータ容器
(14)を取り囲む支持体(5)に溶接され、陰極基体
(2)およびヒータ部(10)は、この支持体(11)
を介して支持筒(5)に支持されている。
The support body (11) is formed in a truncated conical shape with a small diameter end that fits on the outside of the heater container (14), and the small diameter end fits into the unfilled part of the heater container (14). mated,
It is attached to the heater container (14) by welding. The other end of this support (11) is welded to a support (5) surrounding the heater container (14), and the cathode base (2) and heater section (10) are attached to this support (11).
It is supported by the support tube (5) via the support tube (5).

この含浸型陰極構体はつぎのように製作される。This impregnated cathode structure is manufactured as follows.

まず所定粒度のタングステン粉末を圧縮成形し、これを
焼結したのち、その空孔部に銅を含浸して所定形状に切
削加工する。しかるのち含浸した銅を硝酸および水素炉
などによる高温加熱処理により除去して多孔質の金属基
体を形成する。つぎにこの金属基体の径小部側端面にモ
リブデン・ルテニウム合金からなるろう材を塗布し、こ
れにあらかじめ機械加工により所定形状に形成されたヒ
ータ容器(14)を嵌合して上記ろう材を溶融し、ヒー
タ容器(14)を金属基体にろう付けする。
First, tungsten powder with a predetermined particle size is compressed and sintered, and then the pores are impregnated with copper and cut into a predetermined shape. Thereafter, the impregnated copper is removed by high-temperature heat treatment using nitric acid and a hydrogen furnace to form a porous metal substrate. Next, a brazing material made of a molybdenum-ruthenium alloy is applied to the end surface of the small-diameter side of this metal base, and a heater container (14), which has been previously formed into a predetermined shape by machining, is fitted onto the brazing material. Melt and braze the heater container (14) to the metal substrate.

つぎにこのヒータ容器(14)内にヒータ(7)を挿入
し、さらに有機バインダおよび有機溶媒を加えて泥状化
したアルミナ粉末を充填し、乾燥したのち、この充填し
たアルミナ粉末の表面がヒータ容器(14)に形成され
ている透孔(17)の周縁に接する高さになるまで、先
の尖った金属棒やガラス捧を用いて除去する。しかるの
ちこの埋込剤を焼結してヒータ部(10)を形成する。
Next, a heater (7) is inserted into this heater container (14), and an organic binder and an organic solvent are added to fill the alumina powder which has become slurry. After drying, the surface of the filled alumina powder is heated. It is removed using a sharp metal rod or a glass sprocket until it reaches a height that touches the periphery of the through hole (17) formed in the container (14). Thereafter, this embedding material is sintered to form the heater part (10).

つぎに上記ヒータ容器(14)に支持体(11)、さら
にこの支持体(11)に支持筒(5)を溶接し、さらに
上記金属基体に、Bad、 CaO1AQ203、など
からなる電子放射物質を溶融含浸させる。なおこの電子
放射物質の含浸は金属基体にヒータ容器(14)を取り
付ける前におこなってもよい。
Next, the support (11) is welded to the heater container (14), and the support tube (5) is welded to the support (11), and an electron emitting material made of Bad, CaO1AQ203, etc. is melted to the metal base. Impregnate. Note that this impregnation with the electron emitting substance may be performed before attaching the heater container (14) to the metal base.

上記のように含浸型陰極構体を構成すると、ヒータ部(
10)の熱損失を減少させることができる。
When the impregnated cathode structure is configured as described above, the heater part (
10) Heat loss can be reduced.

すなわち第2図に示すヒータ電圧と陰極温度の関係から
明らかなように、従来の含浸型陰極構体(第6図示)に
ついて、ヒータ部に支持体を取り付けない構造にしてヒ
ータに電圧を印加すると、曲線(A)で示すように陰極
温度が変化するが、これに支持体を取り付けると、曲線
(B)に示すようになる。すなわちヒータ電圧が低いと
きは曲線(A)よりも低く、ヒータ電圧が高くなると曲
線(A)よりも高くなる。これは、ヒータ容器に支持体
を取り付けると、ヒータ容器の端部から支持体が通って
逃げる熱損失が発生することを意味し、逆にヒータ電圧
が高くなると、支持体からの反射で熱効率がよくなるこ
とを意味している。しかし上記実施例に示したように、
ヒータ容器(14)の端部に複数個の透孔(17)を設
けて、支持体(11)を取り付けると、この透孔(17
)を形成した部分が熱伝導減少部となって、曲線(C)
で示すように、ヒータ電圧の高低にかかわらず熱効率が
よくなる。
That is, as is clear from the relationship between the heater voltage and the cathode temperature shown in FIG. 2, when the conventional impregnated cathode structure (shown in FIG. 6) is constructed without a support attached to the heater part and a voltage is applied to the heater, The cathode temperature changes as shown by curve (A), but when a support is attached to it, it changes as shown by curve (B). That is, when the heater voltage is low, it is lower than the curve (A), and when the heater voltage is high, it is higher than the curve (A). This means that when a support is attached to the heater vessel, heat loss will occur through the support from the edge of the heater vessel, and conversely, as the heater voltage increases, thermal efficiency will be reduced due to reflection from the support. It means things will get better. However, as shown in the above example,
When a plurality of through holes (17) are provided at the end of the heater container (14) and the support body (11) is attached, the through holes (17) are formed at the end of the heater container (14).
) forms the part where the heat conduction decreases, and the curve (C)
As shown in , thermal efficiency is improved regardless of the heater voltage.

またヒータ容器(14)の端部の透孔(17)を設ける
と、ヒータ容器(14)に充填された埋込剤の余剰部分
を、ヒータ容器(14)の他端開口と側壁に設けられた
透孔(17)とから容易に除去することができ、また透
孔(17)の周縁を基準にして、埋込剤(8)の露出面
(16)の位置がきめられるので、その充填量を一定に
することができる。したがってヒータ部(10)の熱容
量を一定にして、ヒータ(7)の消費電力やヒータ(7
)オン後陰極が動作温度に達するまでの時間がばらつか
ない陰極構体にすることができる。
Furthermore, by providing a through hole (17) at the end of the heater container (14), a surplus portion of the implant filled in the heater container (14) can be drained from the opening at the other end and the side wall of the heater container (14). The exposed surface (16) of the embedding agent (8) can be easily removed from the through hole (17), and the position of the exposed surface (16) of the embedding agent (8) can be determined based on the periphery of the through hole (17). The amount can be kept constant. Therefore, by keeping the heat capacity of the heater part (10) constant, the power consumption of the heater (7)
) It is possible to create a cathode structure in which the time required for the cathode to reach the operating temperature after turning on does not vary.

さらにまた、ヒータ容器(17)の側壁に設けた透孔(
17)から余剰のアルミナを除去してその露出面(16
)を平滑、平坦にすることができるので、衝撃が加わっ
ても埋込剤(8)が脱落しがたい陰極構体とすることが
できる。
Furthermore, a through hole (
Excess alumina is removed from the exposed surface (16).
) can be made smooth and flat, making it possible to create a cathode structure in which the embedding agent (8) is difficult to fall off even if an impact is applied.

つぎに他の実施例について述べる。Next, other embodiments will be described.

上記実施例はヒータ容器の端部に透孔を設けて熱伝導減
少部としたが、第3図に示すよう(こ、これを切欠き(
19)で構成してもよく、同一効果を奏するものとする
ことができる。また第4図および第5図に示すように、
凹孔(20a)あるいは切欠き溝(20b)などからな
る肉厚を薄くした薄肉部で構成してもよい。
In the above embodiment, a through hole was provided at the end of the heater container to serve as a heat conduction reducing section.
19) may be used, and the same effect can be achieved. Also, as shown in Figures 4 and 5,
It may also be constructed of a thin walled portion consisting of a recessed hole (20a) or a cutout groove (20b).

また上記各実施例は、ヒータ容器に透孔、切欠き、凹孔
、切欠き溝などからなる熱伝導減少部を設けたが、この
ような熱伝導減少部は支持体、またはヒータ容器と支持
体の両方に設けてもよい。
Further, in each of the above embodiments, the heater container is provided with a heat conduction reducing portion consisting of a through hole, a notch, a recessed hole, a cutout groove, etc. It may be provided on both sides of the body.

また支持体は、通常比較的熱伝導性のよいモリブデン、
タンタルなどで構成されるが、これをステンレスなど熱
伝導性の低い部材で構成してもより′1゜ 〔発明の効果〕 一端部力(陰極基体に取り付けられたヒータ容器の他端
開口部側面と支持体との接合部に熱伝導減少部を設け、
〔−夕容器から支持体を通って逃げる熱損失が少くなる
ように構成したので、低電力で安定に動作する含浸型陰
極構体とすることかできる。
The support is usually made of molybdenum, which has relatively good thermal conductivity.
It is made of tantalum, etc., but even if it is made of a material with low thermal conductivity such as stainless steel, it will be even better. A heat conduction reducing part is provided at the joint between the and the support,
[-Since the structure is configured so that heat loss escaping from the container through the support is reduced, an impregnated cathode structure that operates stably with low power can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例である含浸型陰極構体を一
部断面で示した正面図、第2図は上記含浸型陰極構体の
ヒータ電圧・陰極温度特性を従来の含浸型陰極構体と比
較して示したグラフ、第3    図ないし第5図はそ
れぞれこの発明の他の実施例の要部を二部断面で示した
正面図、第6図は従来の含浸型陰極構体の断面図である
。 (1)  ・・・電子放射面  (2)  ・・・陰極
基体(7)  ・・・ヒータ     (8)・・・埋
込剤(10)・・・ヒータ部   (11)・・・支持
体1l−
FIG. 1 is a partially cross-sectional front view of an impregnated cathode structure according to an embodiment of the present invention, and FIG. Graphs shown for comparison, FIGS. 3 to 5 are front views showing main parts of other embodiments of the present invention in two-part cross section, and FIG. 6 is a sectional view of a conventional impregnated cathode structure. be. (1) ...electron emission surface (2) ...cathode base (7) ...heater (8) ...embedding agent (10) ...heater part (11) ...support 1l −

Claims (8)

【特許請求の範囲】[Claims] (1)高融点多孔質金属基体の空孔部に電子放射物質が
含浸され一端面を電子放射面とする陰極基体と、この陰
極基体の他端部に一端部が取り付けられ他端が開口した
筒状のヒータ容器、およびこのヒータ容器内に挿入され
たヒータ、および上記ヒータ容器の開口端から一定深さ
の非充填部が構成されるように上記ヒータ容器内に充填
されて上記ヒータを埋設する埋込剤を有するヒータ部と
、上記ヒータ容器の開口端部側面に接合される陰極支持
体とを具備し、 上記ヒータ容器と上記陰極支持体との接合部に熱伝導減
少部を設けたことを特徴する含浸型陰極構体。
(1) A cathode substrate in which the pores of a high-melting point porous metal substrate are impregnated with an electron-emitting substance and one end surface serves as an electron-emitting surface, and one end is attached to the other end of this cathode substrate and the other end is open. A cylindrical heater container, a heater inserted into the heater container, and a heater container filled with the heater container so as to form an unfilled portion of a certain depth from the open end of the heater container, and the heater buried therein. and a cathode support joined to a side surface of the opening end of the heater container, and a heat conduction reducing portion is provided at the joint between the heater container and the cathode support. An impregnated cathode structure characterized by:
(2)熱伝導減少部がヒータ容器に設けられていること
を特徴とする特許請求の範囲第1項記載の含浸型陰極構
体。
(2) The impregnated cathode assembly according to claim 1, wherein the heat conduction reducing portion is provided in the heater container.
(3)熱伝導減少部はヒータ容器の開口端から一定深さ
の位置に形成される埋込剤の露出面に接することを特徴
とする特許請求の範囲第2項記載の含浸型陰極構体。
(3) The impregnated cathode assembly according to claim 2, wherein the heat conduction reducing portion is in contact with an exposed surface of the embedding agent formed at a certain depth from the open end of the heater container.
(4)熱伝導減少部が陰極支持体に設けられていること
を特徴とする特許請求の範囲第1項記載の含浸型陰極構
体。
(4) The impregnated cathode assembly according to claim 1, wherein the heat conduction reducing portion is provided on the cathode support.
(5)熱伝導減少部がヒータ容器と陰極支持体の両方に
設けられていることを特徴とする特許請求の範囲第1項
記載の含浸型陰極構体。
(5) The impregnated cathode assembly according to claim 1, wherein the heat conduction reducing portion is provided on both the heater container and the cathode support.
(6)熱伝導減少部は透孔を有することを特徴とする特
許請求の範囲第1項記載の含浸型陰極構体。
(6) The impregnated cathode assembly according to claim 1, wherein the heat conduction reducing portion has a through hole.
(7)熱伝導減少部は切欠きを有することを特徴とする
特許請求の範囲第1項記載の含浸型陰極構体。
(7) The impregnated cathode assembly according to claim 1, wherein the heat conduction reducing portion has a notch.
(8)熱伝導減少部は肉厚の薄い薄肉部を有することを
特徴とする特許請求の範囲第1項記載の含浸型陰極構体
(8) The impregnated cathode assembly according to claim 1, wherein the heat conduction reducing portion has a thin wall portion.
JP60056022A 1985-03-22 1985-03-22 Impregnated type cathode composition Pending JPS61216223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056022A JPS61216223A (en) 1985-03-22 1985-03-22 Impregnated type cathode composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056022A JPS61216223A (en) 1985-03-22 1985-03-22 Impregnated type cathode composition

Publications (1)

Publication Number Publication Date
JPS61216223A true JPS61216223A (en) 1986-09-25

Family

ID=13015433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056022A Pending JPS61216223A (en) 1985-03-22 1985-03-22 Impregnated type cathode composition

Country Status (1)

Country Link
JP (1) JPS61216223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494240U (en) * 1991-01-11 1992-08-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494240U (en) * 1991-01-11 1992-08-17

Similar Documents

Publication Publication Date Title
JPS61216223A (en) Impregnated type cathode composition
US4755683A (en) Liquid-metal ion beam source substructure
US5128584A (en) Impregnated cathode
JPS61216222A (en) Impregnated type cathode composition
JPH0439646Y2 (en)
KR19980045917A (en) Power saving impregnation cathode structure
JPS5842141A (en) Pierce type electron gun
JPS6062034A (en) Hot-cathode frame body
JP2590750B2 (en) Impregnated cathode structure
JPH047550Y2 (en)
JP2646087B2 (en) Sodium-sulfur secondary battery
JP4283492B2 (en) Electrode for discharge tube, method for producing the same, and discharge tube using the same
JPS62217525A (en) Impregnated cathode
JPS63211534A (en) Impregnated type cathode structure body
JPS6215732A (en) Manufacture of electron gun structure for microwave tube
JPH0737484A (en) Thermionic radiation negative electrode
KR920007276Y1 (en) Impregnated cathode structure
JPS62145621A (en) Impregnated cathode
JPS6336606Y2 (en)
JPH0766747B2 (en) Impregnated cathode
JP3353303B2 (en) Impregnated cathode structure
JP2001256883A (en) Impregnated cathode
JP2001084932A (en) Hot cathode of x-ray tube and manufacturing method thereof
KR920006821Y1 (en) A form structure of dispenser type cathode
JPS6247930A (en) Manufacture of impregnated cathode structure