JPS61215962A - Fraction collector - Google Patents

Fraction collector

Info

Publication number
JPS61215962A
JPS61215962A JP5869385A JP5869385A JPS61215962A JP S61215962 A JPS61215962 A JP S61215962A JP 5869385 A JP5869385 A JP 5869385A JP 5869385 A JP5869385 A JP 5869385A JP S61215962 A JPS61215962 A JP S61215962A
Authority
JP
Japan
Prior art keywords
fraction
column
effluent
collected
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5869385A
Other languages
Japanese (ja)
Inventor
Manji Sasaki
佐々木 万治
Kihachiro Okura
喜八郎 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamazen Corp
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Yamazen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Yamazen Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5869385A priority Critical patent/JPS61215962A/en
Publication of JPS61215962A publication Critical patent/JPS61215962A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/80Fraction collectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To improve collection accuracy by setting upper and lower limits of optional two points having a different height of the peak of a chromatography and dividing and collecting the effluent between the upper and lower limits at the optional division. CONSTITUTION:A filler is filled into a column 1, as well as the organic substance of the sample is injected, an eluted solvent is drawn up by a pump 2, passed through the column 1 and sent to a detecting device 4. When the sample flows in the detecting device 4, the peak starts to rise, when a peak height V comes to a set upper limit value VH, a three-way rotary valve 6 is rotated, the effluent of the column 1 flows in a test tube of a fraction collector 7, and fraction number No.1-No.3 are collected. Next, the peak height V descends up to a lower limit setting value VL in the No.4 fraction, the valve 6 is rotated, the effluent of the column 1 flows at the drain side and collected up to all fraction numbers. Thus, the unnecessary solution is not collected and the necessary solution is correctly collected and therefore, the collecting accuracy can be improved.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、液体クロマトグラフィーにおいて、カラムか
ら検出器を経て流出した流出液を分集するフラクション
コレクターに関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a fraction collector for collecting an effluent flowing out from a column through a detector in liquid chromatography.

特に、分取カラムクロマトグラフィーにおいて、有用な
フラクションコレクターに関するものである。
In particular, the present invention relates to a fraction collector useful in preparative column chromatography.

「従来の技術」 液体クロマトグラフィー手法は、近年の技術の発達に伴
って、有力な分析手段としての地位をますます固めてい
る。これに伴って、該手法の、化合物の単離、精製への
応用がますます盛んになってきた。
"Prior Art" Liquid chromatography is increasingly establishing itself as a powerful analysis tool with the recent technological developments. Along with this, the application of this technique to the isolation and purification of compounds has become increasingly popular.

該手法を分析手段(10−”g程度以下の物質を分離す
る)から、単離、精製の手段としての応用に展開する際
の問題は、扱う物質の量を増大させなせればならない点
にある。そこで、該手法を、より多量の物質に適用する
ため、装置を大型化し、対処する方法が従来の技術の1
つとして存在する。
The problem with developing this method from an analysis tool (separating substances of about 10-"g or less) to an isolation and purification tool is that the amount of material to be handled must be increased. Therefore, in order to apply this method to a larger amount of substances, one of the conventional techniques is to increase the size of the equipment and deal with the problem.
It exists as one.

たとえば、第9図に示すように、カラム101内には充
填剤を充填し、そこにサンプルである有機物質を注入°
しておき、ポンプ102にて溶離溶媒103を吸い上げ
てカラム101に供給し、溶離溶媒103で展開させ、
カラム101からの流出液を検出器104で検出してレ
コーダ105で記録させ、フラスコ106に分集させて
いる。
For example, as shown in FIG. 9, a column 101 is filled with a packing material, and an organic substance as a sample is injected into the column 101.
Then, the elution solvent 103 is sucked up by the pump 102 and supplied to the column 101, and developed with the elution solvent 103.
The effluent from the column 101 is detected by a detector 104, recorded by a recorder 105, and collected in a flask 106.

この場合、物質の分離能は、分析の場合とほぼ同程度を
期待できるため、第10図で示すようなりソマトグラフ
上のピークの有無で、流出液の分集開始および終了を決
定すればよく、クロマトグラフのピーク高さの設定は、
固定した一点で十分であった。
In this case, the separation ability of the substance can be expected to be approximately the same as in the case of analysis, so the start and end of collection of the effluent can be determined by the presence or absence of a peak on the somatograph as shown in Figure 10, and the chromatography To set the peak height of the graph,
One fixed point was sufficient.

しかしながら、液体クロマトグラフィーにおける分離能
は、主に充填剤の粒径と、注入する物質の量に起因する
ので、上述の方法を実施するには、分析で用いる際と同
程度の粒径(5〜10μm程度)を用いる必要があり、
このため、溶離溶媒を送液するには20〜200kg/
 aII”の高圧を要し、また、装置を大型化しても注
入できる物質の量は、それに比例した量であり、高々、
10− ’ g程度の量である。また、充填剤の価格は
粒径が小さいほど幾何級数的に上昇するため、装置を大
型化する際には大きな問題となる。
However, the separation power in liquid chromatography is mainly due to the particle size of the packing material and the amount of material injected, so to carry out the above method, it is necessary to use a particle size similar to that used in analysis (5 ~10μm) must be used,
For this reason, it is necessary to transport the eluent at a rate of 20 to 200 kg/
aII" high pressure is required, and even if the device is enlarged, the amount of substance that can be injected is proportional to that amount, at most.
The amount is about 10-'g. Furthermore, the price of the filler increases exponentially as the particle size decreases, which poses a major problem when increasing the size of the device.

そこで、現実的には、より安価な、粒径の大きい充填剤
を用い、また、注入する物質の量も、装置の大型化倍率
の102倍〜103倍程度と多量にして実施される。こ
うした場合、分離能は、分析手法の場合に比べて、非常
に悪くなり、クロマトグラフ上でも、ピークの分離不十
分や、テーリング等の現象がおこり、上で示したクロマ
トグラフのピーク高さが1つである装置では、分集の精
度は全く不充分であり、物質の分離を、精度良く行うに
は、全く不充分であった。
Therefore, in reality, a cheaper filler with a larger particle size is used, and the amount of substance injected is increased to about 102 to 103 times the enlargement ratio of the device. In such cases, the resolution becomes much worse than in the case of analytical methods, and phenomena such as insufficient peak separation and tailing occur on the chromatography, resulting in the peak height of the chromatography shown above. With one device, the accuracy of aggregation was completely insufficient, and it was completely insufficient to separate substances with high precision.

「問題点を解決するための手段」 本発明は、上記の事情に鑑み、クロマトグラフのピーク
高さの異なる任意の2点の上限および下限を設定し、該
上限および下限との間の流出液を任意の区間で分割して
集めるようにしたフラクションコレクターである。
"Means for Solving the Problems" In view of the above circumstances, the present invention sets an upper limit and a lower limit of arbitrary two points having different peak heights on a chromatogram, and provides a method for dissolving the effluent between the upper limit and the lower limit. This is a fraction collector that divides and collects in arbitrary intervals.

「実施例」 システムの概要を第1図に示すと、カラム1内に充填剤
を充填し、そこにサンプルの有機物質を注入し、ポンプ
2により溶離溶媒3を汲み上げて、カラム1内を通過さ
せ、展開させて検出器4に送出し、検出器4からの信号
をレコーダ5で記録させると共に、所要の条件の際、三
方ロータリパルプ6よりフラクションコレクター7に流
入させて試験管8に分集し、不必要なところは三方ロー
タリバルブ6によりドレン側に流し採集しない。
``Example'' The outline of the system is shown in Figure 1. Column 1 is filled with packing material, the organic substance of the sample is injected into it, and elution solvent 3 is pumped up by pump 2 and passed through column 1. The pulp is expanded and sent to the detector 4, and the signal from the detector 4 is recorded by the recorder 5. At the same time, under the required conditions, it is made to flow into the fraction collector 7 from the three-way rotary pulp 6 and collected into test tubes 8. , unnecessary parts are drained to the drain side by the three-way rotary valve 6 and are not collected.

フラクションコレクター7は、第2図、第3図および第
4図に示すように、筺体9の側方に試験管ラック10を
取付け、筺体9内にはY方向ガイド11を水平状に架設
し、これにX方向ガイド12の基端を移動可能に設けて
、X方向に突出させ、試験管ラック10の試験管8上に
位置させる。また、X方向ガイド12には、滴下器13
をX方向に移動可能に設ける。さらに、X方向ガイド1
2上の滴下器13をX方向にX軸パルスモータ14にて
駆動させ、Y方向ガイド11上のX方向ガイド12をY
方向にX軸パルスモータ15にて駆動する。
As shown in FIGS. 2, 3, and 4, the fraction collector 7 has a test tube rack 10 attached to the side of a housing 9, and a Y-direction guide 11 installed horizontally within the housing 9. The base end of the X-direction guide 12 is movably provided on this, protrudes in the X-direction, and is positioned above the test tubes 8 of the test tube rack 10. Additionally, a dropper 13 is provided on the X direction guide 12.
is provided so as to be movable in the X direction. Furthermore, the X direction guide 1
Dropper 13 on 2 is driven in the X direction by the X-axis pulse motor 14, and the X-direction guide 12 on the Y-direction guide 11 is driven in the Y direction.
direction by an X-axis pulse motor 15.

第5図にそのクロマトグラフの例を示し、その作動を説
明する。
An example of the chromatograph is shown in FIG. 5, and its operation will be explained.

サンプルが検出器4内に流れてくると、ピークは上がり
始め、ピーク高さVが上限設定値VHま゛でくると、配
管による遅れを想定し、ディレィタイムΔTp後、ブザ
ーON、マーカ信号ONになり、三方ロータリーパルプ
6が回転し、フラクションコレクター7の試験管8内に
カラム1の流出液が流れる(コレクトスタート)。
When the sample flows into the detector 4, the peak starts to rise, and when the peak height V reaches the upper limit setting value VH, assuming a delay due to piping, after a delay time ΔTp, the buzzer is turned on and the marker signal is turned on. The three-way rotary pulp 6 rotates, and the effluent from the column 1 flows into the test tube 8 of the fraction collector 7 (collect start).

フラクションタイム(ΔTr)が経過するとX軸パルス
モータ14がONになり、一定パルス分だけモータ14
が回転する。X軸パルスモータ14はワイヤ方式により
X方向ガイド12内の駆動部を動かし、滴下器13をX
方向に次の試験管8上まで移動させる。この様にしてフ
ラクション数NOL、NO2、NO3と分集していく。
When the fraction time (ΔTr) has elapsed, the X-axis pulse motor 14 is turned on, and the motor 14 is turned on for a certain number of pulses.
rotates. The X-axis pulse motor 14 moves the drive section in the X-direction guide 12 using a wire method, and moves the dropper 13 in the X direction.
direction to the next test tube 8. In this way, fractions NOL, NO2, and NO3 are collected.

また、この時、三方ロータリーパルプ6は、OFF、 
ON動作を行い、試験管8間のすきまに液がもれるのを
防ぐと共に、マーカ信号をONにし、チャート上に記録
する。No4のフラクション中にピーク高さは下限設定
値vLまで下がると、三方ロータリバルブ6が回転し、
ドレン側にカラム1の流出液を流す。ブザーOFF (
コレクトエンド)すぐに続いてX軸パルスモータ14が
ONになり、一定パルス分だけX軸パルスモータ14が
回転し、次の試験管8上のNo5まで滴下器13を移動
させる (コレクトエンド)。
Also, at this time, the three-way rotary pulp 6 is OFF,
The ON operation is performed to prevent liquid from leaking into the gap between the test tubes 8, and the marker signal is also turned ON and recorded on the chart. When the peak height drops to the lower limit set value vL during the No. 4 fraction, the three-way rotary valve 6 rotates,
Flow the effluent from column 1 to the drain side. Buzzer OFF (
Collect end) Immediately thereafter, the X-axis pulse motor 14 is turned on, rotates by a certain amount of pulses, and moves the dropper 13 to No. 5 on the next test tube 8 (collect end).

再びピーク高さが上限■9設定までくるとコレクトスタ
ートになる。ΔTtが経過するとフラクション数No6
の試験管8上に移動する。この時、X軸方向フラクショ
ン数に達しているので、Y軸パルスモータ15がONに
なり、ワイヤ一方式によりX方向ガイド12を動かし、
Y方向にX方向ガイド12を移動させる。この後、X軸
パルスモータ14は、逆方向に動作する。
When the peak height reaches the upper limit ■9 setting again, the collection starts. When ΔTt elapses, the number of fractions No. 6
8 onto the test tube 8. At this time, since the number of fractions in the X-axis direction has been reached, the Y-axis pulse motor 15 is turned on, and the X-direction guide 12 is moved by one wire type.
Move the X direction guide 12 in the Y direction. After this, the X-axis pulse motor 14 operates in the opposite direction.

以下、同様にしてフラクションしていき全フラクション
数まで分集する。
Thereafter, fractions are collected in the same manner until the total number of fractions is collected.

次に、このフラクションコレクターの作動を第6図、第
7図および第8図のフローチャートに基づいて説明する
Next, the operation of this fraction collector will be explained based on the flowcharts of FIGS. 6, 7, and 8.

まず第6図について ■が入力電位、ΔTが経過時間、Nがフラクションナン
バーであり、マニュアルにより初期設定を、上限電位V
H=V、 、下限電位V L −V t sフラクショ
ンタイムΔTf ”’TI %ディレィタイムΔT11
=T、 、フラクション数N o −N Iとそれぞれ
設定し、5TARTする。システム初期設定はX軸パル
スモータ方向5IGN= + 1、X軸方向フラクショ
ン数Nx = Nz 、初期フラクションナンバーN=
1である。
First, regarding Fig. 6, ■ is the input potential, ΔT is the elapsed time, and N is the fraction number.
H=V, lower limit potential V L - V ts fraction time ΔTf ”'TI % delay time ΔT11
= T, and the number of fractions N o - N I, respectively, and perform 5 TART. The system initial settings are: X-axis pulse motor direction 5IGN = + 1, X-axis direction fraction number Nx = Nz, initial fraction number N =
It is 1.

クロマトグラフの入力電圧がV>VWに対してNoの場
合は戻り、Yesの場合はコレクトスタートし、経過時
間ΔT〉ΔTゎに対し、Noの場合は戻り、Y e’s
の場合はロータリバルブ出力RV、マーカ出力M、ブザ
ー出力BがそれぞれONとなり、三方ロータリバルブ6
が回転し、フラクションコレクター7の試験管8内にカ
ラム1の流出液が流入すると共に、記録計にマーカ信号
が送られ、ブザーがONとなる。
When the input voltage of the chromatograph is V>VW, if No, return; if Yes, collect start; if the elapsed time ΔT>ΔTゎ, if No, return, Ye's
In this case, the rotary valve output RV, marker output M, and buzzer output B are each turned ON, and the three-way rotary valve 6
rotates, the effluent from the column 1 flows into the test tube 8 of the fraction collector 7, a marker signal is sent to the recorder, and the buzzer is turned on.

入力電位 vくvLに対し、Yesならば3のコレクト
エンドル−チンへ、Noならば次に進み、経過時間ΔT
〉ΔTfに対し、Noであれば元に戻り、Yesであれ
ば前に進み、フラクションナンバーをX軸方向フラクシ
ョン数で割った余りN、。d NX−0に対し、Yes
であればY軸移動ルーチン4にに進み、NOであれば次
に進んでX軸移動ルーチンとなる。ロータリバルブ出力
RV −OFFでロータリバルブはドレン側へ流出液を
流し、X軸パルスモータ14出力P M X =SIG
NテX軸(7)SIGN方向に滴下器13を1試験管分
移動させる。次にロータリパルプ出力RV −ONでロ
ータリバルブは再びフラクションコレクター側へ流出液
を流し、マーカ出力M=ONでマーカ信号を記録計に記
録し、フラクションナンバーN−N+1となり、フラク
ションナンバーNが総フラクション数N0に対し、同じ
でなければ、2のルーチンに進み、同じであればシステ
ムの動作は終了となる。
For input potential v x vL, if Yes, go to 3 collect end, if No, proceed to next step, elapsed time ΔT
> For ΔTf, if No, it returns to the original state, and if Yes, it moves forward, and the remainder N when the fraction number is divided by the number of fractions in the X-axis direction. d Yes for NX-0
If so, proceed to the Y-axis movement routine 4; if NO, proceed to the next step and enter the X-axis movement routine. When the rotary valve output RV is OFF, the rotary valve allows the effluent to flow to the drain side, and the X-axis pulse motor 14 output P M X = SIG
Move the dropper 13 by one test tube in the NTE X-axis (7) SIGN direction. Next, when the rotary pulp output RV -ON turns on, the rotary valve causes the effluent to flow to the fraction collector side again, and when the marker output M=ON, the marker signal is recorded on the recorder, and the fraction number becomes N-N+1, and the fraction number N is the total fraction. If the numbers N0 are not the same, the routine proceeds to step 2, and if they are the same, the system operation ends.

第7図はコレクトエンドル−チンで、ロータリバルブ出
力RV = OFFでドレイン側へ流出液を流し、ブザ
ー出力B=OFFでブザーをOFFにする。このときフ
ラクションナンバーをX軸方向フラクション数で割った
余りN、。a NX = Oに対し、Yesであれば、
Y軸パルスモータ15出力PMY=+1となりY軸方向
にX方向ガイド12を動かし、X軸移動方向5IGN 
−−5IGNと逆にする。一方、NOであればX軸パル
スモータ14出力PMX−3IGNとなり、X軸の5I
GN方向へ滴下器13を1つ移動させ、、N−N+1と
なり、フラクションナンバーが総フラクション数Noに
達しなければ1のルーチンになり、達していればシステ
ム動作は終了となる。
FIG. 7 shows a collect end valve. When the rotary valve output RV is OFF, the effluent flows to the drain side, and when the buzzer output B is OFF, the buzzer is turned OFF. At this time, the remainder N when dividing the fraction number by the number of fractions in the X-axis direction. If Yes for a NX = O,
Y-axis pulse motor 15 output PMY = +1, moves the X-direction guide 12 in the Y-axis direction, and moves the X-axis movement direction 5IGN
--Reverse 5IGN. On the other hand, if NO, the X-axis pulse motor 14 output becomes PMX-3IGN, and the X-axis 5I
The dropper 13 is moved by one position in the GN direction, and the result is N-N+1. If the fraction number does not reach the total number of fractions No., the routine becomes 1, and if it does, the system operation ends.

第8図はY軸移動ルーチンで、ロータリバルブ出力RV
 = OFFで流出液を流すと共に、Y軸パルスモータ
15出力PMX−+1でY軸方向にX方向ガイド12を
動かし、ロータリバルブ出力RV−ON、マーカ出力M
−ONで再び流出液をフラクションコレクター側へ流す
と共に記録計にマーカ信号を記録する。その後、X軸方
向5IGN−−3IGNと逆にし、N=N+1となって
、フラクションナンバーNが、総フラクシッンNoに達
しなければ、2のルーチンに行き、達すればシステム動
作は終了する。
Figure 8 shows the Y-axis movement routine, and the rotary valve output RV
= OFF to let the effluent flow, move the X-direction guide 12 in the Y-axis direction with the Y-axis pulse motor 15 output PMX-+1, turn the rotary valve output RV-ON, and the marker output M
-ON, the effluent flows to the fraction collector side again and the marker signal is recorded on the recorder. Thereafter, the X-axis direction is reversed to 5IGN--3IGN so that N=N+1, and if the fraction number N does not reach the total flux No., the routine goes to step 2, and if it does, the system operation ends.

「発明の効果」 本発明は、上記のように、クロマトグラフのピーク高さ
の異なる任意の2点の上限および下限を設定し、該上限
および下限との間の流出液を任意の区間で分割して集め
るようにしたフラクシロンコレクターであり、不必要の
溶液は採集せず、必要なところをより正確に取ることが
でき、分集精度が向上する。
"Effects of the Invention" As described above, the present invention sets upper and lower limits at any two points with different peak heights on a chromatogram, and divides the effluent between the upper and lower limits into an arbitrary section. This is a fraxilon collector that collects the solution without collecting unnecessary solution, allowing the necessary solution to be collected more accurately, improving collection accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のシステムの概要図、第2図は本発明の
具体的な実施例の正面図、第3図は第2図の側面図、第
4図は第2図の平面図、第5図はクロマトグラフを示す
図、゛第6図は本発明の実施例のルーチンのフローチャ
ート、第7図はコレクトエンドル−チンのフローチャー
ト、第8図はY軸移動ルーチンのフローチャート、第9
図は従来のシステムの概要図、第10図は従来のクロマ
トグラフを示す図である。
FIG. 1 is a schematic diagram of the system of the present invention, FIG. 2 is a front view of a specific embodiment of the present invention, FIG. 3 is a side view of FIG. 2, and FIG. 4 is a plan view of FIG. FIG. 5 is a diagram showing a chromatograph, FIG. 6 is a flowchart of the routine of the embodiment of the present invention, FIG. 7 is a flowchart of the collect end routine, FIG. 8 is a flowchart of the Y-axis movement routine, and FIG.
The figure is a schematic diagram of a conventional system, and FIG. 10 is a diagram showing a conventional chromatograph.

Claims (3)

【特許請求の範囲】[Claims] (1)クロマトグラフのピーク高さの、異なる任意の2
点の上限および下限を設定し、該上限および下限との間
の流出液を集めるようにしたことを特徴とするフラクシ
ョンコレクター
(1) Any two different chromatographic peak heights
A fraction collector characterized in that an upper and lower limit of a point is set, and the effluent between the upper and lower limits is collected.
(2)上限および下限との間を任意の区分に分割し各区
分ごとに流出液を分集するようにしたことを特徴とする
特許請求の範囲第1項記載のフラクションコレクター
(2) A fraction collector according to claim 1, characterized in that the area between the upper limit and the lower limit is divided into arbitrary sections, and the effluent is separated and collected for each section.
(3)上限および下限との間にクロマトグラフのピーク
高さが位置するよう上限および下限をそれぞれ任意に設
定できるようにしたことを特徴とするフラクションコレ
クター
(3) A fraction collector characterized in that the upper and lower limits can be set arbitrarily so that the chromatographic peak height is located between the upper and lower limits.
JP5869385A 1985-03-22 1985-03-22 Fraction collector Pending JPS61215962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5869385A JPS61215962A (en) 1985-03-22 1985-03-22 Fraction collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5869385A JPS61215962A (en) 1985-03-22 1985-03-22 Fraction collector

Publications (1)

Publication Number Publication Date
JPS61215962A true JPS61215962A (en) 1986-09-25

Family

ID=13091621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5869385A Pending JPS61215962A (en) 1985-03-22 1985-03-22 Fraction collector

Country Status (1)

Country Link
JP (1) JPS61215962A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138358A (en) * 1990-09-29 1992-05-12 Shimadzu Corp Sampling apparatus of liquid chromatograph
JPH04138357A (en) * 1990-09-29 1992-05-12 Shimadzu Corp Sampling apparatus of liquid chromatograph
JPH04329356A (en) * 1991-04-30 1992-11-18 Shimadzu Corp Branching device in liquid chromatograph
JPH06138115A (en) * 1991-04-25 1994-05-20 Shimadzu Corp Sample-component preparative isolation apparatus
JP2002055095A (en) * 2000-08-08 2002-02-20 Moritex Corp Refining and dispensing apparatus
CN100403025C (en) * 2003-07-08 2008-07-16 株式会社岛津制作所 Fractionating apparatus for liquid chromatography

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983053A (en) * 1982-09-28 1984-05-14 ソシエタ・アノニム・デイト:フアルムカ・ラボラトワ−ル Automatic liquid chromatography device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983053A (en) * 1982-09-28 1984-05-14 ソシエタ・アノニム・デイト:フアルムカ・ラボラトワ−ル Automatic liquid chromatography device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138358A (en) * 1990-09-29 1992-05-12 Shimadzu Corp Sampling apparatus of liquid chromatograph
JPH04138357A (en) * 1990-09-29 1992-05-12 Shimadzu Corp Sampling apparatus of liquid chromatograph
JPH06138115A (en) * 1991-04-25 1994-05-20 Shimadzu Corp Sample-component preparative isolation apparatus
JPH04329356A (en) * 1991-04-30 1992-11-18 Shimadzu Corp Branching device in liquid chromatograph
JP2002055095A (en) * 2000-08-08 2002-02-20 Moritex Corp Refining and dispensing apparatus
JP4615101B2 (en) * 2000-08-08 2011-01-19 昭光サイエンティフィック株式会社 Purification preparative equipment
CN100403025C (en) * 2003-07-08 2008-07-16 株式会社岛津制作所 Fractionating apparatus for liquid chromatography

Similar Documents

Publication Publication Date Title
EP0355546B1 (en) A method and device for the control of gaschromatographic functions
Sacks et al. Peer Reviewed: High-speed gas chromatography
CN104813164A (en) Mixer bypass sample injection for liquid chromatography
EP2362215A1 (en) Multi column chromatography system
JP5736457B2 (en) Solid phase extraction device
EP4160203A1 (en) Method for determining liquid flow rate, fraction collector and liquid chromatography system
JP6558032B2 (en) Preparative chromatograph
WO2002082071A1 (en) Automated capillary liquid chromatography small volume analysis system
Mai et al. Automated capillary electrophoresis with on-line preconcentration by solid phase extraction using a sequential injection manifold and contactless conductivity detection
CN105223264A (en) Mark method, device and application in a kind of simulation of mass spectrum quantitative test
US4095472A (en) Liquid sample dilution system
DE102015118766A1 (en) FLUID FLOW RATE METER
Šlais et al. Vacant peaks in liquid chromatography
JPS61215962A (en) Fraction collector
WO2007059363A2 (en) Dynamic flow liquid chromatography
Stroink et al. On‐line coupling of size‐exclusion chromatography and capillary zone electrophoresis via a reversed‐phase C18 trapping column for the determination of peptides in biological samples
Behnke et al. Fluorescence imaging of frit effects in capillary separations
US6546786B2 (en) Methods and apparatus for detection of radioactivity in liquid samples
US5192691A (en) Method for sensing individual ion concentrations within mixtures using sample front ion exchange elution and indirect photometric detection
Claessens et al. Evaluation of injection systems for open tubular liquid chromatography
JP2000249694A (en) Liquid chromatograph-sampling device
WO2014172172A1 (en) Signal processing for mass directed fraction collection
CN211263338U (en) Two-dimensional liquid chromatograph capable of reducing matrix effect of LC-MS
CN206330947U (en) A kind of Direct-heating column temperature modulation device
JPH04134262A (en) Specimen sampling method