JPS61215960A - Flaw detecting method for pressure container and pipes - Google Patents

Flaw detecting method for pressure container and pipes

Info

Publication number
JPS61215960A
JPS61215960A JP60056186A JP5618685A JPS61215960A JP S61215960 A JPS61215960 A JP S61215960A JP 60056186 A JP60056186 A JP 60056186A JP 5618685 A JP5618685 A JP 5618685A JP S61215960 A JPS61215960 A JP S61215960A
Authority
JP
Japan
Prior art keywords
defect
depth
evaluation
image
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60056186A
Other languages
Japanese (ja)
Other versions
JPH0243141B2 (en
Inventor
Takanori Fujishiro
藤城 能教
Reijiro Ikeno
池野 礼二郎
Hideshi Matsunaga
松永 英志
Seiya Kato
加藤 征也
Kihachiro Okubo
大窪 喜八郎
Tetsuzo Harada
原田 鉄造
Taketo Yamakawa
山川 武人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAS KYOKAI
Kawasaki Heavy Industries Ltd
Original Assignee
NIPPON GAS KYOKAI
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAS KYOKAI, Kawasaki Heavy Industries Ltd filed Critical NIPPON GAS KYOKAI
Priority to JP60056186A priority Critical patent/JPS61215960A/en
Publication of JPS61215960A publication Critical patent/JPS61215960A/en
Publication of JPH0243141B2 publication Critical patent/JPH0243141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the accuracy of the flaw estimation of a pressure container, etc., by obtaining a picture concentration in the estimation area of the prescribed dimensions from a flaw detection plane picture for each flaw detecting area, and estimating the flaw depth from the relation of the picture concentration and the flaw depth which is prepared beforehand. CONSTITUTION:The scope to detect a flaw of the inner surface of a pressure container 10 is divided into a unit area 18 of the prescribed dimensions, and an ultrasonic wave makes incident diagonally and scans from a probe 1 of a hand scanner 11. An ultrasonic echo received by the probe 1 is inputted into an ultrasonic flaw detecting device 12 and a flaw signal is transmitted. Next, at a video control device 13, the video signal of the cross section and a plane picture are outputted by a flaw signal and a position detecting device 5, and displayed at monitoring television sets 14 and 15. Next, from the picture concentration divided at an estimation area 19, a flaw depth is estimated by the relation of the picture concentration and the flaw depth prepared by experiment data beforehand. Thus, the flaw can be estimated with a good accuracy from the external part simply during the using of a pressure container, etc.

Description

【発明の詳細な説明】 上の 本発明は、圧力容器及び管類の内表面を外部より探査し
て欠陥を検出し、その深さを評価する探傷方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flaw detection method for detecting defects by inspecting the inner surfaces of pressure vessels and pipes from the outside and evaluating the depth thereof.

丈來夏技! 都市ガスホルダ、球形低温液化ガス貯槽等の圧力容器や
管類は、安全性を確認するため、所定の供用期間経過毎
に、容器壁や管壁に発生する欠陥を検査することが必要
である。圧力容器の内表面に発生する欠陥は、該圧力容
器の使用中は検査対象面を直接使用する磁粉探傷試験や
、染色浸透探傷試験等を適用することができないため、
従来は検査のため圧力容器の供用を中断し、貯蔵ガス等
を抜き、開放して検査を行なうことを余儀なくされ、多
大の時間と費用とを必要としていた。又、管類について
は、供用中はもとより、人が内部に入れない場合は、内
表面の欠陥の確実な検査は不可能であった。
Long summer technique! In order to confirm the safety of pressure vessels and pipes such as city gas holders and spherical low-temperature liquefied gas storage tanks, it is necessary to inspect the walls of the containers and pipes for defects that occur after each predetermined period of service. For defects that occur on the inner surface of a pressure vessel, magnetic particle testing that directly uses the surface to be inspected, dye penetrant testing, etc. cannot be applied while the pressure vessel is in use.
Conventionally, it has been necessary to suspend the use of the pressure vessel for inspection, drain the stored gas, etc., and open the vessel for inspection, which requires a great deal of time and expense. Furthermore, with regard to pipes, it has been impossible to reliably inspect the inner surface for defects not only while they are in service but also when no one is allowed inside.

板の表面欠陥については、圧力容器及び管類の安全上、
欠陥寸法、特にその深さが問題となるが。
Regarding the surface defects of the plate, for safety reasons of pressure vessels and piping,
The defect size, especially its depth, is an issue.

板の内部に発生した欠陥を外部から探査する方法として
は、超音波を利用した方法が知られている。
A method using ultrasonic waves is known as a method for externally detecting defects occurring inside a board.

現行の超音波探傷検査では、主として内部欠陥を対象に
、欠陥からの反射波を探傷装置のCRT上でパルス映像
として把え、そのピーク値と欠陥の拡りを示す長さを判
定量として欠陥評価を行なっている。超音波探傷試験に
よる表面欠陥検出については、原理的なものはいくつか
提案されているが、欠陥情報を乱す要因が多く、確実な
評価が行ない難いため、未だ実用の域に達していないの
が実情である。
Current ultrasonic flaw detection mainly targets internal defects, and the reflected wave from the flaw is captured as a pulse image on the CRT of the flaw detection device, and the peak value and the length indicating the spread of the defect are used as judgment quantities to determine the defect. We are conducting an evaluation. Several principles have been proposed for detecting surface defects using ultrasonic testing, but these methods have not yet reached the level of practical use because there are many factors that disturb defect information and reliable evaluation is difficult. This is the reality.

従来提案されている超音波探傷試験による代表的な欠陥
深さの推定方法としては、端部ビークエコー法、コーナ
ーエコー法等がある。しかし、端部ピークエコー法は、
実欠陥試験片の実験では、欠陥先端を必らずしも確実に
識別できない、又、コーナーエコー法は、第9図に原理
的に示す如く。
Typical defect depth estimation methods using ultrasonic flaw detection tests that have been proposed in the past include the edge beak echo method and the corner echo method. However, the edge peak echo method
In experiments using actual defect test pieces, the tip of the defect cannot always be identified reliably, and the corner echo method is as shown in principle in FIG.

ある幅を持った超音波ビームを探触子1により板2の外
表面側から入射角θで入射させ、内表面にある欠陥3で
反射したエコーを再び入射方向に戻らせる。その結果、
探触子1に戻るエコーは、あたかも超音波ビームに垂直
な幅Wの面4から反射されるような機構になる。欠陥3
の深さをdとすれば、 W=2acosθ        −(1)となり、エ
コーレベルが高く、エコーの捕捉が容易になり、欠陥に
対してどちらの側からも探傷可能である等の長所がある
An ultrasonic beam having a certain width is made incident on the outer surface of a plate 2 at an incident angle θ by a probe 1, and echoes reflected by a defect 3 on the inner surface are returned to the incident direction. the result,
The echoes returning to the probe 1 behave as if they were reflected from a surface 4 with a width W perpendicular to the ultrasound beam. Defect 3
If the depth of is d, then W = 2 a cos θ - (1), which has advantages such as a high echo level, easy capture of echoes, and the ability to detect defects from either side.

しかし、実際の板の欠陥は板の面に必らずしも垂直でな
く、又欠陥面は平滑とは限らないため、反射エコーの方
向は入射方向に平行になるとは限らず、減衰し、又(1
)式で求めた欠陥深さdには相当の誤差を生ずる。
However, actual defects in a board are not necessarily perpendicular to the surface of the board, and the defect surface is not necessarily smooth, so the direction of the reflected echo is not necessarily parallel to the incident direction, and it is attenuated. Also (1
) A considerable error occurs in the defect depth d determined by the formula.

又、超音波探触子と1位置検知器とを備えたハンドスキ
ャナにより、板の外表面を走査し、板表面から斜めに超
音波を入射させ、裏面の欠陥で反射した超音波エコーと
、位置検知器からの位置信号とより走査線に沿う断面画
像と、走査面の欠陥平面画像をCRT等の画像表示装置
に表示して。
In addition, a hand scanner equipped with an ultrasonic probe and a 1-position detector scans the outer surface of the board, and ultrasonic waves are incident obliquely from the board surface, and ultrasonic echoes reflected by defects on the back surface are detected. The position signal from the position detector, a cross-sectional image along the scanning line, and a defect plane image on the scanning plane are displayed on an image display device such as a CRT.

裏面欠陥を外部より探傷する断面画像評価法及び平面画
像評価法もよく知られている。
Cross-sectional image evaluation methods and planar image evaluation methods for externally detecting defects on the back surface are also well known.

その作画原理を第10図及び第11図により説明する。The principle of drawing will be explained with reference to FIGS. 10 and 11.

板2の表面に沿って、探触子1を、θなる入射角で超音
波を発射しながら第10図(a)。
10(a) while emitting ultrasonic waves from the probe 1 at an incident angle of θ along the surface of the plate 2.

第11図(a)において右から左へ走査し、その発射エ
コーを探触子で受け、超音波探傷器に入力し、裏面欠陥
からの反射エコーにより欠陥信号を作り、走査による移
動量に基く位置信号とともに映像制御装置に入力し、出
力された映像信号によりモニターテレビのCRT上に断
面画像及び平面画像を表示する。第10図(b)及び第
11図(b)は夫々CRT上に表示された断面画像及び
平面画像の一例である。断面画像の作画原理を第10図
(a)により説明すると、深さdの欠陥3の基部と尖端
とから探触子1迄の距離w1.W、は超音波の超音波の
発信時点とエコーの受信時点の差より求められる。
In Fig. 11(a), scan from right to left, receive the emitted echo with a probe, input it to an ultrasonic flaw detector, create a defect signal from the echo reflected from the back side defect, and detect it based on the amount of movement caused by scanning. It is input to the video control device together with the position signal, and the output video signal is used to display a cross-sectional image and a planar image on a CRT of a monitor television. FIG. 10(b) and FIG. 11(b) are examples of a cross-sectional image and a planar image displayed on a CRT, respectively. The principle of drawing a cross-sectional image will be explained with reference to FIG. 10(a). The distance w1. W is determined from the difference between the time point at which the ultrasonic wave is transmitted and the time point at which the echo is received.

その差をΔWとすると d=ΔW−cosθ        ・ (2)CRT
上の断面画像は欠陥信号と位置信号とを(2)式により
演算してdを表示する。
If the difference is ΔW, then d=ΔW−cosθ・(2) CRT
The upper cross-sectional image displays d by calculating the defect signal and position signal using equation (2).

又、平面画像の作画原理を第11図(a)により説明す
ると、欠陥3の基部から尖端迄を検知するのに探触子1
が走査した距離をYとすれば。
Furthermore, to explain the principle of drawing a planar image with reference to FIG. 11(a), the probe 1 is
Let Y be the distance scanned by.

Y=d−tanθ         −(3)探触子1
が欠陥による反射エコーを受けた場合。
Y=d-tanθ-(3) Probe 1
receives a reflected echo due to a defect.

これをそのま>CRT上に画像表示する。したがって、
CRT上には走査方向の幅がYの欠陥画像が表示される
。(3)式より逆算すれば欠陥の深さdは算出される。
This is then displayed as an image on a CRT. therefore,
A defect image having a width of Y in the scanning direction is displayed on the CRT. The depth d of the defect can be calculated by backward calculation from equation (3).

しかし、実際に試験片に放電加工により人工的に欠陥を
作って上記の方法で走査し、断面図及び平面像をCRT
上に表示すると、必らずしも(2)(3)式で計算した
通りにはならない。厚さ20■の60kg/■2高張力
鋼に放電加工により、いずれも長さ10IIIl、深さ
が0.5.1.2.4.6.8mの欠陥を作成し、上記
方法で走査し、(2)(3)式により演算して画像を表
示すると各欠陥深さに対して、断面画像及び平面画像は
夫々第12図の如くなる。
However, in practice, defects are artificially created in a test piece by electrical discharge machining, and the cross-sectional view and planar image are scanned using the above method.
When displayed above, the results are not necessarily as calculated using equations (2) and (3). Defects with a length of 10 m and a depth of 0.5 m, 1 m, 2 m, 4 m, and 6.8 m were created by electrical discharge machining on 60 kg/cm2 high-tensile steel with a thickness of 20 cm, and were scanned using the above method. , (2) and (3) and display the images. For each defect depth, the cross-sectional image and planar image become as shown in FIG. 12, respectively.

断面画像においては欠陥の深さの増加に対応して画像深
さも増加することが認められる。ただし。
In the cross-sectional images, it is observed that the image depth increases as the depth of the defect increases. however.

深さが4閣を超えると飽和傾向を呈する。深さが4m以
下であっても、画像深さは実際の欠陥深さdとは必らず
しも一致せず、平均的には実際の深さより大きく表示さ
れる。これは超音波の指向性によるボケ等に起因するも
のと考えられる。又、群状欠陥に対しては、第12図に
示すような一義的な対応は必らずしも得られず、さらに
複雑な様相を呈する。しかも実際の群状欠陥では個々に
相異る寸法、方法、倒れ角を有しており、それらの影響
を解析的に評価することは不可能である。
When the depth exceeds four cabinets, there is a tendency for saturation. Even if the depth is 4 m or less, the image depth does not necessarily match the actual defect depth d, and is displayed larger than the actual depth on average. This is thought to be due to blurring due to the directivity of the ultrasonic waves. Furthermore, for group defects, a unique correspondence as shown in FIG. 12 is not necessarily obtained, and the situation becomes more complicated. Furthermore, actual group defects have different dimensions, methods, and inclination angles, and it is impossible to analytically evaluate their influence.

平面画像の場合も、欠陥の深さが4mを超えると飽和傾
向が見られる。
Even in the case of planar images, a tendency towards saturation is seen when the depth of the defect exceeds 4 m.

上述の如く、従来の超音波探傷法によって、圧力容器内
面の欠陥を外部より探傷してその深さを評価することは
極めて困難で実用の域に達する迄には至っていなかった
As mentioned above, it is extremely difficult to detect defects on the inner surface of a pressure vessel from the outside and evaluate their depth using the conventional ultrasonic flaw detection method, and this method has not yet reached the level of practical use.

11じ口[蝮 本発明は、従来提案されている超音波を利用した板肉面
の欠陥の外部からの探傷の上記の実情にかんがみ、従来
一般に使用されている超音波探傷機を使用して圧力容器
及び管類を使用中に簡単に圧力容器及び管類内面の欠陥
を外部から探査し、実用的精度で欠陥深さを評価するこ
とのできる方法を提供することを目的とする。
11. In view of the above-mentioned circumstances of the conventionally proposed method of externally detecting flaws on the plate surface using ultrasonic waves, the present invention has been developed to detect flaws using ultrasonic flaw detectors that are commonly used in the past. It is an object of the present invention to provide a method by which defects on the inner surfaces of pressure vessels and tubes can be easily detected from the outside while the pressure vessels and tubes are in use, and the defect depth can be evaluated with practical accuracy.

パ のための 本発明の方法は上記の目的を達成させるため。for pa The method of the present invention achieves the above objectives.

超音波探触子により圧力容器又は管類外面より超音波を
斜に入射させて走査し、その反射波による欠陥信号と上
記探触子の走査移動による位置信号とより、探傷領域毎
の欠陥探傷平面画像を表示手段に表示し、評価領域の画
像中より所定寸法の評価視野における画像密度を求め、
あらかじめ実験データより作成された画像密度と欠陥深
さとの関係より評価領域の圧力容器又は管類内面の欠陥
深さを評価することを特徴とする。
Ultrasonic waves are incident obliquely from the outer surface of the pressure vessel or pipes and scanned using an ultrasonic probe, and defects are detected in each detection area using defect signals from the reflected waves and position signals from the scanning movement of the probe. Displaying a planar image on a display means, determining the image density in an evaluation field of predetermined dimensions from the image of the evaluation area,
The method is characterized in that the defect depth on the inner surface of the pressure vessel or tube in the evaluation area is evaluated based on the relationship between the image density and the defect depth created in advance from experimental data.

さらに、上記の超音波反射波による欠陥信号と位置信号
とより評価領域毎の欠陥探傷断面画像をも表示し、その
最大画像幅を求め、検出レベルに応じて予め定められた
評価係数を乗じて圧力容器内面欠陥深さを評価し、この
評価値と、前記の平面画像の評価視野における画像密度
より評価した欠陥深さの評価値とを比較して、最終評価
深さを求めるようにすれば、さらに評価確度は向上する
Furthermore, a defect detection cross-sectional image for each evaluation area is displayed using the defect signal and position signal generated by the ultrasonic reflected waves, and the maximum image width is determined and multiplied by a predetermined evaluation coefficient according to the detection level. If the pressure vessel inner surface defect depth is evaluated and this evaluation value is compared with the evaluation value of the defect depth evaluated from the image density in the evaluation field of the above-mentioned plane image, the final evaluation depth is obtained. , the evaluation accuracy is further improved.

本発明のその他の特徴は1図面を参照した以下の説明に
より明らかにされよう。
Other features of the invention will become clear from the following description with reference to one drawing.

走−几 前述の如く、欠陥平面画像評価法における欠陥平面画像
は、画像面積が欠陥の断面に比べて大きく増加し、欠陥
を超音波の入射方向に板表面に投影した影像と考えられ
る・したがって・欠陥平面画像の画像面積が、欠陥深さ
の評価量として利用できると考えられる0本発明者らは
、多くの欠陥試験体を用いて実験を行ない、得られた実
験結果より、探傷すべき範囲を適当な大きさの単位領域
に分割し、各単位領域毎にハンドスキャナでくまなく超
音波探傷を行ない、各単位領域についての欠陥平面画像
をプリンタ又はハードコピーに記録し、その画像中より
ある大きさの評価視野における最大画像密度を読み取り
、これと試験体の当該単位領域における欠陥の深さとの
関係を図に電点したところ、実験点はある範囲にバラつ
くが、点の存在領域と不在領域の間にかなり明確な境界
線を引くことができることが判った。
As mentioned above, the defect plane image in the defect plane image evaluation method has a large image area compared to the cross section of the defect, and is considered to be an image of the defect projected onto the plate surface in the direction of incidence of the ultrasonic wave.・It is thought that the image area of the defect plane image can be used as an evaluation quantity for the defect depth. The present inventors conducted experiments using many defect test specimens, and based on the experimental results obtained, it was found that Divide the area into unit areas of appropriate size, perform ultrasonic flaw detection on each unit area using a hand scanner, record a plane defect image for each unit area on a printer or hard copy, and then When the maximum image density in a certain size evaluation field of view is read and the relationship between this and the depth of the defect in the relevant unit area of the test piece is plotted, the experimental points vary within a certain range, but the area where the points exist It turns out that it is possible to draw a fairly clear boundary between the absent area and the absent area.

したがって、この線を欠陥深さ評価線として、最大画像
密度より、群状欠陥を含む欠陥の最大深さを推定するこ
とが可能となる。
Therefore, using this line as a defect depth evaluation line, it is possible to estimate the maximum depth of defects including group defects from the maximum image density.

欠陥断面画像については、前述の如く、画像の深さが原
理的には欠陥深さを示す筈であるが、多くの実験データ
によれば、画像深さの関係はかなリバラつくものの、平
均的には画像深さは欠陥深さより大きくなり、その比は
はシ一定になることが判った。したがって、この比例定
数を評価係数として、断面画像中の最大画像深さに乗す
ることにより、欠陥深さを推定することが可能となる。
Regarding defect cross-sectional images, as mentioned above, the depth of the image should in principle indicate the defect depth, but according to a lot of experimental data, the relationship between image depth varies slightly, but on average It was found that the image depth becomes larger than the defect depth, and the ratio remains constant. Therefore, by multiplying the maximum image depth in the cross-sectional image by using this proportionality constant as an evaluation coefficient, it is possible to estimate the defect depth.

上記の平面画像と断面画像との評価法を比較すると、前
者による評価が傾向として過大評価になるのに対して、
後者による評価は平均評価になる。
Comparing the above evaluation methods for planar images and cross-sectional images, the evaluation using the former tends to be overestimated, whereas the evaluation using the former tends to be overestimated.
The latter evaluation will be the average evaluation.

したがって、両評価法を組合せて最終判定を行なうこと
により評価確度を向上させることができる。
Therefore, by combining both evaluation methods and making a final determination, it is possible to improve the evaluation accuracy.

夫度銖 第1図は圧力容器の探傷に対して本発明の方法を実施す
るシステムの一例の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an example of a system for carrying out the method of the present invention for flaw detection of pressure vessels.

内面の欠陥を探傷すべき圧力容器10の表面を探傷走査
するハンドスキャナ11は、超音波を発信し、容器内面
の欠陥から反射する超音波エコーを受波する探触子1と
走査移動位置信号を発信する位置検出器5とを一体に有
する。探触子で受波した超音波エコーは超音波探傷器1
2に入力され、欠陥信号を発信する。欠陥信号は、位置
検出器5より発信される位置信号と共に映像制御装置1
3に入力され、前記(2)、(3)式に基く演算が行な
われ、断面画像、平面画像に対する映像信号を出力し、
夫々断面画像表示用モニターテレビ14、平面画像表示
用モニターテレビ15に入力され夫々のCRTに欠陥断
面画像及び欠陥平面画像が表示される。映像信号は又、
プリンタ又はハードコピー16に入力され、欠陥画像の
コピーが作製される。
A hand scanner 11 scans the surface of a pressure vessel 10 whose inner surface is to be detected for defects. A hand scanner 11 transmits ultrasonic waves and receives ultrasonic echoes reflected from defects on the inner surface of the container, and a probe 1 and a scanning movement position signal. It also has a position detector 5 that transmits a signal. The ultrasonic echo received by the probe is detected by ultrasonic flaw detector 1.
2 and sends out a defect signal. The defect signal is sent to the video control device 1 together with the position signal transmitted from the position detector 5.
3, calculations based on equations (2) and (3) are performed, and video signals for cross-sectional images and planar images are output,
The defective cross-sectional image and the defective flat image are inputted to a monitor television 14 for displaying a cross-sectional image and a monitor television 15 for displaying a flat image, respectively, and displayed on the respective CRTs. The video signal is also
A copy of the defective image is made by inputting it into a printer or hardcopy 16.

圧力容器10の内表面の欠陥を探傷すべき範囲は適当な
大きさ、例えばlooaaXloomの大きさの単位領
域に分割し、各単位領域には一貫番号が付せられる。第
2図はその一例であり、欠陥の発生し易い溶接線17に
沿って両側に単位領域18が配列され、各側夫々−貫番
号が付せられる。
The range in which defects on the inner surface of the pressure vessel 10 are to be detected is divided into unit areas of appropriate size, for example, looaaXroom, and each unit area is assigned a consistent number. FIG. 2 is an example of this, in which unit areas 18 are arranged on both sides along a weld line 17 where defects are likely to occur, and a serial number is assigned to each side.

各単位領域18は、第3図に示す如く、例えば−辺が1
001の場合は例えば10I111間隔の平行線上を概
ねこれと直角に近い角度で交わる如くジグザグ線を画い
てハンドスキャナ11で走査し、これにより、単位領域
はくまなく走査される。ジグザグ線を画く走査方向は、
欠陥の延びる方向とはゾ直交するように設定することが
必要であり、欠陥の延びる方向が予想できない場合は1
本探傷に先立って粗探傷を行なって見当をつけることが
必要である。
As shown in FIG. 3, each unit area 18 has, for example, one side
In the case of 001, for example, a zigzag line is drawn on parallel lines with an interval of 10I111 so as to intersect with the parallel lines at an angle close to a right angle, and the hand scanner 11 scans the lines, thereby thoroughly scanning the unit area. The scanning direction for drawing a zigzag line is
It is necessary to set it so that it is perpendicular to the direction in which the defect extends, and if the direction in which the defect extends is unpredictable, set it to 1.
Prior to the actual flaw detection, it is necessary to perform rough flaw detection to get an idea.

第4図(a)、 (b)は夫々、loomXloomの
ある単位領域18をハンドスキャナ11で走査し。
In FIGS. 4(a) and 4(b), a unit area 18 of roomXroom is scanned with the hand scanner 11.

得られた欠陥平面画像とこれに対応する欠陥実態の一例
である。その中である評価視野19(この例では25■
x25m)で区切ってその画像密度より、あらかじめ設
定された欠陥深さ評価線により欠陥深さを評価する。第
5図は平面画像の画像密度より欠陥深さを評価する評価
線の一例を示す図である。図中実線Aは高感度評価線で
あり、破線Bは中感度評価線である。高感度評価線は、
探傷感度をL検出レベルとした場合の評価線であり、中
感度評価線は探傷感度をM検出レベルにした場合の評価
線である。この評価線は、あらかじめ、多くの試験体を
り、M両様の検出レベルで検出し、表示された単位領域
毎に評価視野についての画像密度と欠陥深さとの関係を
第6図に示す如く横軸に欠陥深さ、縦軸に画像密度をと
った直交座標面に置点し、実験点の存在範囲と不在範囲
の境界線として求められたものである。図中・はL検出
レベルで行なった実験点、OはM検出レベルで行なった
実験点である。
This is an example of an obtained defect plane image and the actual state of the defect corresponding thereto. Among them, evaluation field of view 19 (in this example, 25 ■
x25m) and the defect depth is evaluated based on the image density using a preset defect depth evaluation line. FIG. 5 is a diagram showing an example of an evaluation line for evaluating defect depth from the image density of a planar image. In the figure, solid line A is a high-sensitivity evaluation line, and broken line B is a medium-sensitivity evaluation line. The high sensitivity evaluation line is
This is an evaluation line when the flaw detection sensitivity is set to the L detection level, and the middle sensitivity evaluation line is an evaluation line when the flaw detection sensitivity is set to the M detection level. This evaluation line is drawn in advance by detecting a large number of specimens at various detection levels, and for each displayed unit area, the relationship between image density and defect depth for the evaluation visual field is determined horizontally as shown in Figure 6. The points are placed on an orthogonal coordinate plane with the defect depth on the axis and the image density on the vertical axis, and are determined as the boundary line between the existing range and the absent range of the experimental point. In the figure, . indicates an experimental point conducted at the L detection level, and O indicates an experimental point conducted at the M detection level.

第5図を用いる欠陥深さ評価に当って、各単位領域にお
ける画像密度は10%単位で読み、検出レベルに応じた
評価線により欠陥深さを求める。画像密度の読取りは、
評価視野(この例では25■x25m)の枠を透明板に
画き、これをCRT又はコピーに表示された平面画像に
当てかい手で動かして、評価対象部を探し、その位置で
枠中の画像濃度を読取ればよい。この読取りは、枠中の
画像の占める割合を第7図に示す画像密度標準例と比較
対照して同程度のものを探すことにより、多少経験をす
れば必要な精度で容易に読取ることができる。なお、画
像密度と欠陥深さとの関係は評価線で与える他1表の形
で与えてもよい。
When evaluating the defect depth using FIG. 5, the image density in each unit area is read in units of 10%, and the defect depth is determined using an evaluation line according to the detection level. To read the image density,
Draw a frame of the evaluation field of view (25 x 25 m in this example) on a transparent plate, move it by hand against the flat image displayed on the CRT or copy to find the part to be evaluated, and at that position draw the image inside the frame. Just read the concentration. This reading can be easily done with the required accuracy with some experience by comparing and contrasting the ratio of the image in the frame with the image density standard example shown in Figure 7 to find the same level. . Note that the relationship between the image density and the defect depth may be provided in the form of a table other than the evaluation line.

欠陥断面画像の深さと実際の欠陥の深さは欠陥の発生状
況、検出レベル等によって必らずしも・一致しないこと
は先に述べた。第8図は多くの欠陥試験体について、探
傷感度を中感度(M検出レベル)と低感度(H検出レベ
ル)とに切換えて超音波探傷を行ない、CRTに断面画
像を表示し、画像深さくb)と欠陥深さくd)との関係
を横軸に欠陥深さくd)、縦軸に画像深さくb)を取っ
た座標面に置点したものの1例を示す0図中・は中感度
の場合の実験点であり、0は低感度の場合の実験点を示
す0両感度の実験点は夫々かなりバラついているが、そ
れらの平均的な直線を引くと中感度の平均線は1点鎖I
IA、低感度の平均線は破線Bの如くなる。このグラフ
は縦軸の画像深さくb)と横軸の欠陥深さくd)とは同
じ尺度で示されているから、座標の原点○を通る451
直線Cはd/b=1の場合を示す、中感度及び低感度の
実験点の平均直線A、Bの傾斜より中感度の場合はd 
/ b =0.6、低感度の場合はd / b =0.
9の関係があることが判る。したがって、平均的に云え
ば・探傷感度が中感度の場合は断面画像深さに0゜6の
評価係数を乗じ、低感度の場合は0.9の評価係数を乗
することにより欠陥深さを評価することができる。
As mentioned above, the depth of the defect cross-sectional image and the actual depth of the defect do not necessarily match depending on the defect occurrence situation, detection level, etc. Figure 8 shows how ultrasonic flaw detection is performed on many defect test specimens by switching the flaw detection sensitivity between medium sensitivity (M detection level) and low sensitivity (H detection level), displaying a cross-sectional image on a CRT, and increasing the image depth. Figure 0 shows an example of the relationship between b) and defect depth d), with the defect depth d) on the horizontal axis and the image depth b) on the vertical axis, indicating medium sensitivity. 0 is the experimental point for low sensitivity.The experimental points for both sensitivities vary considerably, but if you draw their average straight line, the average line for medium sensitivity is 1 point. Chain I
The average line for IA and low sensitivity is as shown by broken line B. In this graph, the image depth b) on the vertical axis and the defect depth d) on the horizontal axis are shown on the same scale, so 451
Straight line C shows the case when d/b = 1, and from the slope of the average straight lines A and B of the experimental points of medium and low sensitivity, d is
/ b = 0.6, d / b = 0. for low sensitivity.
It can be seen that there are 9 relationships. Therefore, on average, if the flaw detection sensitivity is medium, the depth of the cross-sectional image is multiplied by an evaluation coefficient of 0°6, and if the sensitivity is low, the defect depth is multiplied by an evaluation coefficient of 0.9. can be evaluated.

上記の平面画像評価法による評価値は過大評価になる傾
向があるのに対して、断面画像による評価値は平均的な
値になることから1両評価法による評価値より最終的評
価を行なうことにより確度が向上する。その場合、両者
の差が1+m以下の場合は大きい方の値を採り、両者の
差がI閣を超える場合は両者の平均値を評価値とするの
が実際的である。
The evaluation values obtained by the above-mentioned planar image evaluation method tend to be overestimated, whereas the evaluation values obtained from cross-sectional images are average values, so the final evaluation should be made from the evaluation values obtained using the one-car evaluation method. This improves accuracy. In that case, if the difference between the two is less than 1+m, it is practical to take the larger value, and if the difference between the two exceeds I, it is practical to use the average value of both as the evaluation value.

以上説明した実施例では、探傷走査する単位領域の大き
さを10100mmX100+とし、評価視野を25+
+wX25mmとした例を示したが、これらの寸法は必
らずしもこの寸法に限るものではない。
In the embodiment described above, the size of the unit area to be scanned for flaw detection is 10100mm x 100+, and the evaluation field of view is 25+
+w×25 mm is shown as an example, but these dimensions are not necessarily limited to these dimensions.

しかし、実験結果によれば概ねこの寸法の近傍とした場
合、良好な評価が可能であることが判った。
However, according to experimental results, it has been found that good evaluation is possible when the dimensions are approximately in the vicinity of this size.

羞−果 以上の如く、本発明によれば、従来使用されている超音
波探傷装置を利用して、従来実用化されていなかった圧
力容器及び管類の内面の欠陥、特にその深さを外部探査
により安全側に実用上許容される精度で評価することが
できるので、圧力容器及び内面の検査のため、これらの
供用を中断して開放する必要がなくなり、検査のための
時間と費用を大幅に低減させることが可能となる。
As described above, according to the present invention, defects on the inner surfaces of pressure vessels and pipes, especially their depth, which have not been put to practical use in the past, can be detected externally by using a conventionally used ultrasonic flaw detection device. Exploration enables evaluation with a practically acceptable accuracy on the safe side, so there is no need to interrupt service and open the pressure vessel and its inner surface for inspection, significantly reducing the time and cost of inspection. It is possible to reduce the

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するシステムの一例の概略
構成を示す図式図、第2図は内表面欠陥外部探傷範囲の
単位領域に分割する1例を示す平面図、第3図は単位領
域の走査要領を示す図式図、第4図(a)、 (b)は
夫々欠陥平面画像と対応する欠陥実態の1例を示す平面
図、第5図は平面画像評価法で使用される評価線の1例
を示すグラフ、第6図は上記評価線を求めるための画像
密度と欠陥深さの関係を示す多数の実験点と、これによ
り決定された評価線を示すグラフ、第7図は各評価領域
の画像密度を読取るための画像密度標準例を示す図式図
、第8図は断面画像評価法に使用する評価係数を求める
ための画像深さと欠陥深さとの関係を示す多数の実験点
とその平均直線を示すグラフ、第9図は公知の超音波に
よるコーナーエコー法による内面欠陥探傷原理を説明す
る図式図、第10図(a)、 (b)は夫々断面画像評
価法の作画原理を示す板断面図及び表示画像正面図、第
11図(a)、(b)は平面画像評価法の作画原理を示
す同様の図、第12図は放電加工による人工欠陥を設け
た供試材による各種欠陥深さに対する超音波探傷断面画
像と平面画像の一例を示す図式図である。 1・・・探触子(超音波送受波器) 2・・・板(圧力容器壁) 3・・・内面欠陥    5・・・位置検出器10・・
・圧力容器   11・・・ハンドスキャナ12・・・
超音波探傷器 13・・・映像制御装置14.15・・
・モニターテレビ 16・・・プリンタ   18・・・単位領域第2図 第3図 第5図 欠陥深さ (mm) 第8図 第10図 (a)      (b) 手続補正書動刻 昭和60年10月 22日
Fig. 1 is a schematic diagram showing a schematic configuration of an example of a system implementing the method of the present invention, Fig. 2 is a plan view showing an example of dividing the external flaw detection range into unit areas for internal surface defects, and Fig. 3 is a unit A schematic diagram showing how to scan an area, Figures 4(a) and 4(b) are plan views each showing an example of a defect plane image and the corresponding defect situation, and Figure 5 is an evaluation used in the plane image evaluation method. A graph showing one example of the line, Fig. 6 is a graph showing a large number of experimental points showing the relationship between image density and defect depth for determining the above evaluation line, and the evaluation line determined based on this, and Fig. 7 is a graph showing the evaluation line determined from this. A schematic diagram showing an image density standard example for reading the image density of each evaluation area, and Figure 8 shows a number of experimental points showing the relationship between image depth and defect depth to obtain evaluation coefficients used in the cross-sectional image evaluation method. Figure 9 is a schematic diagram explaining the principle of internal defect detection using the corner echo method using known ultrasonic waves, and Figures 10 (a) and (b) are the drawing principles of the cross-sectional image evaluation method, respectively. Figure 11 (a) and (b) are similar diagrams showing the drawing principle of the plane image evaluation method, Figure 12 is a test material with artificial defects created by electrical discharge machining. It is a schematic diagram showing an example of an ultrasonic flaw detection cross-sectional image and a planar image for various defect depths. 1... Probe (ultrasonic transducer) 2... Plate (pressure vessel wall) 3... Inner surface defect 5... Position detector 10...
・Pressure vessel 11...hand scanner 12...
Ultrasonic flaw detector 13...Video control device 14.15...
・Monitor TV 16...Printer 18...Unit area Figure 2 Figure 3 Figure 5 Defect depth (mm) Figure 8 Figure 10 (a) (b) Procedural amendment written in 1985 10 Month 22nd

Claims (6)

【特許請求の範囲】[Claims] (1)圧力容器又は管類内表面の欠陥をその外面より探
査する探傷方法において、超音波探触子により外面より
超音波を斜に入射させて走査を行ない、その反射波によ
る欠陥信号と上記探触子の走査移動による位置信号とよ
り、欠陥探傷平面画像を表示手段に表示し、画像中より
所定寸法の評価視野における画像密度を求め、あらかじ
め実験データより作成された画像密度と欠陥深さとの関
係より評価領域の圧力容器又は管類内面の欠陥深さを評
価することを特徴とする探傷方法。
(1) In a flaw detection method for detecting defects on the inner surface of a pressure vessel or pipes from the outer surface, scanning is performed by obliquely injecting ultrasonic waves from the outer surface using an ultrasonic probe, and the defect signal from the reflected wave and the above-mentioned Based on the position signal generated by the scanning movement of the probe, a defect detection plane image is displayed on the display means, and the image density in the evaluation field of predetermined dimensions is determined from the image, and the image density and defect depth created in advance from experimental data are calculated. A flaw detection method characterized by evaluating the depth of defects on the inner surface of a pressure vessel or pipes in an evaluation area based on the relationship.
(2)上記の評価視野の寸法が概ね25mm×25mm
であることを特徴とする特許請求の範囲第1項に記載の
探傷方法。
(2) The dimensions of the above evaluation field of view are approximately 25 mm x 25 mm.
The flaw detection method according to claim 1, characterized in that:
(3)上記の画像密度は評価視野内画像を標準例と対比
して10%単位で読取り欠陥深さの評価を行なうことを
特徴とする特許請求の範囲第1項に記載の探傷方法。
(3) The flaw detection method according to claim 1, wherein the image density is determined by reading the image within the evaluation field of view in 10% increments and evaluating the defect depth.
(4)圧力容器又は管類内表面の欠陥をその外面より探
査する探傷方法において、探傷すべき範囲に圧力容器又
は管類の外面より超音波を斜に入射させて走査を行ない
、その反射波による欠陥信号と上記探触子の走査移動に
よる位置信号とより、欠陥探傷平面画像と欠陥探傷断面
画像とを夫々表示手段に表示し、欠陥探傷平面画像中よ
り所定寸法の評価視野における画像密度を求め、あらか
じめ実験データより作成された画像密度と欠陥深さとの
関係より評価領域の圧力容器又は管類内面の欠陥深さを
求めこれを欠陥深さ第1評価値とし、上記の評価領域の
断面画像より最大画像深さを求め、検出レベルに応じて
予め定められた評価係数を乗じてこれを圧力容器内面欠
陥深さ第2評価値とし、上記の第1及び第2評価値を比
較して最終評価深さを求めることを特徴とする探傷方法
(4) In a flaw detection method that searches for defects on the inner surface of a pressure vessel or pipes from the outside surface, ultrasonic waves are applied obliquely to the range to be detected from the outside surface of the pressure vessel or pipes, and the reflected waves are scanned. Based on the defect signal obtained by the above-mentioned defect signal and the position signal obtained by the scanning movement of the probe, a defect detection plane image and a defect detection cross-sectional image are respectively displayed on the display means, and the image density in the evaluation field of predetermined dimensions is calculated from the defect detection plane image. The defect depth on the inner surface of the pressure vessel or pipes in the evaluation area is determined from the relationship between the image density and the defect depth created in advance from experimental data, and this is taken as the first defect depth evaluation value, and the cross section of the above evaluation area is determined. Find the maximum image depth from the image, multiply it by a predetermined evaluation coefficient according to the detection level, use this as the second evaluation value for the pressure vessel inner surface defect depth, and compare the above first and second evaluation values. A flaw detection method characterized by determining the final evaluation depth.
(5)上記画像密度は評価視野内画像を標準例と対比し
て10%単位で読取り欠陥深さの評価を行なうことを特
徴とする特許請求の範囲第4項に記載の探傷方法。
(5) The flaw detection method according to claim 4, wherein the image density is determined by reading an image within the evaluation field of view in units of 10% and evaluating the defect depth.
(6)上記の欠陥深さの第1評価値と第2評価値との差
が1mm以下の場合は大きい方の値を、両者の差が1m
mを超える場合は両者の平均値を欠陥の最終評価深さと
することを特徴とする特許請求の範囲第4項に記載の探
傷方法。
(6) If the difference between the first evaluation value and the second evaluation value of the defect depth above is 1 mm or less, the larger value will be used if the difference between the two is 1 m.
5. The flaw detection method according to claim 4, wherein when the flaw detection depth exceeds m, the average value of both is used as the final evaluation depth of the defect.
JP60056186A 1985-03-22 1985-03-22 Flaw detecting method for pressure container and pipes Granted JPS61215960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056186A JPS61215960A (en) 1985-03-22 1985-03-22 Flaw detecting method for pressure container and pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056186A JPS61215960A (en) 1985-03-22 1985-03-22 Flaw detecting method for pressure container and pipes

Publications (2)

Publication Number Publication Date
JPS61215960A true JPS61215960A (en) 1986-09-25
JPH0243141B2 JPH0243141B2 (en) 1990-09-27

Family

ID=13020074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056186A Granted JPS61215960A (en) 1985-03-22 1985-03-22 Flaw detecting method for pressure container and pipes

Country Status (1)

Country Link
JP (1) JPS61215960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249156A (en) * 1988-08-11 1990-02-19 Showa Aircraft Ind Co Ltd Method and device for detecting fault by ultrasonic wave
WO2013114545A1 (en) * 2012-01-30 2013-08-08 株式会社日立エンジニアリング・アンド・サービス Method for ultrasonic flaw detection and ultrasonic flaw-detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318270A (en) * 1992-05-21 1993-12-03 Okuma Mach Works Ltd Protecting device for sliding surface of machine tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249156A (en) * 1988-08-11 1990-02-19 Showa Aircraft Ind Co Ltd Method and device for detecting fault by ultrasonic wave
WO2013114545A1 (en) * 2012-01-30 2013-08-08 株式会社日立エンジニアリング・アンド・サービス Method for ultrasonic flaw detection and ultrasonic flaw-detection device
JPWO2013114545A1 (en) * 2012-01-30 2015-05-11 株式会社日立パワーソリューションズ Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Also Published As

Publication number Publication date
JPH0243141B2 (en) 1990-09-27

Similar Documents

Publication Publication Date Title
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
EP0536333A1 (en) Eddy current imaging system
KR100355810B1 (en) Portable ultrasonic detector
JPS61215960A (en) Flaw detecting method for pressure container and pipes
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
Komsky et al. A Computerized Imaging System for Ultrasonic Inspection of Steel Bridge Structures
JP2004325246A (en) Defect inspection apparatus
Bolland et al. The application of Hough transform on ultrasonic images for the detection and characterization of defects in non-destructive inspection
ATE426157T1 (en) METHOD FOR EVALUATION OF ULTRASOUND SIGNALS OF A DEFECT IN A WORKPIECE
JP2002243703A (en) Ultrasonic flaw detector
JPH0750074B2 (en) Eddy current flaw detector capable of thinning inspection
Lorenz et al. Ultrasonic multi-skip inspection at clamped saddle supports
CN105241955A (en) Ultrasonic testing process for thick-wall container
JPS6356947B2 (en)
JP4209220B2 (en) Ultrasonic signal processing method
JP3638174B2 (en) Method and apparatus for determining wounds to be inspected
JPH08248011A (en) Oblique ultrasonic inspection system
Murugaiyan Time of flight diffraction (TOFD), an advanced non-destructive testing technique for inspection of welds for heavy walled pressure vessels
Puchot et al. Inspection technique for above ground storage tank floors using MsS technology
Coffey et al. Fracture mechanics in design and service:‘living with defects’-Non-destructive testing: its relation to fracture mechanics and component design
JP3533506B2 (en) Ultrasonic testing of boiler pipe butt welds
Chen et al. Assessing Internal Pitting Corrosion With Encoded Ultrasonic Scanning
JPH0222695Y2 (en)
Ganhao Sizing with time-of-flight diffraction
JP2005106597A (en) Ultrasonic flaw detection method and apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term