JPS6121580B2 - - Google Patents

Info

Publication number
JPS6121580B2
JPS6121580B2 JP6461381A JP6461381A JPS6121580B2 JP S6121580 B2 JPS6121580 B2 JP S6121580B2 JP 6461381 A JP6461381 A JP 6461381A JP 6461381 A JP6461381 A JP 6461381A JP S6121580 B2 JPS6121580 B2 JP S6121580B2
Authority
JP
Japan
Prior art keywords
phosphor
afterglow
amount
cathode ray
zns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6461381A
Other languages
Japanese (ja)
Other versions
JPS57179276A (en
Inventor
Kenzo Awazu
Kazu Matsunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6461381A priority Critical patent/JPS57179276A/en
Publication of JPS57179276A publication Critical patent/JPS57179276A/en
Publication of JPS6121580B2 publication Critical patent/JPS6121580B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は表示用カラー陰極線管に適した青発光
螢光体に関し、実用的に良好な輝度および色度特
性と望ましい残光性を併せもつ物質を提供せんと
するものである。 近時、電子計算機の端末あるいはブラントシス
テムなどの制御、監視用として表示用陰極線管が
多用されている。これらの場合、その表示は数
字、アルフアベツト、カタカナ、漢字あるいは図
形であり、機能的に情報量が多く、かつ読み取り
易いカラー陰極線管が適している。たゞし、通常
のテレビ用カラー陰極線管では、連続的に移動す
る映像を写すことが主であり、各色発光の螢光体
は視覚以下の短い残光性であることが望まれる。
これに対し前述の表示用陰極線管では、ある時間
固定された文字あるいは図形を写すことが多い。
このため適度な残光を示す螢光体を用いれば画面
のチラツキを減じ、見易くなり、また送像する画
素枚数を少くすることも可能である。このことは
観視者にとつては疲労が少く、そして動作回転を
簡略化でき得る利点となる。 現在このような目的に使用されている代表的な
螢光体として緑色のZn2SiO4:Mn・As、赤色の
(Zn、Mg)3(Po42:Mnがあり、前者はB10%
(刺激停止後輝度が10%に低下する時間)が150m
sec、後者は120msecと充分満足な性能を有して
いる。しかしながら青色にはこのような残光性を
有する物質は未だ知られていず、しかも良好な輝
度、色調特性も併せ持つ螢光体を得ることは真に
困難な問題である。例えば通常用いられている
ZnS:Ag・Clが色調、輝度の点では良好である
が、付活剤であるAgが前述の緑および赤発光螢
光体における付活剤Mnのようにそのエヌルギ準
位に準安定状態がなく、そのB10%は50μsecと
非常に短い、そして母体に処理を施したり、構造
を変化させても残光特性はほとんど変らない。す
なわち、1000℃以上の高温に保持したZnS:
Ag・Cl螢光体を、急激に冷水中に投下して冷却
する、いわゆるクエンチングによつて結晶内に歪
を生じさせたり、あるいは、800〜900℃で長時間
保持して結晶の一部を立方晶形に変換させたりし
て、残光性の付与を試みたが、いずれも期待する
効果は得られない。 一方、緑に発光するZnS:Cu・Clは長い残光性
を有している。これは、光導電性螢光体によく見
られる再結合形残光が支配的なことによる。この
特性を利用してZnSに対しAgとCuの両者による
二重付活を試みた。そして電荷補償として、いず
れにも有効なClを共付活剤として添加した。活
性体重はAgでは通常青色発光螢光体として用い
られているものと同程度、Cuの場合は、Agによ
る青色発光色度が余り大きくずれない程度が望ま
しい。Cl量はAgとCuの合計量にほぼ対応する量
とする。このようにして得られた螢光体は、陰極
線による刺激中充分満足な青色の発光をおこな
い、停止後は残光時間の長い緑色発光を示す。デ
イスプレイ用陰極線管における電子線刺激では短
時間のうちにビーム走査が繰返される。したがつ
て、刺激中の強い青色発光と、ビーム通過の弱い
緑残光とは対比が強いため、緑の感覚がほとんど
ない。ただし、緑は視感度の高いスペクトルであ
るため、わずかなCu量であつてもチラツキの減
少に効果を示すものと考られる。 以下に実施例について述べる。 実施例 1 ZnS(原料粉末) 100 グラム、 AgNO3(Agとして) 0.04 〃 CuCl(Cuとして) 0.00001 〃 NaCl 2.5 〃 BaCl2 2.5 〃 以上を秤量し蒸発皿中に入れ、純水70mlを加
え、よく混合する。これを乾燥後、石英ルツボに
充填し、蓋をして電気炉中1200℃にて1時間焼成
する。炉内雰囲気は窒素とする。冷却後、取り出
し温水にて洗滌乾燥する。 実施例 2 ZnS:Ag・Cl螢光体 100 グラム CuCl(Cuとして) 0.001 〃 NH4Cl 5 〃 以上を秤量し、蒸発皿中に入れ、純水50mlを加
え、よく混合する。乾燥後、石英ルツボに移し蓋
をして電気炉にて900℃で1時間焼成した。炉内
は窒素雰囲気とする。冷却後、取り出して温水で
洗滌し、乾燥した。ここで原料に用いたZnS螢光
体はカラー陰極線管に用いられる市販の青色発光
螢光体で、そのAg含量は0.037パーセントのもの
であつた。 実施例1、2共でき上つた螢光体をX線回析に
より結晶を調べたが、いずれも六方晶形であるこ
とを確めた。そして、紫外線および陰極線刺激に
より鮮やかな青色に発光した。 ここで、Cu量の下限はこれ以下であると、残
光の強度が弱すぎてチラツキの減少が認められな
い量の0.00001パーセントであり、上限はこれ以
上の添加は青色の発光をずれさせて望ましくない
量として0.0001パーセントとする。Agの量の0.01
から0.04パーセントはこの範囲内であれば充分満
足な青色発光をおこなう添加量である。Clは同
時にフラツクスとして焼成時に添加した塩化物か
ら、含有しているAgおよびCuに対応して結晶内
に導入される。焼成温度および時間はそれほど厳
密なものではないが、800℃以下であると立方晶
形ZnSが一部生成して発好特性が変化し、また、
1300℃以上であると結晶成長が著しく、焼結状態
となつて特性が低下する。900〜1200℃が望まし
い温度範囲である。尚、焼成時間は焼成物の量に
よつて増減すべきである。 上記によつて得られた螢光体を陰極線管として
特性を測定した。その結果を表1に示す。
The present invention relates to a blue-emitting phosphor suitable for color cathode ray tubes for display purposes, and an object of the present invention is to provide a material that has both practically good brightness and chromaticity characteristics as well as desirable afterglow properties. In recent years, display cathode ray tubes have been widely used for controlling and monitoring electronic computer terminals and blunt systems. In these cases, the display is in numbers, alphabets, katakana, kanji, or figures, and a color cathode ray tube is suitable because it has a large amount of functional information and is easy to read. However, since color cathode ray tubes for ordinary televisions mainly display continuously moving images, it is desired that the phosphors emitting each color have a short afterglow below the visual range.
On the other hand, the above-mentioned display cathode ray tubes often display characters or figures that are fixed for a certain period of time.
Therefore, by using a phosphor that exhibits appropriate afterglow, flickering of the screen can be reduced, making it easier to see, and it is also possible to reduce the number of pixels for image transmission. This has the advantage of reducing fatigue for the viewer and simplifying the rotation of the motion. Typical phosphors currently used for this purpose include green Zn 2 SiO 4 :Mn・As and red (Zn, Mg) 3 (Po 4 ) 2 :Mn, the former being B 10 %
(time for brightness to drop to 10% after stimulation stops) is 150m
sec, the latter has a sufficiently satisfactory performance of 120 msec. However, there are still no known substances in blue that have such afterglow properties, and it is a truly difficult problem to obtain a phosphor that also has good brightness and color tone characteristics. For example, it is commonly used
ZnS: Ag/Cl is good in terms of color tone and brightness, but the activator Ag has a metastable state at its energy level, like the activator Mn in the green and red emitting phosphors mentioned above. However, its B 10 % is very short at 50 μsec, and the afterglow characteristics hardly change even if the matrix is treated or the structure is changed. In other words, ZnS kept at a high temperature of 1000℃ or more:
The Ag/Cl phosphor can be cooled by rapidly dropping it into cold water, which is called quenching, to create distortion in the crystal, or by holding it at 800 to 900°C for a long time to cool a part of the crystal. Attempts have been made to impart afterglow properties, such as by converting it into a cubic crystal form, but none of these methods have yielded the desired effect. On the other hand, ZnS:Cu.Cl, which emits green light, has a long afterglow property. This is due to the predominance of recombination type afterglow, which is often seen in photoconductive phosphors. Taking advantage of this property, we attempted dual activation of ZnS with both Ag and Cu. For charge compensation, Cl, which is effective in both cases, was added as a co-activator. In the case of Ag, the active weight is preferably the same as that normally used as a blue-emitting phosphor, and in the case of Cu, it is desirable that the chromaticity of blue light emitted by Ag does not deviate too much. The amount of Cl is set to approximately correspond to the total amount of Ag and Cu. The phosphor thus obtained emits a sufficiently satisfactory blue light during stimulation with cathode rays, and after the stimulation is stopped, it emits green light with a long afterglow time. In electron beam stimulation in a display cathode ray tube, beam scanning is repeated within a short period of time. Therefore, there is a strong contrast between the strong blue light emission during stimulation and the weak green afterglow when the beam passes, so there is almost no sensation of green. However, since green is a spectrum with high visibility, even a small amount of Cu is considered to be effective in reducing flicker. Examples will be described below. Example 1 100 g of ZnS (raw material powder), AgNO 3 (as Ag) 0.04 〃 CuCl (as Cu) 0.00001 〃 NaCl 2.5 〃 BaCl 2 2.5 〃 Weigh the above and put it in an evaporation dish, add 70 ml of pure water, and mix well. Mix. After drying, this was filled into a quartz crucible, covered with a lid, and fired at 1200° C. for 1 hour in an electric furnace. The atmosphere inside the furnace is nitrogen. After cooling, take it out, wash it with warm water, and dry it. Example 2 ZnS: Ag.Cl phosphor 100 g CuCl (as Cu) 0.001 NH 4 Cl 5 Weigh out the above, put it in an evaporation dish, add 50 ml of pure water, and mix well. After drying, it was transferred to a quartz crucible, covered, and fired in an electric furnace at 900°C for 1 hour. The inside of the furnace has a nitrogen atmosphere. After cooling, it was taken out, washed with warm water, and dried. The ZnS phosphor used as a raw material here was a commercially available blue-emitting phosphor used in color cathode ray tubes, and its Ag content was 0.037%. The crystals of the phosphors produced in Examples 1 and 2 were examined by X-ray diffraction, and it was confirmed that both were hexagonal crystals. It then emitted a bright blue color when stimulated with ultraviolet light and cathode rays. Here, the lower limit of the amount of Cu is 0.00001%, which is the amount below which the afterglow intensity is too weak and no reduction in flickering is observed, and the upper limit is 0.00001%, which is the amount that the addition of more than this will shift the blue light emission. The undesirable amount is 0.0001%. 0.01 of the amount of Ag
to 0.04% is the amount added that will provide sufficient blue light emission within this range. At the same time, Cl is introduced into the crystal from chloride added as a flux during firing, corresponding to the contained Ag and Cu. The firing temperature and time are not very strict, but if it is below 800°C, some cubic ZnS will be formed and the evolution characteristics will change.
If the temperature is 1,300°C or higher, crystal growth will be significant, resulting in a sintered state, resulting in decreased properties. A desirable temperature range is 900-1200°C. Incidentally, the firing time should be increased or decreased depending on the amount of the fired product. The characteristics of the phosphor obtained above were measured using a cathode ray tube. The results are shown in Table 1.

【表】 AgとCuの二重付活ZnS系螢光体の付活剤量を
限定することによつて青の色度点のずれを極力抑
え、所望の残光特性を有する螢光体を得ることが
できた。これを従来用いられている長残光性の緑
および赤螢光体と組合せ、色純度が良好で輝度の
釣合いのとれた、かつ長残光性でチラツキの少い
表示用陰極線管の製作が可能となつた。
[Table] By limiting the amount of activator in the double-activated Ag and Cu ZnS phosphor, the deviation of the blue chromaticity point can be suppressed as much as possible to create a phosphor with the desired afterglow characteristics. I was able to get it. By combining this with the conventionally used green and red phosphors with long afterglow properties, it was possible to produce display cathode ray tubes with good color purity, well-balanced brightness, long afterglow properties, and low flicker. It became possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の螢光体a、本発明螢光体bの陰
極線刺激における発光スペクトル分布図、第2図
は本発明螢光体の陰極線刺激停止後の残光の減衰
特性図である。
FIG. 1 is a diagram showing the emission spectrum distribution of the conventional phosphor a and the phosphor b of the present invention during cathode ray stimulation, and FIG. 2 is a diagram showing the afterglow attenuation characteristic of the phosphor of the present invention after the cathode ray stimulation is stopped.

Claims (1)

【特許請求の範囲】[Claims] 1 六方晶形ZnS:Ag・ClにCuを共存せしめた
二重付活形螢光体において、Agが約0.01から0.04
重量パーセントであり、Cuが約0.00001から
0.0001重量パーセントの二重付活であり、Agと
Cuを合せた化学当量にほぼ対応する量のClを共
付活剤として含むことを特徴とする螢光体。
1 Hexagonal ZnS: In a double-activated phosphor in which Cu coexists with Ag and Cl, Ag is approximately 0.01 to 0.04
weight percent, Cu from approximately 0.00001
0.0001 weight percent dual activation with Ag and
A phosphor comprising Cl as a co-activator in an amount approximately corresponding to the combined chemical equivalent of Cu.
JP6461381A 1981-04-28 1981-04-28 Fluorescent substance Granted JPS57179276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6461381A JPS57179276A (en) 1981-04-28 1981-04-28 Fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6461381A JPS57179276A (en) 1981-04-28 1981-04-28 Fluorescent substance

Publications (2)

Publication Number Publication Date
JPS57179276A JPS57179276A (en) 1982-11-04
JPS6121580B2 true JPS6121580B2 (en) 1986-05-28

Family

ID=13263282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6461381A Granted JPS57179276A (en) 1981-04-28 1981-04-28 Fluorescent substance

Country Status (1)

Country Link
JP (1) JPS57179276A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031322A1 (en) * 2002-09-30 2004-04-15 Kabushiki Kaisha Toshiba Fluorescent material for display unit, process for producing the same and color display unit including the same

Also Published As

Publication number Publication date
JPS57179276A (en) 1982-11-04

Similar Documents

Publication Publication Date Title
US4551397A (en) Zinc silicate phosphor and electron excited fluorescent display device using the phosphor
US4874985A (en) Phosphor and electron excited fluorescent display device using the same
JPS63295696A (en) Phosphor for cathode ray tube
US3970582A (en) Alpha barium zinc cadmium sulfide phosphors and method
JPS6121580B2 (en)
JPS6038431B2 (en) color cathode ray tube
JP2956123B2 (en) Green phosphor for color cathode ray tubes
EP0078538B1 (en) Blue emitting phosphor exhibiting long afterglow and electron excited display device using the same
US2966464A (en) Method of making silver activated sulphide phosphors
JPS6351480B2 (en)
JPS5879814A (en) Fluorescent substance of zinc sulfide
JPS6233267B2 (en)
JPS5917149B2 (en) Manufacturing method of cathode ray excited phosphor
JPS6144910B2 (en)
JPS637597B2 (en)
JPS637596B2 (en)
JPS60147490A (en) Fluorescent substance of sulfide
JPH072945B2 (en) Afterglow zinc sulfide phosphor
JPS59193982A (en) Color cathode ray tube having high resolving power
KR960000869B1 (en) Fluorescent material and its preparation method of the same
JPS6166786A (en) Blue color emitting fluorescent substance
JPS637595B2 (en)
JPS637593B2 (en)
JPS6154077B2 (en)
JPH0258308B2 (en)