JPS61215521A - Production of liquid crystal apparatus - Google Patents
Production of liquid crystal apparatusInfo
- Publication number
- JPS61215521A JPS61215521A JP5709085A JP5709085A JPS61215521A JP S61215521 A JPS61215521 A JP S61215521A JP 5709085 A JP5709085 A JP 5709085A JP 5709085 A JP5709085 A JP 5709085A JP S61215521 A JPS61215521 A JP S61215521A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- spacer
- thickness
- photosensitive polyimide
- photosensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13394—Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、たとえば強誘電性を有する液晶を封入した光
変調方式の液晶装置の!l遣方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to, for example, a light modulation type liquid crystal device in which a liquid crystal having ferroelectricity is sealed. Concerning how to send money.
胃散技術
従来からの液晶を用いた表示装置としては、ツイスト−
ネマティック電界効果型が一般的であり、電子式卓上計
算機、デジタル式時計等に広く用いられている。しかし
液晶材料、セル、駆動方法等の改良にも拘わらず、高速
応答性に欠け、最近時に注目されているテレビ画像表示
、ポータプルコンビエータの表示装置、光シャフタ装置
として用いられる場合にはその応答性に問題があった。Gastric San technology Conventional display devices using liquid crystals include twist
The nematic field effect type is common, and is widely used in electronic desktop calculators, digital watches, etc. However, despite improvements in liquid crystal materials, cells, driving methods, etc., it lacks high-speed response, and its response is difficult to achieve when used in TV image displays, portable combinator display devices, and optical shutter devices, which have recently been attracting attention. There was a problem with sexuality.
そこでこの応答性に関する問題を解決するため、強誘電
性カイラルスメクティック液晶を用いた光変調方式の表
示装置が用いられているが、一般にこのような強誘電性
液晶物質の特徴であるメモリ性を得るためには、液晶層
の厚みを1〜3μ−確保することが必要とされる。とこ
ろが液晶層の厚みを規定するスペーサとしては、ガラス
繊維、険化アルミナ粉、ガラスおよびプラスチック製ビ
ーズなどが従来から用いられており、このようなスペー
サでは、通常5μ−以上の厚みとなり、所望の1〜3μ
−の寸法を得ることができない、またスペーサ寸法のば
らつきに起因して、液晶層の厚さを均一に保つことは容
易ではなかった。In order to solve this problem regarding responsiveness, light modulation display devices using ferroelectric chiral smectic liquid crystals have been used, but it is generally difficult to obtain the memory properties that are characteristic of such ferroelectric liquid crystal materials. In order to achieve this, it is necessary to ensure a thickness of the liquid crystal layer of 1 to 3 μm. However, as spacers that define the thickness of the liquid crystal layer, glass fiber, toughened alumina powder, glass and plastic beads, etc. have been conventionally used, and such spacers usually have a thickness of 5μ or more, and do not meet the desired thickness. 1~3μ
It has not been easy to maintain a uniform thickness of the liquid crystal layer due to the inability to obtain dimensions of - and variations in spacer dimensions.
発明が解決しようとする問題点
要約すれば、特に強誘電性液晶物を用いる光変調方式の
表示装置において、従来のスペーサでは液晶層の厚みを
3μ−以下に確保することができず、またその厚みを均
一に保つことができない。Problems to be Solved by the Invention In summary, especially in light modulation type display devices using ferroelectric liquid crystal materials, conventional spacers cannot ensure the thickness of the liquid crystal layer to be 3μ or less; Unable to maintain uniform thickness.
したがって高速応答性および双安定性を確保することが
できなかった。Therefore, it was not possible to ensure high-speed response and bistability.
本発明の目的は、上述の技術的課題を解決し、液晶層の
厚みを3μ−以下とし、かつその厚みを均一化して高速
応答性および双安定性を確保し、これによって表示品質
の向上を図ることができるようにした液晶装置の製造方
法を提供することである。The purpose of the present invention is to solve the above-mentioned technical problems, reduce the thickness of the liquid crystal layer to 3μ or less, and make the thickness uniform to ensure high-speed response and bistability, thereby improving display quality. An object of the present invention is to provide a method for manufacturing a liquid crystal device that can achieve the following objectives.
問題点を解決するための手段
本発明は、一対の相互に対向する電極基板の少なくとも
いずれか一方の表面に感光性ポリイミドから成るスペー
サを形成し、スペーサによって電極基板間の空間が規定
され、この空間内に液晶が封入されていることを特徴と
する液晶装置の製造方法である。Means for Solving the Problems The present invention forms a spacer made of photosensitive polyimide on the surface of at least one of a pair of electrode substrates facing each other, and defines a space between the electrode substrates by the spacer. This is a method for manufacturing a liquid crystal device characterized in that a liquid crystal is sealed in a space.
作 用
本発明に従えば、スペーサの材料として感光性ポリイミ
ドを゛使用するようにしたことによって、液晶層の厚さ
を3μ−以下に確保することができ、しかもその厚み精
度の向上を図ることができる。According to the present invention, by using photosensitive polyimide as the material of the spacer, the thickness of the liquid crystal layer can be secured to 3μ or less, and the accuracy of the thickness can be improved. I can do it.
実施例
第1図は、本発明に従う液晶装置1の断面図である。光
変調方式の液晶装置1は、2枚の電極基板2,3の相互
に対向する面に透明電極4,5および配向処理が施され
た配向膜6.7を配置し、シール材9を介して相互に圧
着し、シール材9によって規定されるセル空間内にi誘
電性力イラルスメクティック液晶10を封入して構成さ
れる。Embodiment FIG. 1 is a sectional view of a liquid crystal device 1 according to the present invention. A light modulation type liquid crystal device 1 has transparent electrodes 4 and 5 and alignment films 6 and 7 that have been subjected to an alignment process disposed on mutually opposing surfaces of two electrode substrates 2 and 3, and is arranged with a sealing material 9 in between. The cell space is defined by the sealing material 9 and the dielectric smectic liquid crystal 10 is sealed in the cell space defined by the sealing material 9.
一方の電極基板3上には、スペーサ8がパターン形成さ
れており、このスペーサ8によって電極基板2,3間の
液晶層の厚みdが規定される。透明基板2,3の外部両
面側には、一対の偏光子11゜12が配置されており、
上下の透明電極4.5闇の所定電圧の印加、解除によっ
て、たとえば光シヤツタ機能を果すことができる。A spacer 8 is patterned on one electrode substrate 3, and the thickness d of the liquid crystal layer between the electrode substrates 2 and 3 is defined by this spacer 8. A pair of polarizers 11 and 12 are arranged on both external sides of the transparent substrates 2 and 3,
By applying and releasing a predetermined voltage to the upper and lower transparent electrodes 4.5, a light shutter function can be achieved, for example.
第2図を参照して、強誘電性カイラルスメクテイック液
晶10の分子10aは、矢符aで示される螺旋軸方向に
対して、ティルト角度θだけ傾いて配列した螺旋構造を
有している。この液晶分子10aは、個々の分子に直交
した方向に自発分極を有している。いま、上下の電極基
板2,3閏に、一定の臨界電場以上の電界Eを印加する
と、液晶分子10mの螺旋構造が解消されて、液晶分子
10aは総て同一方向を向く、この液晶分子10aの配
列は自発分極によるので、電算の向きE、−Hによって
2つの配列方向を持つ、液晶分子10mは、細′長い形
状をしており、長袖方向と短軸方向で屈折率の異なる複
屈折性を示すため、電極基板2゜3の上下に偏光子11
.12を直交配置することで、電界極性によってスイッ
チングを行なう光変調装置を得ることができる。この液
晶分子10mの配列の変化は、層内での分子の向きが変
わるだけであるので、ツイスY−冬マティック電界効果
型のような層W#造の変化を伴うものではなく、したが
って高速応答性を有するものである。Referring to FIG. 2, the molecules 10a of the ferroelectric chiral smectic liquid crystal 10 have a helical structure arranged at a tilt angle θ with respect to the helical axis direction indicated by the arrow a. . The liquid crystal molecules 10a have spontaneous polarization in a direction perpendicular to each molecule. Now, when an electric field E equal to or higher than a certain critical electric field is applied to the upper and lower electrode substrates 2 and 3, the helical structure of the liquid crystal molecules 10m is dissolved, and the liquid crystal molecules 10a all point in the same direction. Since the alignment is due to spontaneous polarization, the liquid crystal molecules 10m have two alignment directions depending on the calculation directions E and -H.The liquid crystal molecules 10m have a long and narrow shape, and are birefringent with different refractive indexes in the long axis direction and the short axis direction. Polarizers 11 are placed above and below the electrode substrate 2°3 to show the
.. By arranging 12 orthogonally, it is possible to obtain an optical modulation device that performs switching based on electric field polarity. This change in the arrangement of the liquid crystal molecules 10m only changes the orientation of the molecules within the layer, so it is not accompanied by a change in the layer W# structure as in the Twisted Y-Wintermatic field effect type, and therefore provides a high-speed response. It is something that has a nature.
さらに、電界を印加しない定常状態においても液晶分子
10mの螺旋ピッチより液晶層の厚さdを薄くすること
で、螺旋を解消することが可能である。この場合におい
ても、液晶分子10aの配列方向は2方向を示し、双安
定性を有す。したがつで電界Eを印加すれば、すべての
液晶分子10mは螺旋軸方向aに対してティルト角θだ
け傾斜した分子配列となり、第2図(2)に示されるよ
うな双安定状態の配向を得ることができるが、電界を切
ってもこの状態を維持し続ける。これに対して電界−E
を印加すると、すべての液晶分子10aは螺旋軸方向a
に対してティルト角−θだけ傾斜した分子配列となり、
第2図(2)に示されるような安定状態の配向を得るこ
とができるが、電界を切ってもこの状態を維持し続ける
。このように、液晶層の厚さdを薄くすることで、高速
応答性を得ると同時に、双安定性を得ることができる。Furthermore, even in a steady state where no electric field is applied, it is possible to eliminate the helix by making the thickness d of the liquid crystal layer thinner than the helical pitch of 10 m of liquid crystal molecules. In this case as well, the liquid crystal molecules 10a exhibit two alignment directions and exhibit bistability. However, if an electric field E is applied, all the liquid crystal molecules 10m become aligned with the tilt angle θ with respect to the helical axis direction a, resulting in a bistable orientation as shown in Figure 2 (2). can be obtained, but this state continues to be maintained even when the electric field is turned off. On the other hand, the electric field −E
is applied, all liquid crystal molecules 10a move in the helical axis direction a
The molecular arrangement is tilted by the tilt angle −θ,
A stable orientation as shown in FIG. 2(2) can be obtained, and this state continues to be maintained even when the electric field is turned off. In this way, by reducing the thickness d of the liquid crystal layer, high-speed response and bistability can be obtained at the same time.
以上の複屈折現象を利用した光変調方式では、第2図(
2)における入射光強度Ioと透過光強度Iの関係は、
第1式で示され、第2図(3)におけるその関係は第2
式で示される。The optical modulation method using the above birefringence phenomenon is shown in Figure 2 (
The relationship between the incident light intensity Io and the transmitted light intensity I in 2) is
The relationship in Figure 2 (3) is expressed by the second equation.
It is shown by the formula.
I=O・・・(1)
I =(I o/ 2 )・(S 1n24θ)・(S
in2g −(Δn・d/入) ) ・・
・(2)ここでΔnは強誘電性カイラルスメクティック
液晶10の屈折率異方性を表わし、dは強誘電性力イラ
ルスメクティック液晶層の厚みを表わし、θは強誘電性
力イラルスメクティフク液晶10の螺旋ティルト角度を
表すす。I=O...(1) I=(I o/2)・(S 1n24θ)・(S
in2g −(Δn・d/in) ) ・・
・(2) Here, Δn represents the refractive index anisotropy of the ferroelectric chiral smectic liquid crystal 10, d represents the thickness of the ferroelectric chiral smectic liquid crystal layer, and θ represents the ferroelectric chiral smectic liquid crystal layer. Represents 10 helical tilt angles.
第2図(2)に示される状態を、その波長λが450n
e、 550ne+およV650n−である場合につ
いてプロフシすると第3図に示されるようになり、θ=
π/8であるときの透過光強度■はΔn−dと波長^に
強く依存することが明らかである。したがって可視光波
長領域においては、Δn−dは0.2〜0.3の範囲に
設定する必要があり、これによって色着きのない良好な
表示素子を得ることがで軽る。また、強誘電性力イラル
スメクティック液晶10の屈折率異方性Δnは一般的に
0.1〜0.2程度であるので、液晶層の厚みdの値は
1〜3μ−が最適である。加えで、双安定状態を得るた
めには、液晶層の厚みdの値を強誘電気性カイフルスメ
クティγり液晶10の螺旋ピッチより小さくする必要が
あり、この点からも、液晶層の厚みdを1〜3μ−に選
ぶのが適当であることが理解される。The state shown in Fig. 2 (2) is
The profile for the case of e, 550ne+ and V650n- is shown in Figure 3, and θ=
It is clear that the transmitted light intensity ■ when π/8 is strongly dependent on Δn−d and the wavelength ^. Therefore, in the visible light wavelength region, Δn-d needs to be set in the range of 0.2 to 0.3, which makes it possible to obtain a good display element without coloring. Further, since the refractive index anisotropy Δn of the ferroelectric smectic liquid crystal 10 is generally about 0.1 to 0.2, the optimal value for the thickness d of the liquid crystal layer is 1 to 3 μ-. In addition, in order to obtain a bistable state, the value of the thickness d of the liquid crystal layer must be smaller than the helical pitch of the ferroelectric smecti liquid crystal 10, and from this point of view, the thickness of the liquid crystal layer must be It is understood that it is appropriate to choose d between 1 and 3 .mu.-.
上記強誘電性力イラルスメクテイック液晶10の例は、
#41表に示されるとおりである。An example of the ferroelectric liquid crystal 10 is as follows:
As shown in table #41.
(以下余白)
第4図は、第1図の切断面線ff−IVから見た断面図
である。電極基板3上には、その全表面に亘って3μ−
以下の均一な厚みを有するスペーサ8が点数して形成さ
れる。このスペーサ8の厚みによって液晶層の厚みdが
規定される。(The following is a margin.) FIG. 4 is a sectional view taken along the section line ff-IV in FIG. 1. On the electrode substrate 3, there is a 3μ-
A number of spacers 8 having the following uniform thickness are formed. The thickness of the spacer 8 defines the thickness d of the liquid crystal layer.
スペーサ8は、感光性ポリイミド系高分子膜から成る。The spacer 8 is made of a photosensitive polyimide polymer film.
この感光性ポリイミドの材料としては、たとえば分子中
に感光基を持つジアミン化合物と、テトラカルボン酸無
水物とを反応させて成る感光性重合体などが好適である
。A suitable material for this photosensitive polyimide is, for example, a photosensitive polymer obtained by reacting a diamine compound having a photosensitive group in its molecule with a tetracarboxylic anhydride.
このようなスペーサ8のパターン形成を打なうにあたっ
ては、その−例としてまず、スピンナー塗布法やロール
コータ法などにより、一方の電極基板3上に全面に亘っ
て感光性ポリイミドから成る高分子膜を形成する。この
ポリイミド膜の厚みは1〜3μ−の範囲とする0次に光
照射によって任意の位置のポリイミド膜を光硬化させる
0次にポリイミド膜の光硬化部分以外の残余の部分を除
去し、これによって第4図に示されるような3μ−以下
の均一な厚みを有するドツト形状のポリイミド膜が複数
個点数して形成される。To pattern the spacers 8, first, a polymer film made of photosensitive polyimide is coated over the entire surface of one electrode substrate 3 by a spinner coating method or a roll coater method. form. The thickness of this polyimide film is in the range of 1 to 3 μ-.The polyimide film is photocured at any position by irradiation with light.The remaining portion of the polyimide film other than the photocured portion is removed. As shown in FIG. 4, a plurality of dot-shaped polyimide films having a uniform thickness of 3 μm or less are formed.
このように電極基板3上に感光性ポリイミド膜から成る
スペーサ8をパターン形成した後は、配向膜7の配向処
理を行なうとともに、その外縁部13に周方向に全周に
亘ってエポキシ系接着剤などのシール材9を塗布する。After patterning the spacers 8 made of a photosensitive polyimide film on the electrode substrate 3 in this way, the alignment film 7 is subjected to an alignment process, and an epoxy adhesive is applied to the outer edge 13 of the alignment film 7 over the entire circumference in the circumferential direction. A sealing material 9 such as the following is applied.
その後、もう一方の配向処理が行なわれた電極基板2と
重ね合わせ、シール材9によって相互に接着してセル空
間を形成し、そのセル空間内に強誘電性カイラルスメク
ティック液晶10を封入する。この液晶層の厚みdは、
スペーサ8の厚みに等しく均一に3μ−以下であるため
、強誘電性力イラルスメクティック液晶10の高速応答
性および双安定性が確保されることとなる。したがって
表示品質の優れた光変調方式の液晶装置を得ることがで
きる。Thereafter, it is stacked on the other electrode substrate 2 that has been subjected to the alignment treatment and adhered to each other using a sealing material 9 to form a cell space, and a ferroelectric chiral smectic liquid crystal 10 is sealed in the cell space. The thickness d of this liquid crystal layer is
Since the thickness is equal to the thickness of the spacer 8 and uniformly 3 μm or less, the high-speed response and bistability of the ferroelectric smectic liquid crystal 10 are ensured. Therefore, a light modulation type liquid crystal device with excellent display quality can be obtained.
スペーサ8の形状は、前述のようにドツト形状に限定さ
れず、長手方向に延びる長手形状などであってもよい、
またスペーサ8の数量、形状および配置パターンは感光
性ポリイミド膜への光照射の態様によって任意に選ぶこ
とができるので、液晶セルの種類に応じた設計、変更を
きわめてスムーズに行なうことが可能である。The shape of the spacer 8 is not limited to the dot shape as described above, but may be a longitudinal shape extending in the longitudinal direction.
In addition, the number, shape, and arrangement pattern of the spacers 8 can be arbitrarily selected depending on the mode of light irradiation to the photosensitive polyimide film, so it is possible to design and change the design according to the type of liquid crystal cell very smoothly. .
前述の実施例では、感光性ポリイミドから成るスペーサ
8を強誘電性力イラルスメクティック液晶を用いた光変
調方式の液晶装置に用いるようにしたけれども、これに
限定されず、冬マチイック液晶などを用いた液晶装置に
用いるような構成であってもよい。In the above-described embodiment, the spacer 8 made of photosensitive polyimide is used in a light modulation type liquid crystal device using ferroelectric smectic liquid crystal; It may also be configured to be used in a liquid crystal device.
効 果
以上のように本発明によれば、スペーサの材料として感
光性ポリイミドを用いたことによって、液晶層の厚さを
3μ−以下に、かつ均一にすることができる。したがっ
て高速応答性および双安定性が確保され、表示品質の優
れた液晶装置を得ることができる。Effects As described above, according to the present invention, by using photosensitive polyimide as the material of the spacer, the thickness of the liquid crystal layer can be made uniform to 3 μm or less. Therefore, high-speed response and bistability are ensured, and a liquid crystal device with excellent display quality can be obtained.
第1図は本発明に従う液晶装置1の断面図、第2図は液
晶分子10mを模式的に示した図、第3図は強it′I
IL性カイフルスメクティック液晶10の透過光強度l
を説明するための図、第4図はスペーサ8が点数される
電極基板3の断面図である。
1・・・液晶装置、2,3・・・電極基板、4,5・・
・透明電極、8・・・スペーサ、10・・・強誘電性カ
イラルスメクティック液晶FIG. 1 is a cross-sectional view of a liquid crystal device 1 according to the present invention, FIG. 2 is a diagram schematically showing 10 m of liquid crystal molecules, and FIG.
Transmitted light intensity l of IL type Kaiful Smectic liquid crystal 10
FIG. 4 is a cross-sectional view of the electrode substrate 3 on which spacers 8 are provided. 1... Liquid crystal device, 2, 3... Electrode substrate, 4, 5...
・Transparent electrode, 8... Spacer, 10... Ferroelectric chiral smectic liquid crystal
Claims (1)
方の表面に感光性ポリイミドから成るスペーサを形成し
、スペーサによって電極基板間の空間が規定され、この
空間内に液晶が封入されていることを特徴とする液晶装
置の製造方法。A spacer made of photosensitive polyimide is formed on the surface of at least one of a pair of electrode substrates facing each other, a space between the electrode substrates is defined by the spacer, and a liquid crystal is sealed within this space. A method for manufacturing a liquid crystal device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5709085A JPS61215521A (en) | 1985-03-20 | 1985-03-20 | Production of liquid crystal apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5709085A JPS61215521A (en) | 1985-03-20 | 1985-03-20 | Production of liquid crystal apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61215521A true JPS61215521A (en) | 1986-09-25 |
Family
ID=13045800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5709085A Pending JPS61215521A (en) | 1985-03-20 | 1985-03-20 | Production of liquid crystal apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61215521A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59201021A (en) * | 1983-04-28 | 1984-11-14 | Canon Inc | Optical modulation element and its manufacture |
-
1985
- 1985-03-20 JP JP5709085A patent/JPS61215521A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59201021A (en) * | 1983-04-28 | 1984-11-14 | Canon Inc | Optical modulation element and its manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4695101B2 (en) | Polarizer and liquid crystal display device using the same | |
JPS58173718A (en) | Optical modulating device of liquid crystal and its production | |
JPH01302226A (en) | Ferroelectric liquid crystal element | |
KR960002689B1 (en) | Liquid crystal electro-optic device | |
KR100254857B1 (en) | Method for aligning high molecular thin film and method for aligning liquid crystal using the same | |
US5179458A (en) | Liquid crystal electro-optic device with particular relationship between retardation film drawing direction and substrate edge | |
JP2945572B2 (en) | Liquid crystal display device and manufacturing method thereof | |
JPS61215521A (en) | Production of liquid crystal apparatus | |
JPH0521056Y2 (en) | ||
JPS5651722A (en) | Liquid crystal display device | |
JPS61215523A (en) | Production of liquid crystal apparatus | |
JPH02304526A (en) | Liquid crystal display element | |
JPS61223722A (en) | Liquid crystal device | |
JPS62204230A (en) | Liquid crystal display device | |
JP3074805B2 (en) | Display element | |
JPH07239475A (en) | Orienting method of liquid crystal molecule | |
JPS62111236A (en) | Liquid crystal element | |
JPH0754382B2 (en) | Method for manufacturing liquid crystal electro-optical device | |
JPS61215522A (en) | Production of liquid crystal apparatus | |
JPH0210323A (en) | Ferroelectric liquid crystal display element | |
JPH05297374A (en) | Liquid crystal display element and its display method | |
JPS5957219A (en) | Liquid crystal display element using plastic substrate | |
JPS59116725A (en) | Liquid-crystal display element | |
JPH08136915A (en) | Ferroelectric liquid crystal display element | |
JPS61232419A (en) | Optical modulator element |