JPS61215459A - Shaft shift monitoring device for hydraulic machine - Google Patents

Shaft shift monitoring device for hydraulic machine

Info

Publication number
JPS61215459A
JPS61215459A JP60056640A JP5664085A JPS61215459A JP S61215459 A JPS61215459 A JP S61215459A JP 60056640 A JP60056640 A JP 60056640A JP 5664085 A JP5664085 A JP 5664085A JP S61215459 A JPS61215459 A JP S61215459A
Authority
JP
Japan
Prior art keywords
sensor
sensors
group
detecting
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60056640A
Other languages
Japanese (ja)
Inventor
Kentaro Ichikawa
健太郎 市川
Takafumi Nakano
中野 隆文
Tetsuya Noguchi
野口 哲哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60056640A priority Critical patent/JPS61215459A/en
Publication of JPS61215459A publication Critical patent/JPS61215459A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To enable early detection of shifting of shaft system by providing sensor group for detecting the pulsating hydraulic pressure at each portion, sensor group for detecting the temperature distribution of guide bearing in circumferential direction, sensor group for detecting the thickness of oil film at the guide bearing and sensor group for detecting the shift at each portion in the shaft system. CONSTITUTION:Sensors (a)-(e) are provided to detect the pulsating hydraulic pressures in the casing 1, the back pressure chamber 14 at the outside of runner, the back pressure 13 at the inside, the side pressure chamber 17 and the upper suction tube 8. Furthermore, a plurality of sensors (f) for detecting the temperature distribution of a guide bearing 10a in circumferential direction, sensors (g) for detecting the thickness of oil film formed between the guide bearing 10a and the spindle 7 and sensor (h) for detecting the shift of spindle 7 are provided. It is decided that the shaft has shifted if the outputs from the sensors (f)-(h) have exceeded over respective limits even though the pulsating hydraulic pressures to be detected through the sensors (a)-(e) are within respective limit thus to produce a shaft shift signal.

Description

【発明の詳細な説明】 (発明の技、両分野) 本発明は、水力機械と回転電気が一軸上に配置されると
共に固定側でも互いに連結されている水力機械装置の軸
系に複数配置されたガイド軸受の軸芯ずれを監視する軸
芯ずれ監視装置に関するものである。
Detailed Description of the Invention (Techniques of the Invention, Both Fields) The present invention provides a system in which a hydraulic machine and a rotary electric machine are arranged on one axis, and a plurality of them are arranged on the axis system of a hydraulic machine device in which a hydraulic machine and a rotary electric machine are arranged on one axis and are also connected to each other on the stationary side. The present invention relates to an axial misalignment monitoring device for monitoring axial misalignment of a guide bearing.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、全発電量に占める水力発電の比率は次第に低下し
てきたとはいうものの、火力発電や原子力発電とは異な
り、短時間での電力確保および広域にわたる出力調整が
可能であるといった長所を有しているため、その重要性
は今日でも少しも減少していない。それどころか、かか
る重要性のため水力発電機器の事故・故障は大きな社会
問題を引起こすおそれさえ含んでいるということができ
る。そこで、こうした水力発電機器には高い信頼性が要
求されることになる。この高信頼性を要求されるものの
一つに、発電機から水車に至る軸系を支持する各ガイド
軸受間の軸芯のずれ、すなわち偏心を所定値内に保つと
いう問題がある。このガイド軸受間の偏心は検出困難で
ある上、それが所定値を超えると軸系の異常振動や軸受
の損傷といった大事故に発展するおそれがある。こうし
た軸芯ずれは地下式あるいは半地下式の発電所において
経年的な地殻変動によって生ずるもので、これを防止す
る手段は無い上、変化層が小さいため軸芯ずれを短期間
で直接測定することは極めて困難であり、長期間の後に
軸芯ずれ量が相当大きくなった時点でないと検出不能の
場合が多い。場合によっては軸受損傷事故が発生しては
じめて異常が判明するということにもなりかねないおそ
れがあった。
Although the proportion of hydroelectric power generation in total power generation has been gradually decreasing in recent years, unlike thermal power generation or nuclear power generation, it has the advantage of being able to secure power in a short time and adjust output over a wide area. Its importance has not diminished even today. On the contrary, due to such importance, accidents and failures of hydroelectric power generation equipment can even be said to include the possibility of causing major social problems. Therefore, such hydroelectric power generation equipment is required to have high reliability. One of the requirements for this high reliability is the problem of keeping the misalignment, or eccentricity, between the respective guide bearings that support the shaft system from the generator to the water turbine within a predetermined value. This eccentricity between the guide bearings is difficult to detect, and if it exceeds a predetermined value, it may lead to a major accident such as abnormal vibration of the shaft system or damage to the bearings. Such axis misalignment occurs due to crustal deformation over time in underground or semi-underground power plants, and there is no way to prevent this, and since the changing layer is small, it is difficult to directly measure axis misalignment in a short period of time. is extremely difficult to detect, and is often undetectable until the amount of axis misalignment becomes considerably large after a long period of time. In some cases, there was a risk that an abnormality would only be discovered after a bearing damage accident occurred.

このような軸受事故が発生した場合、一般にその復旧に
は長時間を要し、その間の主機停止による逸失発生電力
量は実大なものとなる。そこで軸系の経年的軸芯ずれ異
常を軸芯ずれ量から直接検出するのではなく、各軸受の
温度分布、油膜厚さなどの測定値に基づいて間接的に検
出する方法が考えられる。しかし、この方法では、軸受
に生じた異常が軸芯のずれによるものか、外′lR重の
増大によるものか、あるいはセンサ自体の異常であるの
かの判別が不可能である。
When such a bearing accident occurs, it generally takes a long time to recover, and the amount of power lost due to the stoppage of the main engine during that time is enormous. Therefore, instead of directly detecting the secular misalignment abnormality of the shaft system from the amount of misalignment, a method of indirectly detecting it based on measured values such as temperature distribution and oil film thickness of each bearing may be considered. However, with this method, it is not possible to determine whether an abnormality occurring in the bearing is due to a misalignment of the shaft center, an increase in the external load, or an abnormality in the sensor itself.

このような事態は水車と発電機とからなる発電装置にお
いてのみならず、ポンプとこれを駆動する電動機とから
なるポンプ装置においても、あるいはまた揚水発電所の
ように同一装置を発電運転とポンプ運転とに可逆的に使
用する場合にも共通に起こり得ることである。
This situation occurs not only in power generation equipment consisting of a water turbine and a generator, but also in pump equipment consisting of a pump and an electric motor that drives it, or when the same equipment is used for power generation and pump operation, such as in pumped storage power plants. This can also happen when used reversibly.

〔発明の目的〕[Purpose of the invention]

本発明は以上の事情を考慮してなされたものであって、
その目的は、常時監視の中で経年的建屋移動によって生
ずる軸系の芯ずれを早期に検出し、軸受事故等の大事故
を未然に防止し得る軸芯ずれ監視装置を提供することに
ある。
The present invention has been made in consideration of the above circumstances, and
The purpose is to provide a shaft misalignment monitoring device that can detect misalignment of the shaft system caused by building movement over time during constant monitoring, and can prevent major accidents such as bearing accidents.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明は、水力機械と回転電
機が一軸上に配置されると共に固定側でも互いに連結さ
れている水力機械装置における水力機械のケーシング、
ランナ外側背圧室、ランナ内側背圧室、ランス側圧室、
および上部吸出管内の各水圧脈動を極比する第1のセン
サ群と、軸系上に配置された各ガイド軸受の周方向温度
分布を検出すべく各軸受に複数個ずつ配置された第2の
センサ群と、前記各ガイド軸受の油膜厚さを検出する第
3のセンサ群と、前記軸系の各部の振れを検出する第4
のセンサ群と、前記各センサ群の出力信号に基づいて得
られる各検出対象が予め設定された限界値を超過したと
きに出力信号を出す比較器群と、この比較器群の出力信
号に基づき前記第1のセンサ群によって検出された各水
圧脈動が各限界値を超過しないにもかかわらず前記第2
゜第3.第4の各センサ群によって検出された各検出対
象がそれぞれ各限界値を超過したときに軸芯ずれが発生
したものと判断して軸芯ずれ信号を出力する警報回路と
を具備したことを特徴とするものである。
In order to achieve the above object, the present invention provides a casing of a hydraulic machine in a hydraulic machine in which a hydraulic machine and a rotating electric machine are arranged on one axis and are also connected to each other on the fixed side;
Runner outer back pressure chamber, runner inner back pressure chamber, lance side pressure chamber,
and a first sensor group that polarizes each water pressure pulsation in the upper suction pipe, and a plurality of second sensors arranged on each bearing to detect the circumferential temperature distribution of each guide bearing arranged on the shaft system. a third sensor group that detects the oil film thickness of each guide bearing; and a fourth sensor group that detects the runout of each part of the shaft system.
a group of sensors, a group of comparators that output an output signal when each detection target obtained based on the output signal of each of the sensor groups exceeds a preset limit value, and a group of comparators that output an output signal based on the output signal of the group of comparators. Although each water pressure pulsation detected by the first sensor group does not exceed each limit value, the second
゜3rd. It is characterized by comprising an alarm circuit that determines that axis misalignment has occurred when each detection target detected by each of the fourth sensor groups exceeds each limit value, and outputs an axis misalignment signal. That is.

(発明の実施例〕 以下、図面を参照しながら本発明の一実施例を説明する
(Embodiment of the Invention) Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

まず第3図を参照して各センサの取付位置について説明
する。第3図は水車あるいはポンプ水車などの水力機械
の要部を示すものであって、いま水車運転を行なうもの
とすれば、図示していない鉄管からケーシング1に導か
れた圧力水がステイリング2を通りガイドベーン5によ
って流」調整された後、上カバー3および下カバー4に
よって形成される圧力室内に配置されたランナ6内に流
入し、位置エネルギーをトルクエネルギーとして放出し
、上部吸出管8および図示していないドラフトチューブ
を通って図示していない下池へ至る。
First, the mounting positions of each sensor will be explained with reference to FIG. Fig. 3 shows the main parts of a hydraulic machine such as a water wheel or a pump water wheel. If the water wheel is operated now, pressurized water is introduced into the casing 1 from an iron pipe (not shown) into the stay ring 2. After being adjusted by the guide vane 5, the flow flows into the runner 6 disposed within the pressure chamber formed by the upper cover 3 and the lower cover 4, releases potential energy as torque energy, and then flows into the upper suction pipe 8. It passes through a draft tube (not shown) and reaches a lower pond (not shown).

ランナ6によって得られたトルクは主軸7を介して図示
していない発電機へ伝達され、電気エネルギーに変換さ
れる。
The torque obtained by the runner 6 is transmitted to a generator (not shown) via the main shaft 7 and converted into electrical energy.

ポンプ運転の際はエネルギーの流れが上記とは全く逆に
なり、電動機によって駆動されるポンプにより下池の水
が上池に汲み上げられる。
When the pump is in operation, the flow of energy is completely reversed, and water from the lower pond is pumped into the upper pond by the pump driven by the electric motor.

上カバー3の主軸貫通部には圧力室内の水が外部へ流出
するのを防ぐために主軸封水装置9が設けられ、また、
主軸7を回転自在に支持するガイド軸受装置10が設け
られている。
A main shaft water sealing device 9 is provided at the main shaft penetrating portion of the upper cover 3 in order to prevent water in the pressure chamber from flowing out to the outside.
A guide bearing device 10 that rotatably supports the main shaft 7 is provided.

高落差機の場合は、ランナクラウン11と上カバー3と
で形成される背圧室が中間シール12によって内側背圧
室13と外側背圧室14とに分割される。その場合、中
間シール12はランナバンド15側の出口シール16と
同一半径上に配置され、それにより外側背圧室14と側
圧室17の圧力をほぼ同一化して過大なスラスト力の発
生を防止するようにする。
In the case of a high head machine, a back pressure chamber formed by the runner crown 11 and the upper cover 3 is divided by an intermediate seal 12 into an inner back pressure chamber 13 and an outer back pressure chamber 14. In that case, the intermediate seal 12 is arranged on the same radius as the outlet seal 16 on the runner band 15 side, thereby making the pressures in the outer back pressure chamber 14 and the side pressure chamber 17 almost the same and preventing the generation of excessive thrust force. Do it like this.

以上の構成を有する水力機械において、ケーシング1の
水圧脈動を検出するためにセンサaが設けられ、以下同
様に外側背圧室14、内側背圧室13、側圧室17、お
よび上部吸出管8の各水圧脈動を検出するためにセンサ
b、c、dおよびeが設けられている。ガイド軸受装置
10に含まれるガイド軸受10aの温度を検出するため
にセンサfが設けられ、ガイド軸受10aと主軸7との
間に形成される油膜の厚さを検出するためにセンサQが
設けられ、さらに主軸7の軸振れを検出するためにガイ
ド軸受装*ioの上部にセンサhが取付けられている。
In the hydraulic machine having the above configuration, a sensor a is provided to detect water pressure pulsations in the casing 1, and similarly, the sensor a is installed in the outer back pressure chamber 14, the inner back pressure chamber 13, the side pressure chamber 17, and the upper suction pipe 8. Sensors b, c, d and e are provided to detect each water pressure pulsation. A sensor f is provided to detect the temperature of the guide bearing 10a included in the guide bearing device 10, and a sensor Q is provided to detect the thickness of the oil film formed between the guide bearing 10a and the main shaft 7. Furthermore, a sensor h is attached to the upper part of the guide bearing assembly *io to detect the shaft runout of the main shaft 7.

各センサa−hはそれぞれ1個ずつしか示していないが
、必要に応じて複数個設けられる。とくに温度検出セン
サfは軸受の周方向の温度分布を検出するために周方向
に沿って複数個設けられる。
Although only one sensor a to h is shown, a plurality of sensors a to h may be provided if necessary. In particular, a plurality of temperature detection sensors f are provided along the circumferential direction in order to detect the temperature distribution in the circumferential direction of the bearing.

第1図は第3図のセンサa−hを含んで構成される本発
明の軸芯ずれ監視装置の一実施例を示すものである。各
センサa−hの検出信号21〜28はそれぞれ比較器3
1〜38に入力されると共に記録計64で記録される。
FIG. 1 shows an embodiment of the axis misalignment monitoring device of the present invention, which includes sensors a to h of FIG. 3. The detection signals 21 to 28 of each sensor a to h are sent to the comparator 3.
1 to 38 and recorded by the recorder 64.

比較器31〜38は検出信号21〜28の大きさを図示
していない基準入力端子に入力されるそれぞれの許容限
界値と比較し、前者が後者を超過したときに異常信号4
1〜48を出力する。これらの異常信号41〜48は警
報回路50へ入力されると共に表示器63および記録計
64へ入力される。警報回路50は異常信号41〜48
に基づいて軸芯ずれの。
Comparators 31 to 38 compare the magnitudes of detection signals 21 to 28 with respective allowable limit values input to reference input terminals (not shown), and when the former exceeds the latter, an abnormality signal 4 is generated.
Outputs 1 to 48. These abnormality signals 41 to 48 are input to the alarm circuit 50 as well as to the display 63 and recorder 64. The alarm circuit 50 sends abnormal signals 41 to 48
of off-axis based on.

有無を判断し、軸芯ずれがあったものと判断したときは
軸芯ずれ信号61を音響警報器62に出力して音響警報
を発するようにする。軸芯ずれ信号61は表示器63に
も入力される。表示器63は各入力信号に基づいて個々
の異常信号41〜48および軸芯ずれ信号61を必要に
応じて異常箇所と共に視覚表示する。記録計64は各セ
ンサの検出信号21〜28を記録すると共に、各比較器
31〜38からの異常信号41〜48を記録する。
The presence or absence is determined, and when it is determined that there is an axial misalignment, an axial misalignment signal 61 is output to an audible alarm 62 to issue an audible alarm. The axis deviation signal 61 is also input to a display 63. The display 63 visually displays the individual abnormality signals 41 to 48 and the axis deviation signal 61 based on each input signal together with the abnormality location as necessary. The recorder 64 records the detection signals 21-28 of each sensor, and also records the abnormal signals 41-48 from each comparator 31-38.

記録計64の記録結果は軸芯ずれを起こしたときの原因
究明に用いたり、軸芯ずれを起こしていない段階でも諸
記録対象の経時変化を調べるのに用いたりすることがで
きる。
The recording results of the recorder 64 can be used to investigate the cause of axis misalignment, or can be used to investigate changes over time in various recording objects even when axis misalignment has not occurred.

第2図は警報回路50の一構成例を示すものである。警
報回路50は実質的に論理積回路51からなっている。
FIG. 2 shows an example of the configuration of the alarm circuit 50. The alarm circuit 50 essentially consists of an AND circuit 51.

論理積回路51には、センサa〜eで検出される各部の
水圧脈動の異常信号41〜45が反転して入力されると
共に、センサf−hで検出される軸受温度、油膜厚さ、
および軸振れが異常であることを表わす異常信号46〜
48がそのまま入力され、これらの入力信号の論理積(
AND)条件で軸芯ずれ信号61を出力する。
The AND circuit 51 receives inverted abnormality signals 41 to 45 of water pressure pulsations detected by the sensors a to e, and also inputs the bearing temperature, oil film thickness, and oil film thickness detected by the sensors f to h.
and an abnormal signal 46 to indicate that the shaft runout is abnormal.
48 is input as is, and the AND of these input signals (
(AND) condition, the axis misalignment signal 61 is output.

さて、第3図の水力機械の各部ではランナ羽根やガイド
ベーン5が有限数であるために、相互干渉により必、熱
的に大なり小なりの各部位固有の水圧脈動が生ずる。こ
れら水圧脈動の絶対値は流路内に異常が生じない限りに
おいてはそう大きく変化することはない。したがって、
ケーシング1から上部吸出管8に至る流路の各部に配置
されたセンサa−eによって検出される水圧脈動の大き
さがすべて予め設定された値よりも小さければ、流路内
には特に異常は無いものと判断することができる。以上
に関して、第1図の装置ではセンサa〜eの検出信号2
1〜25を比較器31〜35で許容限界値と比較し、検
出信号21〜25で表わされる水圧脈動がそれぞれ許容
限界値以内であれば比較器31〜35は“0”信号を、
また許容限界値を超過すると“1”信号を出力する。一
方、ガイド軸受10aの周方向複数箇所に設けられた温
度検出センサfによりて検出された軸受各部位濃度聞の
差、あるいはセンサQによって検出される軸受油膜厚さ
の振幅値、さらにはガイド軸受10aの近傍に設けられ
たセンサhによって検出される軸振れの絶対値がそれぞ
れ比較器36〜38でそれぞれの許容限界値と比較され
る。この比較の結果、許容限界値以内であれば比較器3
6〜38は“O”信号を出力し、許容眼界値を超過する
と“1”信号を出力する。ここで比較器36〜38が“
1″信号を出力するということは、なんらかの外因によ
り軸系に対し特定方向の荷重成分が増加していることを
意味する。
Since each part of the hydraulic machine shown in FIG. 3 has a finite number of runner blades and guide vanes 5, mutual interference inevitably causes water pressure pulsations specific to each part to be thermally large or small. The absolute value of these water pressure pulsations does not change significantly unless an abnormality occurs in the flow path. therefore,
If the magnitude of the water pressure pulsations detected by the sensors a to e placed at each part of the flow path from the casing 1 to the upper suction pipe 8 are all smaller than a preset value, there is no particular abnormality in the flow path. It can be determined that there is no such thing. Regarding the above, in the apparatus of FIG. 1, the detection signals 2 of sensors a to e are
1 to 25 are compared with the allowable limit values by the comparators 31 to 35, and if the water pressure pulsations represented by the detection signals 21 to 25 are within the allowable limit values, the comparators 31 to 35 output a "0" signal.
Also, if the allowable limit value is exceeded, a "1" signal is output. On the other hand, the difference in the concentration of each part of the bearing detected by the temperature detection sensor f provided at multiple locations in the circumferential direction of the guide bearing 10a, or the amplitude value of the bearing oil film thickness detected by the sensor Q, The absolute value of the shaft runout detected by the sensor h provided near the shaft 10a is compared with the respective allowable limit value by the comparators 36 to 38, respectively. If the result of this comparison is within the allowable limit value, comparator 3
6 to 38 output an "O" signal, and when the allowable eye field value is exceeded, a "1" signal is output. Here, the comparators 36 to 38 are “
Outputting a 1'' signal means that the load component in a specific direction on the shaft system is increasing due to some external cause.

なお、比較器31〜38に設定される各許容限界値は運
転モード、すなわち発電モードか、揚水モードか、調相
、部分負荷、AFC(自動周波数調整)などのモードか
によって変化させることができるようにしておく。
Note that each allowable limit value set in the comparators 31 to 38 can be changed depending on the operation mode, that is, generation mode, pumping mode, phase adjustment, partial load, AFC (automatic frequency adjustment), etc. Let's do it like this.

以上の回路構成により、警報回路50は異常信号41〜
45がそれぞれ“0″であり、異常信号46〜48がそ
れぞれ“1”であるときに軸芯ずれ信号61を出力する
ことになる。換言するならば、各部の水圧脈動が正常(
−“0”)であるにもかかわらず、軸受温度差、油膜厚
さ蚤幅、および軸振れ絶対値にそれぞれ異常(−“1”
)があれば軸芯ずれを生じたものと判断することになる
With the above circuit configuration, the alarm circuit 50 outputs abnormal signals 41 to 41.
45 are each "0", and when the abnormality signals 46 to 48 are each "1", the axis misalignment signal 61 is output. In other words, the water pressure pulsation in each part is normal (
-“0”), the bearing temperature difference, oil film thickness, flea width, and shaft runout absolute value are abnormal (-“1”).
), it is determined that an axis misalignment has occurred.

軸芯ずれ信号61を生ずるまでには至らないが、それに
準するような状態の異常信号を生じた場合は表示器63
の表示内容や記録計64の記録内容から事前に異常の徴
候を察知することができる。
If an abnormal signal similar to the axis misalignment signal 61 is generated, the indicator 63 will be displayed.
Signs of abnormality can be detected in advance from the displayed contents and the recorded contents of the recorder 64.

第1図および第2図に示した回路部分はコンピュータの
ソフトウェアによって実現することもできる。また、水
力機械の構造いかんによって、水圧脈動を検出するセン
サの配W箇所や配置個数は図示の実施例以外でも実施可
能である。
The circuit portions shown in FIGS. 1 and 2 can also be implemented by computer software. Furthermore, depending on the structure of the hydraulic machine, the locations and number of sensors for detecting water pressure pulsations may be arranged in locations other than those shown in the figures.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、従来検出が非常に困
難であった、経年的建屋移動によって生じる軸系の芯ず
れ現象を、常時監視を通して主機を停止することなく、
しかも異常の初期段階から検出することが可能となり、
また、異常の発生箇所や原因究明の容易な信頼性の高い
軸芯ずれ監視装置を提供することができる。
As described above, according to the present invention, it is possible to detect misalignment of the shaft system caused by building movement over time, which has been extremely difficult to detect in the past, without stopping the main engine through constant monitoring.
Moreover, it becomes possible to detect abnormalities from the early stages.
Further, it is possible to provide a highly reliable axis misalignment monitoring device that allows easy investigation of the location and cause of abnormality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図の装置における警報回路の詳細を示すブロック図
、第3図は第1図におけるセンサの取付装置を示す水力
機械の要部の縦断面図である。 1・・・ケーシング、6・・・ランナ、7・・・主軸、
8・・・上部吸出管、10a・・・ガイド軸受、13・
・・ランナ内側背圧室、14・・・ランナ外側背圧室、
17・・・ランナ側圧室、a−h・・・センサ、31〜
38・・・比較器、50・・・警報回路、62・・・音
響警報器、63・・・表示器、64・・・記録計。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing details of the alarm circuit in the device shown in Fig. 1, and Fig. 3 is a hydraulic machine showing the sensor mounting device in Fig. 1. FIG. 1...Casing, 6...Runner, 7...Main shaft,
8... Upper suction pipe, 10a... Guide bearing, 13.
...Runner inner back pressure chamber, 14...Runner outer back pressure chamber,
17...Runner side pressure chamber, a-h...sensor, 31~
38...Comparator, 50...Alarm circuit, 62...Audio alarm, 63...Display device, 64...Recorder.

Claims (1)

【特許請求の範囲】 1、水力機械と回転電機が一軸上に配置されると共に固
定側でも互いに連結されている水力機械装置における水
力機械のケーシング、ランナ外側背圧室、ランナ内側背
圧室、ランナ側圧室、および上部吸出管内の各水圧脈動
を検出する第1のセンサ群と、軸系上に配置された各ガ
イド軸受の周方向温度分布を検出すべく各軸受に複数個
ずつ配置された第2のセンサ群と、前記各ガイド軸受の
油膜厚さを検出する第3のセンサ群と、前記軸系の各部
の振れを検出する第4のセンサ群と、前記各センサ群の
出力信号に基づいて得られる各検出対象が予め設定され
た限界値を超過したときに出力信号を出す比較器群と、
この比較器群の出力信号に基づき前記第1のセンサ群に
よって検出された各水圧脈動が各限界値を超過しないに
もかかわらず前記第2、第3、第4の各センサ群によっ
て検出された各検出対象がそれぞれ各限界値を超過した
ときに軸芯ずれが発生したものと判断して軸芯ずれ信号
を出力する警報回路とを具備してなる水力機械装置の軸
芯ずれ監視装置。 2、前記警報回路の軸芯ずれ信号により音響警報を発す
る音響警報器を設けたことを特徴とする特許請求の範囲
第1項記載の軸芯ずれ監視装置。 3、前記比較器群および前記警報回路の出力を表示する
表示器を設けたことを特徴とする特許請求の範囲第1項
記載の軸芯ずれ監視装置。 4、前記各センサ群および前記比較器群の出力を記録す
る記録計を設けたことを特徴とする特許請求の範囲第1
項記載の軸芯ずれ監視装置。
[Scope of Claims] 1. A casing of a hydraulic machine, a back pressure chamber outside the runner, a back pressure chamber inside the runner, in a hydraulic machine device in which a hydraulic machine and a rotating electric machine are arranged on one axis and are also connected to each other on the fixed side. A first group of sensors detects water pressure pulsations in the runner side pressure chamber and the upper suction pipe, and a plurality of sensors are placed on each bearing to detect the circumferential temperature distribution of each guide bearing placed on the shaft system. a second sensor group, a third sensor group that detects the oil film thickness of each of the guide bearings, a fourth sensor group that detects the runout of each part of the shaft system, and an output signal of each of the sensor groups; a group of comparators that output an output signal when each detection target obtained based on the above exceeds a preset limit value;
Each water pressure pulsation detected by the first sensor group based on the output signal of this comparator group is detected by each of the second, third, and fourth sensor groups even though it does not exceed each limit value. An axis misalignment monitoring device for a hydraulic mechanical device, comprising an alarm circuit that determines that an axis misalignment has occurred when each detection target exceeds each limit value, and outputs an axis misalignment signal. 2. The axial misalignment monitoring device according to claim 1, further comprising an audible alarm that issues an audible alarm based on the axial misalignment signal from the alarm circuit. 3. The axis misalignment monitoring device according to claim 1, further comprising a display that displays the outputs of the comparator group and the alarm circuit. 4. Claim 1, further comprising a recorder for recording the outputs of each of the sensor groups and the comparator group.
Axis misalignment monitoring device described in Section 1.
JP60056640A 1985-03-20 1985-03-20 Shaft shift monitoring device for hydraulic machine Pending JPS61215459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056640A JPS61215459A (en) 1985-03-20 1985-03-20 Shaft shift monitoring device for hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056640A JPS61215459A (en) 1985-03-20 1985-03-20 Shaft shift monitoring device for hydraulic machine

Publications (1)

Publication Number Publication Date
JPS61215459A true JPS61215459A (en) 1986-09-25

Family

ID=13032933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056640A Pending JPS61215459A (en) 1985-03-20 1985-03-20 Shaft shift monitoring device for hydraulic machine

Country Status (1)

Country Link
JP (1) JPS61215459A (en)

Similar Documents

Publication Publication Date Title
EP3615809B1 (en) System and method for monitoring operating condition in a hydraulic turbocharger
US5520061A (en) Multiple axis transducer mounting collar
JPS61215459A (en) Shaft shift monitoring device for hydraulic machine
JPS6243538A (en) Abnormality monitor for rotating part of rotary machine
Skrimpas et al. Detection of generator bearing inner race creep by means of vibration and temperature analysis
Poll et al. Hydraulic power plant machine dynamic diagnosis
JP2002071532A (en) Reaction measuring device for mechanical element
Stegemann et al. Monitoring and vibrational diagnostic of rotating machinery in power plants
Li et al. Blade interaction forces in a mixed-flow pump with vaned diffuser
JPS5925167B2 (en) How to inspect rotating shaft systems by measuring bearing reaction force
JPS6023622A (en) Observing device of thrust bearing
JPS6187979A (en) Water turbine runner fault detector
JPS62162775A (en) Automatic supervisory device for hydraulic plant
JP2005147669A (en) Distributed power source vibration diagnosis system
JPS58201040A (en) Device for diagnosing fault of composite cycle plant shaft
Kesztejna et al. Experimental Study of the Influence of Backflow Control on Pump Hydraulic-Mechanical Interaction
JPH04315016A (en) Device for monitoring vibration abnormality for rotary machine
Jackson et al. Design, Testing And Commissioning Of A Synchronous Motor-Gear-Axial Compressor.
Haupt et al. Blade vibration on centrifugal compressors: Fundamental considerations and initial measurements
JP3510497B2 (en) Turbo molecular pump
Castleberry et al. A dedicated compressor monitoring system employing current signature analysis
JPH0712117A (en) Thrust detection device of a rotary machine
JPS59155599A (en) Pump bearing monitoring system
JPS61116007A (en) Differential expansion monitor in turbine
JPS63111599A (en) Automatic spindle deformation monitor for hydraulic machine