JPS61215415A - Exhaust manifold of internal-combustion engine - Google Patents

Exhaust manifold of internal-combustion engine

Info

Publication number
JPS61215415A
JPS61215415A JP5714685A JP5714685A JPS61215415A JP S61215415 A JPS61215415 A JP S61215415A JP 5714685 A JP5714685 A JP 5714685A JP 5714685 A JP5714685 A JP 5714685A JP S61215415 A JPS61215415 A JP S61215415A
Authority
JP
Japan
Prior art keywords
ceramic
internal
pipe
exhaust gas
exhaust manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5714685A
Other languages
Japanese (ja)
Inventor
Harumichi Hino
治道 樋野
Yoshimasa Tanaka
義政 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5714685A priority Critical patent/JPS61215415A/en
Publication of JPS61215415A publication Critical patent/JPS61215415A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide constructive strength for an internal ceramic-fiber pipe on the outside of which an external pipe made of light alloy is formed, by having ceramic particles stick to the internal peripheral surface of the ceramic fiber. CONSTITUTION:An exhaust manifold 1 is made up in such a manner that an internal pipe 2 shaped in the specified manifold form is integrally cast in an external pipe 3 made of aluminum alloy. The internal pipe 3 is mainly made of ceramic fiber and the internal peripheral face 5 which is a face exposed to exhaust gas is provided with higher structual strength by sintering ceramic particles 6 to the crossing parts of and the spacings of the ceramic fiber 4. When an engine is operated, the internal peripheral face 5 of the internal pipe 2 is kept exposed to high-temperature exhaust gas, however, the internal peripheral face 5 has high structual strength as mentioned above so that the ceramic fiber 4 can be prevented from separation and detachment from said face due to thermal stress, pulsated pressure of exhaust gas and vibration.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は内燃機関の排気マニホールドの改良に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to improvements in exhaust manifolds for internal combustion engines.

(従来の技術) 内燃機関の排気マニホールドには、第10図〜第12図
に示すようにセラミック材を用いて構成したものがある
(特願昭58〜189472号)。
(Prior Art) Some exhaust manifolds for internal combustion engines are constructed using ceramic materials as shown in FIGS. 10 to 12 (Japanese Patent Application No. 189472).

すなわち、排気マニホールドの本体1を内側管体2と外
側管体3による二重構造として、内側管体2をセラミッ
ク5iW1により多岐管状に形成する一方、外側管体3
はアルミ合金等で内mw体2を一体的に鋳包むようにし
て鋳造したものである。
That is, the main body 1 of the exhaust manifold has a double structure consisting of an inner pipe body 2 and an outer pipe body 3, and the inner pipe body 2 is formed into a manifold shape from ceramic 5iW1, while the outer pipe body 3
The inner mw body 2 is integrally cast with aluminum alloy or the like.

この場合セラミック製の内側管体2はシリカ系水溶液等
のバインダーを含浸させた薄いセラミック繊維のベーパ
ーを積層して成形するペーパー積層法や、セラミック繊
維を懸濁させた溶液中に金網の型を入れて、サクション
により成形する真空成形法により、半割り又は一体品と
して作られる。
In this case, the ceramic inner tube 2 can be formed by a paper lamination method in which thin ceramic fiber vapor impregnated with a binder such as a silica-based aqueous solution is laminated, or by a wire mesh mold in a solution in which ceramic fibers are suspended. It can be made in half or as a single piece using the vacuum forming method, in which the product is placed in a container and formed using suction.

このような構成による排気マニホールド1はセラミック
材とアルミ合金の組合わせのため、軽量で断熱性に優れ
ているのが特徴である。
The exhaust manifold 1 having such a configuration is characterized by being lightweight and having excellent heat insulation properties because it is a combination of ceramic material and aluminum alloy.

(発明が解決しようとする問題点) ところが、上記の排気マニホールド1の場合、内側管体
2を構成するセラミック繊維の密痩が金属や固体セラミ
ックに比べて小さいうえ、その内周面が直接排気ガスに
さらされることから、長時間使用すると熱応力の繰り返
しや排気ガスの脈動圧、振動などにより、排気ガスに接
する表面のセラミック繊維がはく離や脱落を起こすこと
があり、内側管体2の内周面は耐久性の点で他の部分に
比べて不利な環境となっていた。
(Problem to be Solved by the Invention) However, in the case of the above-mentioned exhaust manifold 1, the density of the ceramic fibers constituting the inner tube body 2 is smaller than that of metal or solid ceramic, and the inner circumferential surface is not directly exposed to the exhaust gas. Since it is exposed to gas, if it is used for a long time, the ceramic fibers on the surface in contact with the exhaust gas may peel or fall off due to repeated thermal stress, pulsating pressure of exhaust gas, vibration, etc. The surrounding surface was in a disadvantageous environment compared to other parts in terms of durability.

内側管体2の耐久性を増すには、セラミック繊維の密度
を高めて、内周面をはく離しにくい構造とすれば良いの
であるが、従来のセラミック成形法では困難であった。
In order to increase the durability of the inner tubular body 2, it is possible to increase the density of the ceramic fibers and create a structure that makes the inner peripheral surface difficult to peel off, but this has been difficult with conventional ceramic molding methods.

本発明は上記問題点に鑑みてなされたもので、損傷を受
けやすい内側管体の内周面を構造的に強化した排気マニ
ホールドを提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an exhaust manifold in which the inner circumferential surface of the inner pipe body, which is susceptible to damage, is structurally reinforced.

(問題点を解決するための手段) 本発明はセラミック繊維からなる内側管体の外側に軽合
金製造の外側管体を形成してなる排気マニホールドにお
いて、内側管体のセラミック繊維の内周表面にセラミッ
ク粒子を結合させている。
(Means for Solving the Problems) The present invention provides an exhaust manifold in which an outer tube made of a light alloy is formed on the outside of an inner tube made of ceramic fibers. It combines ceramic particles.

また、この排気マニホールドの内側管体はセラミック繊
維製の管体!I材の内面からセラミック粒子懸濁液を吸
引含浸させ、焼結して得る。
Also, the inner tube of this exhaust manifold is made of ceramic fiber! It is obtained by sucking and impregnating a ceramic particle suspension from the inner surface of material I and sintering it.

(作用) セラミック粒子をセラミック繊維、主として内周表面に
含浸させ、焼結することにより、セラミックl1F4の
交叉部及び間隙にセラミック粒子が結合し、強固な骨格
構造を形成するため、排気マニホールド内面が強化され
、排気ガスによる繊維のはく離などの損傷を受けにくく
なる。
(Function) By impregnating the ceramic fibers, mainly the inner circumferential surface, with ceramic particles and sintering, the ceramic particles bond to the intersections and gaps of the ceramic l1F4, forming a strong skeletal structure, so that the inner surface of the exhaust manifold is This strengthens the structure and makes it less susceptible to damage such as fiber delamination caused by exhaust gas.

(実施例) 第1図〜第9図に本発明の実施例を示す。(Example) Embodiments of the present invention are shown in FIGS. 1 to 9.

第1図において1は本発明になる排気マニホールドであ
り、その断面は第2図及び第3図のように構成される。
In FIG. 1, 1 is an exhaust manifold according to the present invention, and its cross section is constructed as shown in FIGS. 2 and 3.

すなわち、所定の多岐管状に形成された内側管体2がア
ルミ合金の外側管体3により一体に鋳包まれている。内
側管体3はセラミックll維4を基材として構成され、
排気ガス1iIit面となる内周面5には、セラミック
繊N4の交叉部及び間隙にセラミック粒子6が焼結し、
第4図に示すような強固な骨格構造が形成される。そし
て、内側管体2に占めるセラミック粒子6の密度は内周
面5に近いほど高く、遠いほど低くなり、外周面7近く
では第5図に示すようにセラミック繊維のみで構成され
る。
That is, an inner tube 2 formed into a predetermined manifold shape is integrally cast with an outer tube 3 made of aluminum alloy. The inner tube body 3 is composed of ceramic II fibers 4 as a base material,
Ceramic particles 6 are sintered at the intersections and gaps of the ceramic fibers N4 on the inner circumferential surface 5, which is the exhaust gas surface.
A strong skeletal structure as shown in FIG. 4 is formed. The density of the ceramic particles 6 occupying the inner tubular body 2 is higher as it is closer to the inner peripheral surface 5 and lower as it is farther away, and as shown in FIG.

上記の内側管体2は第6図に示す成型装置10を用いて
製造する。成型IIF10は軸線に沿って分割可能な二
重の筒状に形成され、内筒11には注入孔12が設けら
れ、外筒13には図示されない吸引ポンプへとつながる
排水孔14が設けられる。また、内筒11と外ti13
とはフィルタ15を介した多数の細孔16により連通し
、成!!:!装置10の外側には振動機構17が連結さ
れる。
The above-mentioned inner tube body 2 is manufactured using a molding apparatus 10 shown in FIG. The molded IIF 10 is formed into a double cylinder shape that can be divided along the axis, and the inner cylinder 11 is provided with an injection hole 12, and the outer cylinder 13 is provided with a drainage hole 14 connected to a suction pump (not shown). In addition, the inner cylinder 11 and the outer cylinder 13
is communicated with through a large number of pores 16 through a filter 15, and is formed! ! :! A vibration mechanism 17 is connected to the outside of the device 10.

内側管体2の製造には、まず、セラミック繊維4を分散
させた懸濁液(でんぷん及びコロイダルシリ力添加)を
注入孔12から成型装置10内に注入し、注入孔12を
閉じて振動機構17を作動させつつ、図示されない吸引
ポンプにより排水孔14から排水すると、前記懸濁液中
の水分が細孔16を通って溝入孔14から流入し懸濁液
中のセラミック繊1114がフィルタ15上に堆積して
内側管体2の基材となる。
To manufacture the inner tube body 2, first, a suspension in which ceramic fibers 4 are dispersed (starch and colloidal silicone added) is injected into the molding device 10 through the injection hole 12, the injection hole 12 is closed, and the vibration mechanism is injected. 17 is operated and water is drained from the drainage hole 14 by a suction pump (not shown), water in the suspension flows through the pores 16 and from the grooved hole 14, and the ceramic fibers 1114 in the suspension are absorbed into the filter 15. It is deposited on top and becomes the base material of the inner tube body 2.

次にこの基材を成型装置10内で熱風乾燥した後、セラ
ミック粒子6の懸濁液(でんぷん追加)を注入孔12か
ら注入し、前記基材の時と同様の工程で吸引する。する
と、セラミック粒子6はセラミック繊114のmsに含
浸し、懸濁液の水分は排水孔14から排出される。
Next, this base material is dried with hot air in the molding device 10, and then a suspension of ceramic particles 6 (added with starch) is injected through the injection hole 12 and sucked in the same process as for the base material. Then, the ceramic particles 6 impregnate the ms of the ceramic fibers 114, and the water in the suspension is discharged from the drainage holes 14.

その際、セラミック粒子6の体積率は、第7図に示すよ
うに内側管体2の内周面5寄りの部分はど大きく、外周
面7に近づくにつれて減少するが、この体積率及び分布
状態は、第8図の表中、実施例1及び2に示すようにセ
ラミック粒子6の粒径とセラミック粒子懸濁液の濃度に
よりコント0−ルすることができる。
At this time, as shown in FIG. 7, the volume fraction of the ceramic particles 6 is large near the inner circumferential surface 5 of the inner tube body 2, and decreases as it approaches the outer circumferential surface 7. can be controlled by the particle size of the ceramic particles 6 and the concentration of the ceramic particle suspension, as shown in Examples 1 and 2 in the table of FIG.

このようにしてセラミック粒子6を含浸させた基材を成
型装置10を分割して取り出し、高温で焼結すれば上記
したような内側管体2が得られる。
The base material impregnated with the ceramic particles 6 in this manner is taken out from the molding device 10 in parts and sintered at high temperature to obtain the inner tube body 2 as described above.

以上のように構成された排気マニホールド1は、内側管
体2の内周面5がエンジンの運転時には常に高温の排気
ガスに蛎されるが、該内周面5はセラミック織、14に
セラミック粒子6が焼結して強固な骨格構造を形成して
いるため、熱応力や排気ガスの脈動圧、振動などに対し
て、セラミック繊11t4がはく離やa12gを起こし
にくい。第9図の表は、第8図の表における内側管体2
の実施例1及び2とセラミック製の内側管体2の従来例
について、エンジンの断続運転により損傷度の比較試験
を行なった結果である。この表ではセラミック粒子6を
含浸焼結した実施例1及び2は、従来のセラミックm維
4のみによる内側管体2や、同様の内側管体2の排気ガ
ス暴露面5にアルミナ粒子を溶射したものに比べて、損
傷の深さ、面積ともに著しく少ない。
In the exhaust manifold 1 configured as described above, the inner circumferential surface 5 of the inner pipe body 2 is always exposed to high-temperature exhaust gas during engine operation. 6 is sintered to form a strong skeleton structure, the ceramic fibers 11t4 are unlikely to peel off or a12g due to thermal stress, pulsating pressure of exhaust gas, vibration, etc. The table in FIG. 9 shows the inner tube 2 in the table in FIG.
These are the results of a comparative test of the degree of damage by intermittent operation of the engine between Examples 1 and 2 and a conventional example of the inner tube body 2 made of ceramic. In this table, Examples 1 and 2 in which ceramic particles 6 were impregnated and sintered were the inner pipe body 2 made only of the conventional ceramic m fibers 4, or the similar inner pipe body 2 with alumina particles sprayed on the exhaust gas exposed surface 5. Both the depth and area of the damage are significantly smaller than the original.

また、内側管体2はセラミック粒子6を内周面5から含
浸させるため、外周面7に近い部分はセラミック繊[4
のみで構成されている。したがってセラミック繊維4の
隙間の空気の高い断熱性により、内側管体2の内周面5
に作用する排気ガスの高熱は遮断され、内側管体2の外
側には及ばない。
In addition, since the inner tubular body 2 is impregnated with ceramic particles 6 from the inner circumferential surface 5, the portion near the outer circumferential surface 7 is filled with ceramic fibers [4].
It consists only of Therefore, due to the high heat insulation properties of the air in the gaps between the ceramic fibers 4, the inner circumferential surface 5 of the inner tube body 2
The high heat of the exhaust gas acting on the inner pipe body 2 is blocked and does not reach the outside of the inner pipe body 2.

一方、外側管体3はアルミ合、金鋳物であるため、軽量
かつ剛性強度も充分である。
On the other hand, since the outer tubular body 3 is made of aluminum alloy or gold casting, it is lightweight and has sufficient rigidity and strength.

(発明の効果)゛ 以上のように本発明はセラミック5ieiを用いた内側
管体の周囲に軽合金製の外側管体を形成した排気マニホ
ールドにおいて、内側管体の内周面からセラミック粒子
を吸引含浸させ、焼結させるようにしたため、排気ガス
に直接曝される内周面にセラミック繊維とセラミック粒
子の強固な骨格構造が形成され、排気ガスに対してセラ
ミック繊維がはく離やII傷を起こしにくくなり、排気
マニホールドの耐久性が向上する。
(Effects of the Invention) As described above, the present invention provides an exhaust manifold in which an outer tube made of a light alloy is formed around an inner tube made of ceramic 5iei, which sucks ceramic particles from the inner peripheral surface of the inner tube. Because it is impregnated and sintered, a strong skeletal structure of ceramic fibers and ceramic particles is formed on the inner peripheral surface that is directly exposed to exhaust gas, making it difficult for the ceramic fibers to peel off or suffer II scratches due to exhaust gas. This improves the durability of the exhaust manifold.

また、セラミック粒子は内側管体の排気ガス暴露面とな
る内周面にに近いところほど多く分布し、外周面近くは
セラミック繊維のみで構成されるため、外側管体を構成
する軽合金鋳物を鋳造する際に内部に鋳込む内側管体と
の間で生じる熱収縮差を吸収することができ、したがっ
て、本発明はセラミック材と軽合金を組合わせた排気マ
ニホールドの有する、軽量かつ断熱性の高いという利点
には何ら影響を及ぼさずに良好な鋳造性を維持できると
いう効果を有する。
In addition, ceramic particles are more distributed near the inner circumferential surface of the inner tube that is exposed to exhaust gas, and the area near the outer circumferential surface is composed only of ceramic fibers, so the light alloy casting that makes up the outer tube is It is possible to absorb the difference in heat shrinkage that occurs between the inner pipe body and the inner pipe body that is cast inside during casting, and therefore, the present invention has a lightweight and heat-insulating exhaust manifold that combines ceramic materials and light alloys. It has the effect that good castability can be maintained without affecting the advantage of being high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す排気マニホールドの正面
図、第2図は同じ<A−A断面図、第3図は同じ<B−
8断面図であり、第4図は第3図のC部詳細図、第5図
は同じくD部詳細図である。 また、第6図は本発明の排気マニホールドを構成する内
側管体の製造方法の実施例を示す断面図、第7図は第6
図のE部詳細図である。 第8図はセラミック粒子の分布について2つの実施例を
比較した表であり、第9図は第8図の実施例と従来のセ
ラミック5IIl製の内fI4管体とを損傷度試験によ
り比較した結果を示す表である。 第10図はセラミック繊維製品の内側管体とアルミ合金
による外側管体とを組合わせた排気マニホールドの従来
例を示す正面図、第111i!!lは同じ<F−F断面
図、第12図は同じ<G−G断面図である。 1・・・排気マニホールド、2・・・内側管体、3・・
・外側管体、4・・・セラミック繊維、5・・・内周面
、6・・・セラミック粒子。
Fig. 1 is a front view of an exhaust manifold showing an embodiment of the present invention, Fig. 2 is a sectional view of the same <A-A, and Fig. 3 is the same <B-
FIG. 4 is a detailed view of section C in FIG. 3, and FIG. 5 is a detailed view of section D in FIG. Further, FIG. 6 is a sectional view showing an embodiment of the method for manufacturing the inner tube constituting the exhaust manifold of the present invention, and FIG.
It is a detailed view of part E in the figure. Fig. 8 is a table comparing the two embodiments regarding the distribution of ceramic particles, and Fig. 9 is a comparison result of the damage test between the embodiment shown in Fig. 8 and the conventional inner fI4 tube made of ceramic 5IIl. This is a table showing FIG. 10 is a front view showing a conventional example of an exhaust manifold that combines an inner tube made of ceramic fiber and an outer tube made of aluminum alloy, No. 111i! ! 1 is the same <FF sectional view, and FIG. 12 is the same <GG sectional view. 1... Exhaust manifold, 2... Inner pipe body, 3...
- Outer tubular body, 4... Ceramic fiber, 5... Inner peripheral surface, 6... Ceramic particles.

Claims (1)

【特許請求の範囲】[Claims] セラミック繊維からなる内側管体の外側に軽合金性の外
側管体を形成してなる排気マニホールドにおいて、内側
管体のセラミック繊維の内周表面にセラミック粒子を結
合させたことを特徴とする排気マニホールド。
An exhaust manifold comprising a light alloy outer tube formed on the outside of an inner tube made of ceramic fibers, characterized in that ceramic particles are bonded to the inner peripheral surface of the ceramic fibers of the inner tube. .
JP5714685A 1985-03-20 1985-03-20 Exhaust manifold of internal-combustion engine Pending JPS61215415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5714685A JPS61215415A (en) 1985-03-20 1985-03-20 Exhaust manifold of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5714685A JPS61215415A (en) 1985-03-20 1985-03-20 Exhaust manifold of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61215415A true JPS61215415A (en) 1986-09-25

Family

ID=13047425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5714685A Pending JPS61215415A (en) 1985-03-20 1985-03-20 Exhaust manifold of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61215415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006909A1 (en) * 1995-08-16 1997-02-27 Northrop-Grumman Corporation Ceramic liner infiltrated with pre-ceramic polymer resin
JP2018204484A (en) * 2017-06-01 2018-12-27 株式会社豊田自動織機 Intake manifold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149178A (en) * 1979-05-02 1980-11-20 Ishikawajima Harima Heavy Ind Composite heat resisting structure of ceramic and metal and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149178A (en) * 1979-05-02 1980-11-20 Ishikawajima Harima Heavy Ind Composite heat resisting structure of ceramic and metal and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006909A1 (en) * 1995-08-16 1997-02-27 Northrop-Grumman Corporation Ceramic liner infiltrated with pre-ceramic polymer resin
JP2018204484A (en) * 2017-06-01 2018-12-27 株式会社豊田自動織機 Intake manifold

Similar Documents

Publication Publication Date Title
US4884400A (en) Exhaust manifold of internal combustion engine
KR100712002B1 (en) Honeycomb structure
JP2006281134A (en) Honeycomb structure
WO2006126507A1 (en) Honeycomb structure body
WO2004096414A1 (en) Honeycomb structure body
JPS61215415A (en) Exhaust manifold of internal-combustion engine
JPS60184950A (en) Internal-combustion engine having wall face of combustion chamber applied with heat insulating material
JPH0384308A (en) Exhaust gas channel of burner
JPS61268850A (en) Construction of heat insulating wall in heat engine or the like
JP4616752B2 (en) Honeycomb structure
JPS6081420A (en) Exhaust manifold of internal-combustion engine
JP2769698B2 (en) Method for producing molded article mainly composed of inorganic fiber
JP3073105B2 (en) Manufacturing method of light alloy composite member
JP2699586B2 (en) Adiabatic piston and method of manufacturing the same
JPS6187835A (en) Production of fiber reinforced metallic material
JPH01176285A (en) Cellular ceramic body
US20220252022A1 (en) Acoustic attenuation structure made of composite material and method for manufacturing same
JPH03297549A (en) Heat insulating material for cast-in and manufacture thereof
JPH04234547A (en) Reentrant type piston and constructing method
JPH05200525A (en) Production of heat insulating member
JPH02175064A (en) Cylinder head
JP4119348B2 (en) Manufacturing method of high strength metal matrix composite
WO2007049338A1 (en) Honeycomb filter
JPS61261645A (en) Heat insulating wall structure of thermal engine
JPH07180606A (en) Fiber reinforced metal made piston