JPS6121535B2 - - Google Patents

Info

Publication number
JPS6121535B2
JPS6121535B2 JP55009338A JP933880A JPS6121535B2 JP S6121535 B2 JPS6121535 B2 JP S6121535B2 JP 55009338 A JP55009338 A JP 55009338A JP 933880 A JP933880 A JP 933880A JP S6121535 B2 JPS6121535 B2 JP S6121535B2
Authority
JP
Japan
Prior art keywords
acid
active hydrogen
ether
reaction
alkylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55009338A
Other languages
Japanese (ja)
Other versions
JPS56108724A (en
Inventor
Ju Oohashi
Yoshio Sone
Takashi Hida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSO YUKA KOGYO KK
Original Assignee
NITSUSO YUKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUSO YUKA KOGYO KK filed Critical NITSUSO YUKA KOGYO KK
Priority to JP933880A priority Critical patent/JPS56108724A/en
Priority to DE19803025434 priority patent/DE3025434C2/en
Publication of JPS56108724A publication Critical patent/JPS56108724A/en
Publication of JPS6121535B2 publication Critical patent/JPS6121535B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、モノ又はポリグリコールジエーテル
の製造法に関する。詳しくはエーテルにフツ化ホ
ウ素触と有機活性水素化合物の存在下、アルキレ
ンオキシドを開環挿入せしめて、モノ又はポリグ
リコールジエーテルを製造する方法に関する。 モノ又はポリグリコールジエーテルは従来から
活性水素を有しない極性溶剤として広範囲に使用
されているが、これらのものの製造方法に関し
て、従来からウイリアムソン法、ホルマール水添
分解法(例えば特開53―130612)等種々の方法が
提案されているなかで、新製造法としてルイス酸
存在下、鎖状エーテルにアルキレンオキシドを開
環挿入せしめる方法(特開昭53―34709)が提案
されているが、本発明は同様にアルキレンオキシ
ド挿入反応法に関するものである。 特開昭53―34709によれば、開環挿入法は一段
にて経済的に目的とするモノ又はポリグリコール
ジエーテルが得られ、しかも廃棄物が発生するこ
となく工業的に種々の利点を有する方法である
が、重大な欠点としてアルキレンオキシドに由来
する環状二量体が多量副生し、しかもエーテルに
対するアルキレンオキシド比を大にすると二量体
生成比が更に増大する傾向があつた、そのために
環状二量体副生量を少なくするにはエーテルに対
するアルキレンオキシド比を小さくする必要に追
られ、かようにすれば目的とするモノ又はポリグ
リコールジエーテルの生成量も少なくなり装置効
率を悪くし又未反応原料の回収に多くの経費がか
さむ結果となる。 本発明者らはかかる欠点のない方法について種
種検討を重ねた結果三フツ化ホウ素と有機活性水
素化合物の共存下反応することにより本発明の目
的を容易に達成できることを見出し、本発明に到
達したものである。 即ち、本発明は下記一般式〔〕にて示される
エーテル化合物と、 CH3O〔(CH2nO〕oR1 ……〔〕 〔ここにR1は炭素数1〜9のアルキル基、又
はアリールアルキル基を、mは1〜3の整数を、
およびnは0、1又は2を示す。〕 下記一般式〔〕にて示されるアルキレンオキ
シドを 〔ここにR2は水素原子、炭素数1〜3のアル
キル基、又はハロアルキル基を示す。〕 反応せしめてアルキレングリコールジエーテル
を製造するに際し、三フツ化ホウ素と有機活性水
素化合物の共存下反応することを特徴とするアル
キレングリコールジエーテルの製造方法である。 一般に有機活性水素化合物とルイス酸はプロト
ン酸を形成し、酸強度あるいは触媒作用機構を変
えることは知られているが、本発明の有機活性水
素化合物の作用の詳細は不明である。前記特開昭
53―34709においては反応は活性水素を有する化
合物、例えばアルコール、アミン、メルカプタ
ン、グリコール、又は水の除去下に行うのが有利
とされていた。しかしながら、驚くべきことに
は、本発明の如き有機活性水素化合物の添加は三
フツ化ホウ素単独の場合に比べて、オキシアルキ
レン鎖分布を変えずに、アルキレンオキシドに由
来する環状二量体の副生を大巾に抑制する効果が
あり、又三フツ化ホウ素はアルキレンオキシドを
アルデヒドの如きカルボニル化合物に異性化した
り、またこの化合物が自己縮合乃至アルキレンオ
キシド付加などの副反応を促進し、その結果反応
後の精製を困難にするものであるが、本発明の有
機活性水素化合物の添加はこれらの副反応を抑制
するといいう波及効果をも有している。 本発明に用いる三フツ化ホウ素は三フツ化ホウ
素単独乃至エーテル錯体の形で用いることがで
き、この錯体のエーテルは本発明の原料エーテル
と同一又は異なつていてもよい。他の成分である
有機活性水素化合物はヘテロ原子に結合した水素
を有する有機化合物が巾広く用いられるが、特
に、アルコール類、カルボン酸類、フエノール
類、スルホン酸類、メルカプタン類、ヒドロキサ
ム酸類及びオキシム類が好ましく、具体的にはア
ルコール類としてはメタノール、エタノール、第
1級〜第3級ブタノール、アミルアルコール、オ
クタノール、高級アルコール等の脂肪族第1級〜
第3級アルコール、及び芳香族基、ハロゲン、ア
ルコキシ基等各種置換基を有するこれらのアルコ
ール、エチレングリコール、プロピレングリコー
ル、1,4―ブタンジオール、1,6―ヘキシン
ジオール、グリセリン、ベンタエリスリトール、
ポリビニルアルコール等各種の脂肪族多価アルコ
ール及び、芳香族基、ハロゲン、アルコキシ基等
各種の置換基を有するこれらの多価アルコール、
置換又は非置換のシクロペンタノール、シクロヘ
キサノール、シクロヘキサンジオール等各種の脂
環式アルコールが挙げられる。 カルボン酸類としてはギ酸、酢酸、プロピオン
酸、ヘキサンモノカルボン酸、ヘキサンジカルボ
ン酸、デカモノカルボン酸、デカンジあるいはポ
リカルボン酸、アジピン酸、ドデカンジ酸、ポリ
アクリル酸、ポリメタアクリル酸、等各種の脂肪
酸及びハロゲン、アルコキシ、芳香族基等各種の
基で置換されたこれら脂肪酸誘導体、安息香酸、
テレフタル酸、ナフタレンカルボン酸等芳香族カ
ルボン酸及びその置換誘導体あるいはカルボン酸
型の各種イオン交換樹脂(カルボン酸型で使用)
が好ましい具体例として挙げられる。フエノール
類としては石炭酸、ハイドロキノン、カテコー
ル、レゾルシノール、ナフトール等各種のフエノ
ール及びその置換誘導体を挙げることができる。 又スルホン酸類としてはメタンスルホン酸、エ
タンスルホン酸、プロパンスルホン酸等、脂肪族
モノあるいはポリスルホン酸及び芳香族基、ハロ
ゲ、アルコキシ等各種基で置換された、上記スル
ホン酸、ベンゼンスルホン酸、トルエンスルホン
酸、キシレンスルホン酸、ナフタレンスルホン酸
等各種芳香族スルホン酸及びこれらの置換誘導体
あるいはスルホン酸型各種イオン交換樹脂(スル
ホン酸型で使用)が好ましい例として挙げられる
ことが出来る。 又、メルカプタン類としては前記具体例のアル
コールの酸素原子を硫黄原子にかえた化合物を挙
げることが出来る。 ヒドロキサム酸としてはアセトヒドロキサム
酸、プロピオンヒドロキサム酸、ラウロヒドロキ
サム酸、ミリストヒドロキサム酸、ステアロキサ
ム酸等各種のヒドロキサム酸及び置換誘導体が好
ましい例として挙げられる。 これら化合物は反応系外であらかじめ三フツ化
ホウ素と混合して反応系内に供給してもよいし、
別々に反応系に供給して系内で実質的に調整され
るよう行つてもよい。 本発明で使用されるエーテル化合物は前述の一
般式〔〕にて示される化合物であり、これらの
エーテルと後述のアルキレンオキシドとの反応性
の傾向はR1については炭素数が少ない方が、m
およびnも小さい方が活性強い傾向がみられる。
これらは総じて原料エーテルの塩基性度に基ずく
ものとみられるが、詳細は定かでない。 前記一般式〔〕にて示される化合物としては
ジメチルエーテル、メチルエチルエーテル、メチ
ルプロピルエーテル、メチルブチルエーテル、メ
チルペンチルエーテル、メチルヘキシルエーテ
ル、メチルヘプチルエーテル、メチルオクチルエ
ーテル、メチルノニルエーテルの如きジアルキル
エーテル類;メチルベンジルエーテル、メチルβ
―フエニルエチルエーテルの如きアリールアルキ
ルメチルエーテル類;ジメチルホルマール、メチ
ルエチルホルマールの如きジアルキルホルマール
類;エチレングリコールジメチルエーテル、エチ
レングリコールメチルエチルエーテル、ジエチレ
ングリコールジメチルエーテルの如きグリコール
ジアルキルエーテル類を挙げることが出来る。 本発明で使用されるアルキレンオキシドは前述
の一般式〔〕にて示される化合物であり、具体
的にはエチレンオキシド、1,2―ブチレンオキ
シド、エピクロルヒドリン等を例示することが出
来る。 なかでもエチレンオキシド、エピクロルヒドリ
ンが好ましい。 本発明の実施態様について説明すれば、触媒は
あらかじめ調整するか又は反応系に生成すること
ができる。反応溶媒は触媒調整及び反応熱の除去
等反応と進めるに有利であれば使用することがで
きシクロメタン、ニトロメタン、クロルベンゼ
ン、ベンゼン、酢酸エステルの如き反応不活性な
溶媒、あるいは反応生成物そのものを使用するこ
とができる。又、反応方法は連続式又は回分式で
行うことができ、その際出発エーテル及びアルキ
レンオキシドの蒸気圧に応じて加圧なしにあるい
は加圧下に反応を行うことができる。 反応雰囲気は触媒活性維持、安全、副反応の防
止の上から窒素などの触媒及び反応に不活性なガ
ス雰囲気下で行なうことが望ましい。反応温度は
0〜100℃特に20〜70℃が好ましい。反応速度は
触媒濃度、反応温度、原料エーテルおよびアルキ
レンオキシドの種類により異なるが、所望の結果
を得るよう適当に固子水準を組み合わすことがで
きる。 触媒量は原料エーテルに対しフツ化ホウ素とし
て0.01〜10モルパーセント特に0.05〜5モルパー
セントが好ましい。又他の触媒成分の有機活性水
素化合物の量はフツ化水素1モル当り活性水素官
能基の数で0.1〜5倍、特に0.2〜2倍が好まし
い。 生成物の組成は原料エーテルとアルキレンオキ
シドのモル比率によつて調整することができる。
即ち生成物は統計的分布を持つた重合度の異なる
アルキレングリコールジエーテルの混合物である
が、平均的に重合度の低いものを得るには原料エ
ーテルに対しアルキレンオキシドの割合を少なく
すればよく、重合度の高いものを得るためにはそ
の割合を大きくすればよい。その際原料及び触
媒、さらに必要なら溶媒を一括して仕込み反応を
行うこともできるが安全上アルキレンオキシドを
遂次添加して反応せしめることが好ましい。 このようにして得られた反応液は蒸留により精
製して所望の単一組成のアルキレングリコールジ
エーテルあるいは混合物を得ることができる。そ
の際高重合度のものを蒸留する場合は薄膜蒸留方
式を採用することができる。あるいは反応液のア
ルカリ水洗のみで塩析分離した有機層をそのまま
蒸留することなく目物として得ることができる。 以下実施例をもつて本発明を説明する。 実施例 1 窒素で充分置換した500mlオートクレーブに三
フツ化ホウ素ジメチルエーテル錯体0.002モル
(0.25g)とメチルアルコール0.002モル(0.07
g)をジクロルメタン40gに溶解した後仕込み、
ついで冷却下ジメチルエーテル1モル(46g)を
導入した。50℃で撹拌下30分でエチレンオキシド
1モル(44g)を添加反応せしめ、更に30分撹拌
も行なつた。 反応後、室温迄冷却し、未反応のジメチルエー
テルをドライアイス―メタノール冷却により捕集
回収した。残つた反応液をガスクロマトグラフイ
ーにより分析して表―1の結果を得た。
The present invention relates to a method for producing mono- or polyglycol diethers. Specifically, the present invention relates to a method for producing a mono- or polyglycol diether by ring-opening and inserting an alkylene oxide into an ether in the presence of a boron fluoride catalyst and an organic active hydrogen compound. Mono- or polyglycol diethers have conventionally been widely used as polar solvents without active hydrogen, but the methods for producing these substances have been conventionally known, such as the Williamson method and the formal hydrogenolysis method (for example, JP-A No. 53-130612). ), among which a new production method has been proposed in which an alkylene oxide is ring-opened and inserted into a chain ether in the presence of a Lewis acid (Japanese Patent Application Laid-open No. 53-34709). The invention likewise relates to an alkylene oxide insertion reaction process. According to JP-A No. 53-34709, the ring-opening insertion method can economically obtain the desired mono- or polyglycol diether in one step, and has various industrial advantages without generating waste. However, a major drawback of this method was that a large amount of cyclic dimer derived from alkylene oxide was produced as a by-product, and when the ratio of alkylene oxide to ether was increased, the dimer production ratio tended to further increase. In order to reduce the amount of cyclic dimer by-product, it is necessary to reduce the ratio of alkylene oxide to ether, and in this way, the amount of the desired mono- or polyglycol diether produced will also be reduced, reducing the efficiency of the equipment. Moreover, recovery of unreacted raw materials results in increased costs. The present inventors have repeatedly investigated various methods that do not have such drawbacks, and have discovered that the object of the present invention can be easily achieved by reacting in the coexistence of boron trifluoride and an organic active hydrogen compound, and have thus arrived at the present invention. It is something. That is , the present invention relates to an ether compound represented by the following general formula [], , or an arylalkyl group, m is an integer of 1 to 3,
and n represents 0, 1 or 2. ] The alkylene oxide represented by the following general formula [] [ R2 here represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a haloalkyl group. ] This is a method for producing alkylene glycol diether, characterized in that the reaction is carried out in the presence of boron trifluoride and an organic active hydrogen compound. Although it is generally known that an organic active hydrogen compound and a Lewis acid form a protonic acid and change the acid strength or catalytic action mechanism, the details of the action of the organic active hydrogen compound of the present invention are unknown. Said Tokkai Sho
No. 53-34709, the reaction was advantageously carried out with the removal of active hydrogen-containing compounds, such as alcohols, amines, mercaptans, glycols or water. Surprisingly, however, the addition of an organic active hydrogen compound as in the present invention does not change the oxyalkylene chain distribution compared to the case of boron trifluoride alone, and the addition of an organic active hydrogen compound as described in the present invention does not change the oxyalkylene chain distribution. In addition, boron trifluoride isomerizes alkylene oxide to carbonyl compounds such as aldehydes, and this compound promotes side reactions such as self-condensation and alkylene oxide addition, resulting in Although it makes purification after the reaction difficult, the addition of the organic active hydrogen compound of the present invention also has the ripple effect of suppressing these side reactions. The boron trifluoride used in the present invention can be used alone or in the form of an ether complex, and the ether of this complex may be the same as or different from the raw material ether of the present invention. Organic active hydrogen compounds, which are other components, are widely used organic compounds having hydrogen bonded to a heteroatom, but alcohols, carboxylic acids, phenols, sulfonic acids, mercaptans, hydroxamic acids, and oximes are particularly used. Preferably, the alcohols include aliphatic primary to tertiary butanols such as methanol, ethanol, primary to tertiary butanol, amyl alcohol, octanol, and higher alcohols.
Tertiary alcohols and these alcohols having various substituents such as aromatic groups, halogens, and alkoxy groups, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexynediol, glycerin, bentaerythritol,
Various aliphatic polyhydric alcohols such as polyvinyl alcohol, and these polyhydric alcohols having various substituents such as aromatic groups, halogens, and alkoxy groups,
Examples include various alicyclic alcohols such as substituted or unsubstituted cyclopentanol, cyclohexanol, and cyclohexanediol. Examples of carboxylic acids include formic acid, acetic acid, propionic acid, hexane monocarboxylic acid, hexane dicarboxylic acid, decamonocarboxylic acid, decanedi or polycarboxylic acid, adipic acid, dodecanedioic acid, polyacrylic acid, polymethacrylic acid, and various fatty acids and These fatty acid derivatives substituted with various groups such as halogen, alkoxy, and aromatic groups, benzoic acid,
Aromatic carboxylic acids such as terephthalic acid and naphthalenecarboxylic acid and their substituted derivatives or various carboxylic acid type ion exchange resins (used in carboxylic acid type)
are listed as preferred specific examples. Examples of the phenols include various phenols and substituted derivatives thereof, such as carbolic acid, hydroquinone, catechol, resorcinol, and naphthol. Examples of sulfonic acids include methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, and the above sulfonic acids substituted with aliphatic mono- or polysulfonic acids and various groups such as aromatic groups, halogens, and alkoxy, benzenesulfonic acid, and toluenesulfone. Preferred examples include various aromatic sulfonic acids such as xylene sulfonic acid and naphthalene sulfonic acid, substituted derivatives thereof, and various sulfonic acid type ion exchange resins (used in the sulfonic acid type). Examples of mercaptans include compounds in which the oxygen atom of the alcohol in the above specific example is replaced with a sulfur atom. Preferred examples of the hydroxamic acid include various hydroxamic acids and substituted derivatives such as acetohydroxamic acid, propionic hydroxamic acid, laurohydroxamic acid, myristhydroxamic acid, and stearoxamic acid. These compounds may be mixed with boron trifluoride in advance outside the reaction system and supplied into the reaction system,
They may be supplied separately to the reaction system and substantially adjusted within the system. The ether compound used in the present invention is a compound represented by the above-mentioned general formula [], and the tendency of reactivity between these ethers and the alkylene oxide described below is that for R 1 , the smaller the number of carbon atoms, the lower the m
There is also a tendency for the activity to be stronger when n is also smaller.
These seem to be generally based on the basicity of the raw material ether, but the details are not clear. Compounds represented by the general formula [] include dialkyl ethers such as dimethyl ether, methyl ethyl ether, methyl propyl ether, methyl butyl ether, methyl pentyl ether, methyl hexyl ether, methyl heptyl ether, methyl octyl ether, and methyl nonyl ether; Methyl benzyl ether, methyl β
- Aryl alkyl methyl ethers such as phenylethyl ether; dialkyl formals such as dimethyl formal and methyl ethyl formal; and glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether and diethylene glycol dimethyl ether. The alkylene oxide used in the present invention is a compound represented by the above-mentioned general formula [], and specific examples include ethylene oxide, 1,2-butylene oxide, and epichlorohydrin. Among them, ethylene oxide and epichlorohydrin are preferred. In accordance with embodiments of the present invention, the catalyst can be prepared in advance or generated in the reaction system. The reaction solvent can be used if it is advantageous for the reaction to proceed, such as catalyst adjustment and removal of reaction heat. Reaction-inert solvents such as cyclomethane, nitromethane, chlorobenzene, benzene, acetic acid ester, or the reaction product itself can be used. can do. The reaction process can also be carried out continuously or batchwise, and depending on the vapor pressures of the starting ether and alkylene oxide, the reaction can be carried out without or under pressure. From the viewpoint of maintaining catalyst activity, safety, and prevention of side reactions, it is preferable to carry out the reaction under an atmosphere of a gas inert to the catalyst and reaction, such as nitrogen. The reaction temperature is preferably 0 to 100°C, particularly 20 to 70°C. Although the reaction rate varies depending on the catalyst concentration, reaction temperature, and the type of raw ether and alkylene oxide, the solid level can be appropriately combined to obtain the desired result. The amount of the catalyst is preferably 0.01 to 10 mole percent, particularly 0.05 to 5 mole percent, as boron fluoride based on the raw material ether. The amount of the organic active hydrogen compound as another catalyst component is preferably 0.1 to 5 times, particularly 0.2 to 2 times the number of active hydrogen functional groups per mole of hydrogen fluoride. The composition of the product can be adjusted by adjusting the molar ratio of raw material ether and alkylene oxide.
That is, the product is a mixture of alkylene glycol diethers with a statistical distribution and different degrees of polymerization, but in order to obtain a product with a low average degree of polymerization, it is sufficient to reduce the ratio of alkylene oxide to the raw material ether, In order to obtain a product with a high degree of polymerization, the ratio should be increased. At this time, the raw materials, the catalyst, and if necessary, the solvent can be charged all at once and the reaction can be carried out, but for safety reasons, it is preferable to add the alkylene oxide one after another and carry out the reaction. The reaction solution thus obtained can be purified by distillation to obtain a desired alkylene glycol diether of a single composition or a mixture. At that time, when distilling a product with a high degree of polymerization, a thin film distillation method can be adopted. Alternatively, by simply washing the reaction solution with alkaline water, the organic layer separated by salting out can be obtained directly as a product without being distilled. The present invention will be explained below with reference to Examples. Example 1 Boron trifluoride dimethyl ether complex 0.002 mol (0.25 g) and methyl alcohol 0.002 mol (0.07
After dissolving g) in 40 g of dichloromethane, prepare
Then, 1 mol (46 g) of dimethyl ether was introduced while cooling. One mole (44 g) of ethylene oxide was added and reacted at 50°C for 30 minutes with stirring, followed by further stirring for 30 minutes. After the reaction, the reaction mixture was cooled to room temperature, and unreacted dimethyl ether was collected and collected by dry ice-methanol cooling. The remaining reaction solution was analyzed by gas chromatography and the results shown in Table 1 were obtained.

【表】【table】

【表】 参考例 1 メチルアルコールを添加することなく、他は実
施例1と同様に反応せしめた。分析結果を表―2
に示す。
[Table] Reference Example 1 A reaction was carried out in the same manner as in Example 1 except that methyl alcohol was not added. Table 2 shows the analysis results.
Shown below.

【表】【table】

【表】 実施例 2〜34 種々の活性水素化合物を活性水素の数で三フツ
化ホウ素に対し当モル添加して実施例1と同様に
反応させて得た結果を表―3に示す。
[Table] Examples 2 to 34 Table 3 shows the results obtained by adding various active hydrogen compounds in equivalent moles of active hydrogen to boron trifluoride and reacting in the same manner as in Example 1.

【表】【table】

【表】 実施例 35〜36 アミルアルコール/BF3モル比を変えた他は実
施例2と同様反応させた結果を表―4に示す。
[Table] Examples 35 to 36 The reaction was carried out in the same manner as in Example 2 except that the amyl alcohol/BF 3 molar ratio was changed. The results are shown in Table 4.

【表】【table】

【表】 実施例37〜39及び参考例2〜4 表―5に示す原料エーテルと実施例37〜39に於
ては有機活性水素化合物を原料エーテルに対し、
0.5モル%仕込み、又参考例2〜4に於ては有機
活性水素化合物を添加せずに、又実施例、参考例
共にガス状の三フツ化ホウ素を原料エーテルに対
し0.5モル%(活性水素/BF3モル比=1.0)導入
した後80℃で2時間かけて所定量のエチレンオキ
シドを反応せさしめた他は実施例1と同様に行つ
た結果を表―5に示す。
[Table] Examples 37 to 39 and Reference Examples 2 to 4 In the raw material ethers shown in Table 5 and Examples 37 to 39, organic active hydrogen compounds were added to the raw material ethers,
In Reference Examples 2 to 4, no organic active hydrogen compound was added, and in both Examples and Reference Examples, gaseous boron trifluoride was added at 0.5 mol% (active hydrogen) to the raw material ether. Table 5 shows the results of the same procedure as in Example 1 except that a predetermined amount of ethylene oxide was reacted at 80° C. for 2 hours after the introduction of ethylene oxide (mol ratio of ethylene oxide/BF 3 = 1.0).

【表】【table】

【表】 実施例40及び参考例5 撹拌機、冷却管、温度計及び滴下器をそなえた
500ml4ツ口フラスコにエチレングリコールジメ
チルエーテル1モル(90g)と三フツ化ホウ素ジ
メチルエーテル錯体0.03モル(3.4g)及び実施
例38ではメタノール0.03モル(0.9g)を仕込
み、又、参考例5に於てはメタノールを添加せず
に、それぞれ50℃で2時間撹拌下にエピクロルヒ
ドリン0.5モル(46.3g)を反応させた後実施例
1と同様後処理分析した結果を表―6に示す。
[Table] Example 40 and Reference Example 5 Equipped with stirrer, cooling pipe, thermometer and dropper
In a 500ml four-necked flask, 1 mol (90 g) of ethylene glycol dimethyl ether, 0.03 mol (3.4 g) of boron trifluoride dimethyl ether complex, and 0.03 mol (0.9 g) of methanol were charged in Example 38, and in Reference Example 5. Table 6 shows the results of post-treatment analysis conducted in the same manner as in Example 1 after reacting 0.5 mol (46.3 g) of epichlorohydrin with stirring at 50° C. for 2 hours without adding methanol.

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記一般式〔〕にて示されるエーテル化合
物と、 CH3O〔―(CH2)―nO〕―oR1 ……〔〕 〔ここに、R1は炭素数1〜9のアルキル基、
又はアリールアルキル基を、mは1〜3の整数
を、およびnは0、1又は2を示す。〕 下記一般式〔〕にて示されるアルキレンオキ
シドを 〔ここに、R2は水素原子、炭素数1〜3のア
ルキル基、又はハロアルキル基を示す。〕 反応せしめてアルキレングリコールジエーテル
を製造するに際し、三フツ化ホウ素と有機活性水
素化合物の共存下反応することを特徴とするアル
キレングリコールジエーテルの製造法。 2 有機活性水素化合物がアルコール類、カルボ
ン酸類、スルホン酸類、フエノール類、ヒドロキ
シサム酸類、メルカプタン類である特許請求の範
囲第1項記載の製造法。 3 三フツ化ホウ素1分子当り有機活性水素化合
物の量が活性水素数で0.1から5である特許請求
の範囲第1項記載の製造法。 4 前記アルキレンオキシドがエチレンオキシド
又はエピクロルヒドリンのいずれかである特許請
求の範囲第1項記載の製造法。
[Claims] 1 An ether compound represented by the following general formula [], CH 3 O [-(CH 2 )- n O]- o R 1 ... [] [Here, R 1 is the number of carbon atoms 1-9 alkyl group,
or an arylalkyl group, m represents an integer of 1 to 3, and n represents 0, 1 or 2. ] The alkylene oxide represented by the following general formula [] [Here, R 2 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a haloalkyl group. ] A method for producing an alkylene glycol diether, which is characterized in that the reaction is carried out in the presence of boron trifluoride and an organic active hydrogen compound. 2. The production method according to claim 1, wherein the organic active hydrogen compound is an alcohol, a carboxylic acid, a sulfonic acid, a phenol, a hydroxysamic acid, or a mercaptan. 3. The production method according to claim 1, wherein the amount of organic active hydrogen compound per molecule of boron trifluoride is 0.1 to 5 in active hydrogen number. 4. The manufacturing method according to claim 1, wherein the alkylene oxide is either ethylene oxide or epichlorohydrin.
JP933880A 1979-07-04 1980-01-31 Preparation of ether Granted JPS56108724A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP933880A JPS56108724A (en) 1980-01-31 1980-01-31 Preparation of ether
DE19803025434 DE3025434C2 (en) 1979-07-04 1980-07-04 Process for making alkylene glycol dieters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP933880A JPS56108724A (en) 1980-01-31 1980-01-31 Preparation of ether

Publications (2)

Publication Number Publication Date
JPS56108724A JPS56108724A (en) 1981-08-28
JPS6121535B2 true JPS6121535B2 (en) 1986-05-27

Family

ID=11717679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP933880A Granted JPS56108724A (en) 1979-07-04 1980-01-31 Preparation of ether

Country Status (1)

Country Link
JP (1) JPS56108724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126139U (en) * 1990-03-27 1991-12-19

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116920888B (en) * 2023-07-20 2024-09-24 上海多纶化工有限公司 Acid catalyst for ethoxylation of fatty alcohol and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126139U (en) * 1990-03-27 1991-12-19

Also Published As

Publication number Publication date
JPS56108724A (en) 1981-08-28

Similar Documents

Publication Publication Date Title
US3808280A (en) Manufacture of 2,2-dimethyl-1,3-dihydroxypropane
US5250727A (en) Preparation of alkoxyalkanoic acids
US6235940B1 (en) Method for producing oxalkylated amines or alcohols
US2586306A (en) Synthesis of vitamin a and intermediates therefor
JPH0717908A (en) Manufacture of glycol diester from polyether
US4391994A (en) Process for the production of ethers
JPS6121535B2 (en)
CA1158675A (en) Process for converting glycol dialkyl ether
JPS6249255B2 (en)
US2579412A (en) Reaction of vinyl ethers with hydroxy compounds
KR100519184B1 (en) How to prepare saturated alcohol
US3513189A (en) Preparation of acetoacetic esters
US4390733A (en) Process for preparing the mono-methallyl ether of pyrocatechin
JP2005534726A (en) Manufacture of polyetherol
US3041371A (en) Production of acrylic and methacrylic esters of polyoxyalkylene compounds
US3410871A (en) Process for the preparation of 1, 3-dioxep-5-ones
US3536767A (en) Manufacture of pyrocatechol
JP2000273093A (en) Production of 3-alkyl-3-hydroxymethyloxetane
JPS6121536B2 (en)
JP4200971B2 (en) Production method of allyl ethers
US3435077A (en) Process for the production of asymmetrical formals
US3932531A (en) Method of manufacturing alkylene oxide adducts of an aliphatic alcohol
US2838561A (en) Production of polyolefinic acyloxy compounds
US2623904A (en) Nitro aldehydes and preparation thereof
JP3882486B2 (en) Method for producing ether compound having oxetane ring