JPS61214564A - Contact-type image sensor substrate - Google Patents

Contact-type image sensor substrate

Info

Publication number
JPS61214564A
JPS61214564A JP60056408A JP5640885A JPS61214564A JP S61214564 A JPS61214564 A JP S61214564A JP 60056408 A JP60056408 A JP 60056408A JP 5640885 A JP5640885 A JP 5640885A JP S61214564 A JPS61214564 A JP S61214564A
Authority
JP
Japan
Prior art keywords
light
film
resin
image sensor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60056408A
Other languages
Japanese (ja)
Inventor
Kenichi Niki
仁木 憲一
Toshio Hida
飛田 敏男
Tetsuo Makita
哲郎 蒔田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60056408A priority Critical patent/JPS61214564A/en
Publication of JPS61214564A publication Critical patent/JPS61214564A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To make the titled substrate hard to be affected by external environment, by covering a part containing a light-detecting element with a film of light-transmitting resin having specified characteristics and thickness. CONSTITUTION:In amorphous Si 3, the electric resistance of a part to which a light transmitted through a light-transmitting resin film 5 and a common electrode 4 is applied diminishes sharply. Accordingly, a current flowing between a separate electrode 2 and the electrode 4 in said part varies sharply, and a light is detected therefrom. In Si 3 the light-detecting element is protected by the electrode 4 and the film 5. Moreover, a part not covered with a film of the electrode 4 in Si 3 is also protected by the film 5. In order to generate sufficient optical pumping carriers in Si 3, the transmittance of 90% or above of the visible light of wavelength 600nm is required from the film 5. Judging comprehensively from said necessary transmittance, the viscosity of usable resin, the resistance to environment, etc., the film thickness of the film 5 is limited to 1-200mum. A volume resistivity needs to be 10<14>OMEGAcm or above at the temperature of 25 deg.C in view of the driving of a sensor. According to this construction, a contact-type sensor substrate which is hard to be affected by external environment and with reliability can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は密着形イメージセンサ基板の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a contact type image sensor substrate.

〔従来の技術〕[Conventional technology]

第2図は、例えば日経エレクトロニクス1982年4月
26日号に掲載された従来の密着形イメージセンサ基板
を示す断面図であり、図において、(1)はセラミック
またはガラスから成る絶縁性基板、(2)は絶縁性基板
(1)上に形成されたクロムなどの材料から成る個別電
極、(3)はアモルファスシリコン、(4)はITO(
インジウム・スズ・酸化物)などの透光性導電膜から成
る共通電極、Lは被写体原稿からの反射光である。
FIG. 2 is a cross-sectional view showing a conventional contact image sensor substrate published in the April 26, 1982 issue of Nikkei Electronics, for example. In the figure, (1) is an insulating substrate made of ceramic or glass; 2) is an individual electrode made of a material such as chromium formed on an insulating substrate (1), (3) is amorphous silicon, and (4) is ITO (
The common electrode is made of a transparent conductive film such as indium, tin, oxide), and L is the reflected light from the subject document.

次いで動作について説明する。アモルファスシリコン(
3)のうち、共通電極(4)を透過した原稿からの反射
光りが照射された部分の電気抵抗が急減する。従ってそ
の部分の個別電極(2)と共通電極(4)との間に流れ
る電流が急変し、光が検出される0〔発明が解決しよう
とする問題点〕 従来の密着形イメージセンサ基板は以上のように構成さ
れておシ、透光性導電膜からなる共通電極が光検出部の
保護作用を兼ねていた。共通電極は厚さが通常1000
〜2000人と非常に薄いので、保護膜として不十分で
あシ、また共通電極自身が腐食を受けるなど、センサ特
性が外部環境の影響を受けやすく、信頼性に乏しいなど
の問題点があった。
Next, the operation will be explained. Amorphous silicon (
Among 3), the electrical resistance of the portion irradiated with the reflected light from the original that has passed through the common electrode (4) decreases rapidly. Therefore, the current flowing between the individual electrode (2) and the common electrode (4) in that part suddenly changes, and light is detected.[Problem to be solved by the invention] The conventional contact image sensor substrate is The common electrode made of a transparent conductive film also served as a protection for the photodetector. The thickness of the common electrode is usually 1000 mm.
~2,000 Since it is extremely thin, it is insufficient as a protective film, and the common electrode itself is subject to corrosion, making the sensor characteristics susceptible to the influence of the external environment and resulting in poor reliability. .

この発明は上記のような問題点を解消するためになされ
たもので、湿気などの外部環境O影響を受けない、信頼
性ある密着形イメージセンサ基板を得ることを目的とす
る0 〔問題点を解決するための手段〕 この発明に係る密着形イメージセンサ基板は、共通電極
の上層を高透明の絶縁性樹脂被膜で被覆したものでるる
This invention was made to solve the above-mentioned problems, and aims to provide a reliable contact type image sensor substrate that is not affected by the external environment such as humidity. Means for Solving the Problem] The contact type image sensor substrate according to the present invention is one in which the upper layer of the common electrode is coated with a highly transparent insulating resin film.

〔作用〕[Effect]

この発明における高透明の絶縁性樹脂被膜は、被写体原
稿からの反射光をほとんど減衰させることなく光検出素
子に透過せしめると共に、共通電極および光検出素子を
外部環境から保護する。
The highly transparent insulating resin film of the present invention allows reflected light from the subject document to pass through the photodetecting element with almost no attenuation, and protects the common electrode and the photodetecting element from the external environment.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の構成を示し、図Aはその
断面図、図Bはその平面図で、前述の第2図の従来例と
同一符号は同等部分を示し、その重複説明を避ける。第
2図において、(5)は共通電極(4)の上を覆うよう
に形成された透光性樹脂被膜I; である。なお、個別電極(2)は図B4 (2a) −
(2bL (2c)で示すように配列されている。
FIG. 1 shows the configuration of an embodiment of the present invention, FIG. A is a sectional view thereof, and FIG. B is a plan view thereof. The same reference numerals as in the conventional example shown in FIG. Avoid. In FIG. 2, (5) is a transparent resin film I formed to cover the common electrode (4). In addition, the individual electrode (2) is shown in Figure B4 (2a) -
(2bL) They are arranged as shown in (2c).

アモルファスシリコン(3)のうち、透光性樹脂被膜(
5)及び共通電極(4)を透過した被写体原稿からの反
射光が照射された部分の電気抵抗が急減する0従って、
その部分の個別電極(2)と共通電極(4)との間に流
れる電流が急変し、光が検出される。アモルファスシリ
コン(3)のうち光検出部は共通電極(4)と透光性樹
脂被膜(5)とによって2重に保護される。
Among amorphous silicon (3), transparent resin coating (
5) and the electrical resistance of the part irradiated with the reflected light from the subject original that has passed through the common electrode (4) decreases rapidly.
The current flowing between the individual electrode (2) and the common electrode (4) in that part suddenly changes, and light is detected. The photodetecting portion of the amorphous silicon (3) is doubly protected by a common electrode (4) and a transparent resin coating (5).

また、アモルファスシリコン(3)のうち共通電極(4
)で被覆されていない部分も透光性樹脂被膜(5)Kよ
って保護される。
In addition, the common electrode (4) of the amorphous silicon (3)
) is also protected by the transparent resin coating (5)K.

透光性樹脂被膜(5)の硬度が硬すぎると基板・センサ
素子材料との熱膨張係数の差に寄因する機械的応力が大
きくな〕センナ素子が破壊するので、透光性樹脂被膜(
5)はエンピッ硬度3Hよシ軟らかいことが望ましい。
If the hardness of the translucent resin coating (5) is too hard, the mechanical stress due to the difference in thermal expansion coefficient between the substrate and the sensor element material will become large] and the Senna element will be destroyed.
5) is preferably softer than 3H in hardness.

アモルファスシリコン(3)中に十分な光励起キャリア
を発生させるためには透光性樹脂被膜(5)に波長60
0nmの可視光の透過率90チ以上が要求される0この
必要透過率と使用可能な樹脂レジンの粘度、耐環境性等
を総合すると、透光性樹脂被膜(5)の膜厚は1〜20
0μmに限定される。体積抵抗率はセンサ駆動上10 
 Ωam以上は必要である。以上の条件を満たす樹脂の
ガラス転移温度は一り0℃〜390’Cに限定される。
In order to generate sufficient photoexcited carriers in the amorphous silicon (3), the transparent resin coating (5) must be coated with a wavelength of 60 nm.
A transmittance of 90 cm or more for visible light at 0 nm is required. Considering this required transmittance and the viscosity, environmental resistance, etc. of usable resins, the film thickness of the transparent resin coating (5) is 1 to 1. 20
Limited to 0 μm. Volume resistivity is 10 on sensor drive
Ωam or more is required. The glass transition temperature of a resin that satisfies the above conditions is limited to 0°C to 390'C.

く具体例1〉 個別電極(2)、アモルファスシリコン(3)、共通電
極(4)のパターン(以下、光検出素子と記す)が形成
されたガラス基板上に、テトロン100メツシユ、乳剤
30μmのスクリーン版を用い、ECR/H−7100
(注文ベークライト製)などの透光性エポキシ樹脂を、
スクリーンギャップ2mm、スキージダウンストップ0
.5mm、速度10mm/secの条件で所定形状にス
クリーン印刷した。これを温度85°Cで30分間放置
し、温度上昇に伴うエポキシ樹脂の粘度低下を利用し、
脱泡・レベリングを行なった。しかる後、これを温度1
00℃で1時間、120’Qで3時間保持することによ
って、エポキシ樹脂を硬化せしめ、膜厚36μmの所定
形状の透光性樹脂被膜(5)を得た。
Specific Example 1 A screen with a Tetron 100 mesh and an emulsion of 30 μm was placed on a glass substrate on which patterns of individual electrodes (2), amorphous silicon (3), and a common electrode (4) (hereinafter referred to as photodetecting elements) were formed. Using a plate, ECR/H-7100
Translucent epoxy resin such as (made by custom Bakelite),
Screen gap 2mm, squeegee down stop 0
.. Screen printing was performed in a predetermined shape under conditions of 5 mm and a speed of 10 mm/sec. This was left at a temperature of 85°C for 30 minutes, and taking advantage of the decrease in viscosity of the epoxy resin as the temperature rose,
Defoaming and leveling were performed. After that, this temperature is 1
The epoxy resin was cured by holding at 00° C. for 1 hour and at 120′Q for 3 hours to obtain a translucent resin film (5) having a predetermined shape and a thickness of 36 μm.

く具体例2〉 光検出素子が形成されたガラス基板上に、テトロン10
0メツシユ、乳剤30μmのスクリーン版を用い、KE
109A/B (信越化学製)などの透光性シリコーン
樹脂を、スクリーンギャップ1.5mm、スキージダウ
ンストップ0.5mm、速度10mm/secの条件で
所定形状にスクリーン印刷した。これを真空中に20分
間放置して脱泡した後、大気中で20分間放置してレベ
リングを行なった。しかる後、温度120℃で2時間保
持することによってシリコーン樹脂を硬化せしめ、膜厚
29μmの所定形状の透光性樹脂被膜(5)を得た0 く具体例3〉 光検出素子が形成されたガラス基板上に、PIX−24
00(日立化成製)などの透光性ポリイミド樹脂を、1
000 rpm 、 60 eθCの条件でスピンコー
ドし、窒素雰囲気中、温度130℃で30分間、200
℃で画分間保持し、ポリイミド樹脂を半硬化させた0そ
の上に0MR8り (東京応化工業製)などのネガ形レ
ジストをホトリソグラフィー法によシパターエンダし、
温度130℃で1時間ポストベークした0ヒドラジン・
エチレンジアミン系のエッチャントを用い、ネガ形レジ
ストをマスクにポリイミドをエツチングした後、K2O
2(東京応化工業#)などの剥離液を用いネガ形レジス
トを剥離した0これを窒素雰囲気中、温度250℃で3
0分、300’Qで1時間保持することによってポリイ
ミドを硬化させ、膜厚3.5μmの所定形状の透光性樹
脂被膜(5)を得た0AL−200(宇部興産層)など
の透光性ポリアミド樹脂、HL−1200(日立化成製
)などの透光性ポリエーテルアミド樹脂についても同様
のプロセスにより、所定形状の透光性樹脂被膜(5)を
得た0く具体例4〉 光検出素子が形成されたガラス基板上に、a −086
6(日本化薬層)などの紫外線硬化形透光性アクリル樹
脂を11000rp 、 60secの条件でスピンコ
ードした後、メタルマスクを用いて光検出部を含む所定
部分に紫外線を照射すること忙よシ、紫外線照射部分の
アクリル樹脂を硬化させたoトリクロルエチレンなどの
有機溶剤を用いて未硬化のアクリル樹脂を溶解・除去せ
しめ、膜厚9μmの所定形状の透光性樹脂被膜(5)を
得た。
Specific example 2> Tetron 10 was placed on a glass substrate on which a photodetecting element was formed.
Using a screen plate with 0 mesh and 30 μm emulsion, KE
A translucent silicone resin such as 109A/B (manufactured by Shin-Etsu Chemical) was screen printed into a predetermined shape under conditions of a screen gap of 1.5 mm, a squeegee downstop of 0.5 mm, and a speed of 10 mm/sec. This was left in a vacuum for 20 minutes to remove bubbles, and then left in the air for 20 minutes for leveling. Thereafter, the silicone resin was cured by holding at a temperature of 120° C. for 2 hours to obtain a translucent resin film (5) in a predetermined shape with a film thickness of 29 μm.Specific Example 3 A photodetector element was formed. PIX-24 on the glass substrate
Translucent polyimide resin such as 00 (manufactured by Hitachi Chemical), 1
Spin coded at 000 rpm and 60 eθC for 30 minutes at 130 °C in a nitrogen atmosphere at 200 °C.
A negative resist such as 0MR8 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) is cypater-endered on the semi-cured polyimide resin by photolithography.
0 hydrazine post-baked at a temperature of 130°C for 1 hour.
After etching the polyimide using an ethylenediamine-based etchant and using a negative resist as a mask, K2O
2 (Tokyo Ohka Kogyo #) or other stripping solution was used to remove the negative resist. This was removed at a temperature of 250°C in a nitrogen atmosphere.
The polyimide was cured by holding at 0 minutes and 300'Q for 1 hour to obtain a transparent resin coating (5) with a thickness of 3.5 μm and a predetermined shape, such as 0AL-200 (Ube Industries). A similar process was applied to transparent polyetheramide resins such as polyamide resin and HL-1200 (manufactured by Hitachi Chemical) to obtain a transparent resin coating (5) in a predetermined shape.Specific Example 4> Photodetection On the glass substrate on which the element was formed, a-086
After spin-coding an ultraviolet curable translucent acrylic resin such as No. 6 (Nippon Kayaku Layer) at 11,000 rp and 60 seconds, a metal mask was used to irradiate ultraviolet rays to a predetermined area including the photodetector. The uncured acrylic resin was dissolved and removed using an organic solvent such as o-trichlorethylene, which cured the acrylic resin in the ultraviolet irradiated area, to obtain a translucent resin film (5) in a predetermined shape with a film thickness of 9 μm. .

スピラツクT−502(昭和高分子製)などの紫外線硬
化形透光性スピロアセタール樹脂についても同様のプロ
セスによシ、所定形状の透光性樹脂被膜(5)を得た。
A translucent resin coating (5) having a predetermined shape was obtained using a similar process using an ultraviolet curable translucent spiroacetal resin such as Spirac T-502 (manufactured by Showa Kobunshi).

次に本発明の作用効果を各具体例について示す0第1表
は光検出素子に各具体例の透光性樹脂被膜を被覆した場
合に、素子イ能(樹脂自体のリーク電流を含む)、また
は樹脂の透光性または外観(クラック、剥離など)に実
使用上の支障をきたす時間、回数等を試験項目別Kまと
め、透光性樹脂被膜をほどこさない場合と比較したもの
であるO第1表から明らかなように、本発明による密着
形イメージセンサ基板は、外部環境の影響を受けに<<
、非常に高い信頼性を有している。
Next, Table 1 shows the effects of the present invention for each specific example. When a photodetecting element is coated with the transparent resin film of each specific example, the device performance (including leakage current of the resin itself), Or, the time, number of times, etc. that cause problems in actual use with the translucency or appearance (cracks, peeling, etc.) of the resin are summarized by test item, and compared with the case where no translucent resin coating is applied. As is clear from Table 1, the contact type image sensor substrate according to the present invention is not affected by the external environment.
, has very high reliability.

第1表 註 (ト):素子性能に支障 CB) :透光性に支障 (0):外観に支障 なお、上記実施例では感光材料としてアモルファスシリ
コンを用いたものについて説明したが、これは硫化カド
ミウムであってもよく、上記実施例と同様の効果を奏す
る0 〔発明の効果〕 以上のように、この発明によれば光検出部を含む部分を
透光性樹脂で被覆したので、外部環境の影響を受けに<
<、信頼性ある密着形イメージセンサ基板が得られる効
果がある0
Notes to Table 1 (G): Problems with device performance CB): Problems with translucency (0): Problems with appearance Note that in the above example, amorphous silicon was used as the photosensitive material, but this [Effects of the Invention] As described above, according to the present invention, since the portion including the photodetecting section is coated with a transparent resin, the external environment Under the influence of <
<, has the effect of obtaining a reliable contact type image sensor substrate 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A及びBはそれぞれこの発明の一実施例による密
着形イメージセンサ基板を示す断面図及び平面図、第2
図は従来の密着形イメージセンサ基板を示す断面図であ
る。 図において、(1)は絶縁性基板、(2)は個別電極、
(3)ハアモルファスシリコン、(4)は共通電極、(
5)は透光性樹脂被膜である0 なお、図中、同一符号は同一、又は相当部分を示す。
1A and 1B are a sectional view and a plan view showing a contact type image sensor substrate according to an embodiment of the present invention, respectively;
The figure is a sectional view showing a conventional contact type image sensor substrate. In the figure, (1) is an insulating substrate, (2) is an individual electrode,
(3) amorphous silicon, (4) a common electrode, (
5) is a transparent resin coating 0 In the figures, the same reference numerals indicate the same or corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] (1)アモルファスシリコン、または硫化カドミウムか
ら成る受光素子をもつ、ドット分割形ラインセンサ機能
を有するものにおいて、温度25℃での体積抵抗率10
^1^4Ωcm以上、波長600nmの光の透過率90
%以上の透光性樹脂の被膜によつて、光検出部を含む部
分を膜厚1μm〜200μmで所定形状に被覆したこと
を特徴とする密着形イメージセンサ基板。
(1) A device with a dot-divided line sensor function that has a light-receiving element made of amorphous silicon or cadmium sulfide, with a volume resistivity of 10 at a temperature of 25°C.
^1^4Ωcm or more, transmittance of light with a wavelength of 600nm is 90
1. A contact type image sensor substrate, characterized in that a portion including a photodetecting portion is covered with a film of a transparent resin of 1 μm to 200 μm in a predetermined shape with a film thickness of 1 μm to 200 μm.
(2)透光性樹脂としてエポキシ樹脂を用いたことを特
徴とする特許請求の範囲第1項記載の密着形イメージセ
ンサ基板。
(2) The contact type image sensor substrate according to claim 1, characterized in that an epoxy resin is used as the light-transmitting resin.
(3)透光性樹脂としてシリコーン樹脂を用いたことを
特徴とする特許請求の範囲第1項記載の密着形イメージ
センサ基板。
(3) The contact type image sensor substrate according to claim 1, wherein a silicone resin is used as the light-transmitting resin.
(4)透光性樹脂としてポリイミド樹脂、ポリアミド樹
脂、ポリエーテルアミド樹脂なる物質からなる一群中か
ら任意に選んだ1員を用いたことを特徴とする特許請求
の範囲第1項記載の密着形イメージセンサ基板。
(4) A close-contact type according to claim 1, characterized in that the translucent resin is one member arbitrarily selected from the group consisting of polyimide resin, polyamide resin, and polyetheramide resin. Image sensor board.
(5)透光性樹脂としてアクリル樹脂、スピロアセター
ル樹脂なる物質からなる一群中から任意に選んだ1員を
用いたことを特徴とする特許請求の範囲第1項記載の密
着形イメージセンサ基板。
(5) The contact type image sensor substrate according to claim 1, wherein a member arbitrarily selected from the group consisting of acrylic resin and spiroacetal resin is used as the light-transmitting resin.
JP60056408A 1985-03-20 1985-03-20 Contact-type image sensor substrate Pending JPS61214564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056408A JPS61214564A (en) 1985-03-20 1985-03-20 Contact-type image sensor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056408A JPS61214564A (en) 1985-03-20 1985-03-20 Contact-type image sensor substrate

Publications (1)

Publication Number Publication Date
JPS61214564A true JPS61214564A (en) 1986-09-24

Family

ID=13026331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056408A Pending JPS61214564A (en) 1985-03-20 1985-03-20 Contact-type image sensor substrate

Country Status (1)

Country Link
JP (1) JPS61214564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382540A2 (en) * 1989-02-10 1990-08-16 Canon Kabushiki Kaisha Sensor chip and photoelectric conversion apparatus using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229880A (en) * 1983-06-08 1984-12-24 Fuji Xerox Co Ltd Photoelectric conversion element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229880A (en) * 1983-06-08 1984-12-24 Fuji Xerox Co Ltd Photoelectric conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382540A2 (en) * 1989-02-10 1990-08-16 Canon Kabushiki Kaisha Sensor chip and photoelectric conversion apparatus using the same
US5592222A (en) * 1989-02-10 1997-01-07 Canon Kabushiki Kaisha Sensor chip and photo-electric conversion apparatus using the same

Similar Documents

Publication Publication Date Title
WO2011030773A1 (en) Narrow frame touch input sheet, manufacturing method of same, and conductive sheet used in narrow frame touch input sheet
TW201832063A (en) Single type touch panel structure and manufacturing method of the same
JP5259539B2 (en) Narrow frame touch input sheet with protective film, laminated narrow frame touch input sheet with protective film, and methods for manufacturing the same
JPS59117277A (en) Photo detector
JPS61214564A (en) Contact-type image sensor substrate
CN110174970B (en) Patterned circuit, preparation method thereof and touch sensor
JPH04234676A (en) Manufacture of heat-sensitive recording element
JPH0126547B2 (en)
CN111652109A (en) Electronic device
JPH11224975A (en) Integrated device and encoder using the same
JPS59198770A (en) Photo receiving electronic device
JPH1140834A (en) Photoelectric conversion device and manufacture thereof
JP2596295B2 (en) Manufacturing method of contact image sensor
JP2002229736A (en) Transparent touch panel and manufacturing method therefor
JP2002229737A (en) Transparent touch panel and manufacturing method therefor
JPS62130560A (en) Structure of contact type image sensor
KR960001343B1 (en) Image reading device with different reflection coefficients in a
JPS61214563A (en) Contact-type image sensor substrate
JP2639663B2 (en) Photoelectric conversion element
JP2984152B2 (en) Semiconductor element mounting method
TWI242751B (en) Fingerprint sensor panel
JPH06350066A (en) Full contact type image sensor and its manufacture
JPS6265458A (en) Forming method for contact type image sensor module substrate
JPH0475381A (en) Semiconductor device and image sensor using the same
JPH05275720A (en) Photosensor-chip mounting structure