JPS61214418A - Manufacture of polarizing electrode body - Google Patents

Manufacture of polarizing electrode body

Info

Publication number
JPS61214418A
JPS61214418A JP60054913A JP5491385A JPS61214418A JP S61214418 A JPS61214418 A JP S61214418A JP 60054913 A JP60054913 A JP 60054913A JP 5491385 A JP5491385 A JP 5491385A JP S61214418 A JPS61214418 A JP S61214418A
Authority
JP
Japan
Prior art keywords
electrode body
polarizable electrode
activated carbon
binding medium
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60054913A
Other languages
Japanese (ja)
Inventor
棚橋 一郎
敦 西野
昭彦 吉田
康弘 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60054913A priority Critical patent/JPS61214418A/en
Publication of JPS61214418A publication Critical patent/JPS61214418A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、小型薄型で大容量の電気二重層キャパシタや
、エレクトロクロミックディスプレイに用いられる分極
性電極体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a polarizable electrode body used in small, thin, large-capacity electric double layer capacitors and electrochromic displays.

従来の技術 この種の分極性電極の代表例を次に挙げる。Conventional technology Representative examples of this type of polarizable electrode are listed below.

(1)粉末活性炭をフッ素樹脂などと混練して金属ネッ
トやパンチングメタルの集電体に塗布した構成のもので
ある(特開昭54−90562号公報)。
(1) It has a structure in which powdered activated carbon is kneaded with a fluororesin or the like and applied to a current collector made of a metal net or punched metal (Japanese Unexamined Patent Publication No. 54-90562).

(2)活性炭繊維布にプラズマ溶射法により溶射金属層
を形成して集電体を設けたものである(特開昭5ts=
e9714号公報)。
(2) A current collector is provided by forming a sprayed metal layer on activated carbon fiber cloth by plasma spraying method (Japanese Patent Application Laid-open No. 5Ts=
e9714).

(3)活性炭繊維と結合媒体の天然パイプの混合物を紙
状に抄紙し、これに溶射法にょシ集電体層を形成したも
のがiる。
(3) A mixture of activated carbon fibers and a natural pipe as a binding medium is made into paper, and a current collector layer is formed on the paper using a thermal spraying method.

発明が解決しようとする問題点 まず、前記(1)の構成のものでは、集電体と分極性電
極体の結合強度が弱く、特に電解液を分極性電極体中に
注入すると、活性炭粉末の脱離が見られ、この結果内部
抵抗の増大等が生じ信頼性が悪くなる。また活性炭粉末
同志を強く結合させるためには、結合媒体を非常に多く
用いなければならず、結合媒体を用いる量だけエネルギ
ー密度が低下してしまう。
Problems to be Solved by the Invention First, in the configuration (1) above, the bonding strength between the current collector and the polarizable electrode body is weak, and especially when an electrolyte is injected into the polarizable electrode body, the activated carbon powder Desorption is observed, and as a result, internal resistance increases and reliability deteriorates. Furthermore, in order to strongly bond the activated carbon powders together, it is necessary to use a very large amount of binding medium, and the energy density decreases by the amount of binding medium used.

■)の活性炭繊維布を用いる構成のものは、通常フェノ
ール系樹脂を直接炭化賦活して得られる活性炭繊維布を
用いる。このものは電気抵抗1機械的強度、賦活収率も
良く、粉末活性炭に比べ比表面積も2倍以上あり、結合
媒体も使用しないためエネルギー密度も高い。集電体も
溶射金属層から形成され、これと活性炭繊維布との密着
強度が強く、接触抵抗も小さく良好な分極性電極体であ
る。
In the case of (2), which uses activated carbon fiber cloth, activated carbon fiber cloth obtained by directly carbonizing a phenolic resin is usually used. This material has electrical resistance of 1, mechanical strength, good activation yield, has a specific surface area more than twice that of powdered activated carbon, and has a high energy density because it does not use a binding medium. The current collector is also formed from a sprayed metal layer, and the adhesive strength between this and the activated carbon fiber cloth is strong, and the contact resistance is low, making it a good polarizable electrode body.

しかしながら、今日の電子機器の軽薄短少化に伴う電子
部品の小型、薄型化の要求に対しては十分満足できるも
のではない。即ち活性炭繊維布を用いたたとえば電気二
重層キャパシタでは、封ロケーソング後で厚さ1B肩以
下のものにすることは極めて困難である。二重層キャパ
シタのエネルギー密度は、活性炭繊維の比表面積に比例
するが、活性炭繊維布は、賦活を進めれば進めるほどそ
の比表面積、細孔容積は増大するが、繊維布強度は著し
く減少し、実使用に耐えられなくなる。また繊維布のも
のでは製造工程において、繊維布から円状等のものを打
ちぬく際、活性炭繊維が飛散し、粉じん公害をもたらす
However, it does not fully satisfy the demands for smaller and thinner electronic components as electronic devices become lighter, thinner, and shorter. That is, in the case of, for example, an electric double layer capacitor using activated carbon fiber cloth, it is extremely difficult to reduce the thickness to less than 1B after sealing with a location song. The energy density of a double layer capacitor is proportional to the specific surface area of the activated carbon fiber, but as activation progresses, the specific surface area and pore volume of the activated carbon fiber cloth increase, but the strength of the fiber cloth decreases significantly. It becomes unbearable for actual use. In addition, in the manufacturing process of fiber cloth, activated carbon fibers are scattered when a circular shape or the like is punched out of the fiber cloth, causing dust pollution.

(3)の構成を有するものは、比表面積20oOITI
t/ノ以上の活性炭繊維を使用することが可能であり、
厚さ100μm以下の非常に薄型の分極性電極体を得る
ことができる。しかしながら、天然パイプたとえばマニ
ラ麻やクラフトパルプを用いると、電解液を注入後、少
しずつ膨潤が起こり、活性炭繊維間距離が長くなり、そ
れだけ電子の流れるバスが減少し、内部抵抗も増大して
しまう。特に天然パルプは、結合水を含み、有機電解液
を使用する場合、その耐電圧が含有水分によシ影響され
低下してしまう。
The one having the configuration (3) has a specific surface area of 20oOITI.
It is possible to use activated carbon fibers of t/no or more,
A very thin polarizable electrode body with a thickness of 100 μm or less can be obtained. However, when a natural pipe such as Manila hemp or kraft pulp is used, swelling occurs little by little after the electrolyte is injected, and the distance between the activated carbon fibers increases, which reduces the number of buses through which electrons can flow and increases internal resistance. In particular, natural pulp contains bound water, and when an organic electrolyte is used, its withstand voltage is affected by the water content and is reduced.

以上のように、従来の分極性電極体の構成では、高エネ
ルギー密度、高信頼性でしかも小型、薄型化した電子部
品の構成が困難であった。
As described above, with the configuration of the conventional polarizable electrode body, it is difficult to configure an electronic component that has high energy density, high reliability, and is small and thin.

本発明は、かかる点に鑑みてなされたもので、藺易な方
法で、薄型、高エネルギー密度、高信頼性の電子部品を
得るだめの分極性電極体の製造方法を提供することを目
的としている。
The present invention has been made in view of the above, and an object of the present invention is to provide a method for producing a polarizable electrode body that can easily produce thin, high energy density, and highly reliable electronic components. There is.

問題点を解決するための手段 本発明は上記問題点を解決するため、活性炭繊維を熱融
着性結合媒体を用いて抄紙法により紙状に成形し、熱プ
レスまたは熱カレンダー加工によシ、活性炭繊維と結合
媒体を熱融層させると共に密度を高め、薄型、高エネル
ギー密度、高信頼性の分極性電極体を得るものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention has a method of forming activated carbon fibers into a paper shape using a heat-fusible binding medium by a papermaking method, and then heat-pressing or heat-calendering the activated carbon fibers. The activated carbon fibers and the binding medium are thermally fused and the density is increased to obtain a thin, high energy density, and highly reliable polarizable electrode body.

作  用 本発明は上記した製造方法により、分極性電極体の経時
変化を憔めて少なくし、高信頼性であると共に高エネル
ギー密度化できる。
Function The present invention can reduce the change over time of the polarizable electrode body by the above-described manufacturing method, and can achieve high reliability and high energy density.

ここで、#記の結合媒体は、ポリエチレン、ポIJ 7
’ロピレン、アクリル樹脂、ナイロン、ポルエステル、
キュプラ樹脂のひとつまたは組合わせたものを用いるこ
とができる。また非水系電解液を用いる電気二重層キャ
パシタに用いる分極性電極体の場合、前記の結合媒体は
撥水性を有するものがよい。
Here, the binding medium marked with # is polyethylene, POIJ 7
'Lopylene, acrylic resin, nylon, polyester,
One or a combination of cupro resins can be used. Further, in the case of a polarizable electrode body used in an electric double layer capacitor using a non-aqueous electrolyte, the binding medium preferably has water repellency.

分極性電極体を構成する活性炭繊維は、フェノール系樹
脂繊維を炭化賦活して得られたもので、比表面積が、B
ET法で1500 m2/Z  、細孔容積がo 、 
s cc/ 1以上あるものが好ましい、また、分極性
電極体に導電性改良剤として炭素繊維やグラファイト粉
末、カーボン粉末を混入するのもよい。
The activated carbon fibers constituting the polarizable electrode body are obtained by carbonizing and activating phenolic resin fibers, and have a specific surface area of B
1500 m2/Z by ET method, pore volume o,
It is preferable to have s cc/ 1 or more, and it is also good to mix carbon fiber, graphite powder, or carbon powder into the polarizable electrode body as a conductivity improver.

実施例 次に本発明による分極性電極体の製造工程の例を説明す
る。原料としてフェノール系ノボラック樹脂繊維のトウ
状のものを使用し、塩化亜鉛や水蒸気を用いaOO〜1
000°Cで炭化賦活する。
EXAMPLE Next, an example of the manufacturing process of a polarizable electrode body according to the present invention will be explained. Using tow-like phenolic novolac resin fibers as raw materials, aOO~1 using zinc chloride and water vapor.
Activate carbonization at 000°C.

このようにして得られるトウ状活性炭繊維は2oOo〜
2500rrI2/yの比表面積を有し、強度も強い。
The tow-like activated carbon fiber obtained in this way is 2oOo~
It has a specific surface area of 2500rrI2/y and is strong.

この繊維は10μm8度の径を有する。このものを抄紙
に通した2〜4111M長さに切断、粉砕する。サラに
ポリエチレンやポリプロピレンからなる撥水性かつ熱融
着性の合成パルプを用いミキサー等で湿式混合する0合
成パルプは2〜4111M長のものと、さらに明解の進
んだ長さの短かいものとを、抄紙後の強度を考慮して混
合する。導電性改良剤として炭素繊維、グラファイトを
混合する場合もある。
The fibers have a diameter of 10 μm 8 degrees. This material is cut into lengths of 2 to 4,111 m that pass through a paper machine, and pulverized. Water-repellent and heat-adhesive synthetic pulp made of polyethylene or polypropylene is used for the slurry, and wet-mixed using a mixer. Synthetic pulp is available in lengths of 2 to 4111M, and shorter lengths with more clarity. , and mix it considering the strength after paper making. Carbon fiber or graphite may be mixed as a conductivity improver.

以上のようにして混合された活性炭繊維と、ノくルプを
抄紙機を用い抄紙する。抄紙には円網抄紙機と短網抄紙
機があシ、目的とする紙状分極性電極体の特徴をだし易
いように便い分けるのがよい0次に抄紙された分極性電
極体を150〜aso’C程度の温度下で熱プレスする
かまたは熱カレンダーにかけ、結合媒体と活性炭繊維を
熱融着させる。
The activated carbon fibers and nokurupu mixed as described above are made into paper using a paper machine. There are cylinder paper machines and short wire paper machines for paper making, and it is best to separate them so that it is easy to express the characteristics of the desired paper-like polarizable electrode body. The bonding medium and the activated carbon fibers are thermally fused by hot pressing or thermal calendering at a temperature of ~ aso'C.

こうして分極性電極体の強度と密度を上昇させ、経時変
化の少ない電解液に対しても億めて安定なものを得る。
In this way, the strength and density of the polarizable electrode body can be increased, and it can be made extremely stable even with electrolytes that change little over time.

最後にアルミニウム、ニッケル、ステンレス鋼等の金属
を溶射法を用い分極性電極体の片面に導電体層を形成す
る。導電体層の厚みは30〜200μm程度が良い。
Finally, a conductive layer is formed on one side of the polarizable electrode body using a thermal spraying method using a metal such as aluminum, nickel, or stainless steel. The thickness of the conductor layer is preferably about 30 to 200 μm.

次に具体的な実施例について述べる。Next, a specific example will be described.

(実施例1) 上記製造工程を経て、重量比で活性炭繊維と結合媒体が
6Q:40の組成を有し、その片面に厚さ60μmのア
ルミニウムの導′成性電極ノーを形成した分極性電極体
を得た。このものの厚みは300μm1密度0.21 
、目付62 F/;ぜである。ここで用いた結合媒体は
、ポリエチレンとポリプロピレンを50: 50の重量
比で混合しである合成ノくルプである。分極性電極体は
本実施例の場合6分間2トン/C−の圧力で200”C
の温度で熱プレスした。
(Example 1) Through the above manufacturing process, a polarizable electrode having a composition of activated carbon fiber and binding medium in a weight ratio of 6Q:40, and having a conductive electrode made of aluminum with a thickness of 60 μm formed on one side of the polarized electrode. I got a body. The thickness of this thing is 300 μm 1 density 0.21
, fabric weight 62F/;ze. The binding medium used here is a synthetic polymer made of a mixture of polyethylene and polypropylene in a weight ratio of 50:50. In this example, the polarizable electrode body was heated to 20"C at a pressure of 2 tons/C- for 6 minutes.
Heat pressed at a temperature of

上記分極性電極体を直径6nの円形にうちぬき、ポリプ
ロピレン製のセパレータと組合わせて第1図のような電
気二重層キャパシタを構成した0第1図において、1.
3は上記の分極性電極体で、それらのSlを性成極層2
.4はそれぞれ上下の金属ケース6.6にスポット浴接
されている07はセパレータ、8はガスケットである。
In FIG. 1, the polarizable electrode body is cut out into a circular shape with a diameter of 6n and combined with a polypropylene separator to construct an electric double layer capacitor as shown in FIG. 1.
3 is the above-mentioned polarizable electrode body, and the Sl is formed into a polarizable layer 2.
.. 4 is a separator 07, which is in spot contact with the upper and lower metal cases 6 and 6, and 8 is a gasket.

なお、電解液には1モル/lの(C2五、)4NBF6
を溶解したプロピレンカーボネートを用いた。
The electrolyte contains 1 mol/l of (C25,)4NBF6.
Propylene carbonate in which was dissolved was used.

このキャパシタaを70’C(1)l囲気下で2vを印
加し信頼性試験を行った。第2図に信頼性試験における
容量の変化率を示す。bは結合媒体にクラフトパルプを
用いた分極性電極体で構成した比較例のキャパシタの特
性である。本実施例のキャパシタaは比較例すに比べ憔
めて信頼性の高いことがわかる。本実施例のキャパシタ
の初期容量は0.03 Fであり、1にMZで測定した
インピーダンスは24Ωであり、活性炭繊維布を分極性
電極に用いた場合、この値程低インピーダンス、小容量
の薄型キャパシタを得ることが困難である0図中C及び
dはaの分極性電極体に炭素繊維及びグラファイト粉末
をそれぞれ10重量%混入したものの特性であり、これ
らでは分極性電極体の導電性が改良され、果電能が改善
されaより信頼性が良い0 (実施例2) 実施例1と同様の分極性電極体を用いて第3〜4図のよ
うなシート状の電気二重層キャパシタを示す。
A reliability test was conducted on this capacitor a by applying 2V under an atmosphere of 70'C(1)l. Figure 2 shows the rate of change in capacity during the reliability test. b is the characteristic of a comparative example capacitor constructed of a polarizable electrode body using kraft pulp as a binding medium. It can be seen that the reliability of the capacitor a of this example is much higher than that of the comparative example. The initial capacitance of the capacitor in this example is 0.03 F, and the impedance measured at 1 MZ is 24 Ω. When activated carbon fiber cloth is used as a polarizable electrode, it is possible to obtain a thin type with low impedance and small capacity. It is difficult to obtain a capacitor. 0 In the figure, C and d are the characteristics of the polarizable electrode body of a mixed with 10% by weight of carbon fiber and graphite powder, and these improve the conductivity of the polarizable electrode body. (Example 2) Using the same polarizable electrode body as in Example 1, a sheet-like electric double layer capacitor as shown in FIGS. 3 and 4 is shown.

9.11は厚さ20μmのアルミニウムの導電性電極1
0.12を有する分極性電極体、13゜14は厚さ20
μmのエツチングしたアルミニウム補助集電体、15は
厚さ2oA1mのセパレータ、16.17はリードであ
る。18.19は厚さ100μmCQ変性ポリエチレン
からなる外装フィルムであり、周辺部は相互に熱溶着さ
れて内容物を密封している。
9.11 is an aluminum conductive electrode 1 with a thickness of 20 μm.
Polarizable electrode body with 0.12, 13°14 has a thickness of 20
15 is a separator with a thickness of 2oA1m, and 16.17 is a lead. Reference numeral 18 and 19 denote an exterior film made of CQ modified polyethylene with a thickness of 100 μm, and the peripheral portions are heat-welded to each other to seal the contents.

このキャパシタの大きさは30X50ff、厚さ6oo
μm、容量1.tsF テあシ、70°Cで2v印加1
.000時間後の容量軽小率は7.8%であった。
The size of this capacitor is 30x50ff, thickness 6oo
μm, capacity 1. tsF Teashi, 2V applied 1 at 70°C
.. The capacity loss ratio after 000 hours was 7.8%.

(実施例3) 実施例1と同様の分極性電極体を用い、第5図に示すよ
うなエレクトロクロミック表示装置を作成した。20は
WO2を用いた表示電極、21は基体となるガラス板、
22は工n203からなる導′亀性透明篭憔である。2
3は分極性電極体、24はIn。03からなる電極、2
6はガラス板である。電極20.23間に満たす電解液
には1モル/gのL I ClO4を溶解したプロピレ
ンカーボネート浴液を用いた。
(Example 3) Using the same polarizable electrode body as in Example 1, an electrochromic display device as shown in FIG. 5 was created. 20 is a display electrode using WO2, 21 is a glass plate serving as a base,
22 is a conductive transparent basket made of material N203. 2
3 is a polarizable electrode body, and 24 is In. Electrode consisting of 03, 2
6 is a glass plate. As the electrolytic solution filled between the electrodes 20 and 23, a propylene carbonate bath solution in which 1 mol/g of L I ClO4 was dissolved was used.

この装置は次に示す酸化還元反応を利用した曹き込み、
消去可能なディスプレイである。分極性電極体の容量が
従来の炭素粉末を用いたものに比べ著しく大きく、また
安定であるため、長寿命の装置を得ることが可能である
This device uses the following oxidation-reduction reaction to add carbon dioxide,
It is an erasable display. Since the capacitance of the polarizable electrode body is significantly larger than that using conventional carbon powder and is stable, it is possible to obtain a device with a long life.

LtxWO3(1F) :WOs (無色) + xL
i+−)−2e発明の効果 以上のように本発明によれば薄型で、扁エネルギー密度
、高信頼性の電気二重層キャパシタやエレクトロクロミ
ック表示装置を与える分極性電極体を得ることができる
LtxWO3 (1F): WOs (colorless) + xL
i+-)-2e Effects of the Invention As described above, according to the present invention, it is possible to obtain a polarizable electrode body that is thin, has low energy density, and provides a highly reliable electric double layer capacitor or electrochromic display device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の分極性電極体を用いた電気二1層キャ
パシタの構成例を示す縦断面図、第2図は各種分極性電
極体を用いた二重ノーキャパシタの信頼性を示す図、第
3図は電気二重層キャパシタの他の構成例を示す平面図
、第4図は同喪部の断面図、第6図はエレクトロクロミ
ック表示装置の置部の断面図である。 代理人の氏名 弁理士 中 属 敏 男 ほか1名第1
図 慢酬≦本叶a
Fig. 1 is a vertical cross-sectional view showing an example of the structure of an electric 21-layer capacitor using the polarizable electrode body of the present invention, and Fig. 2 is a diagram showing the reliability of a double no-capacitor using various polarizable electrode bodies. , FIG. 3 is a plan view showing another example of the structure of the electric double layer capacitor, FIG. 4 is a cross-sectional view of the mounting portion thereof, and FIG. 6 is a cross-sectional view of the mounting portion of the electrochromic display device. Name of agent: Patent attorney Toshio Naka and one other person No.1
Arrogant reward ≦ real leaf a

Claims (4)

【特許請求の範囲】[Claims] (1)活性炭繊維を熱融着性結合媒体とともに抄紙法に
より紙状に成形した後、熱プレスまたは熱カレンダー加
工して前記活性炭繊維と結合媒体を熱融着することを特
徴とする分極性電極体の製造方法。
(1) A polarizable electrode characterized in that activated carbon fibers and a heat-fusible binding medium are formed into paper by a paper-making method, and then heat-pressed or heat-calendered to heat-fuse the activated carbon fibers and the binding medium. How the body is manufactured.
(2)結合媒体が撥水性を有することを特徴とする特許
請求の範囲第1項記載の分極性電極体の製造方法。
(2) The method for manufacturing a polarizable electrode body according to claim 1, wherein the binding medium has water repellency.
(3)結合媒体が、ポリエチレン、ポリプロピレン、ア
クリル樹脂、ナイロン、ポリエステル及びキュプラ樹脂
よりなる群から選択された少なくともひとつからなる特
許請求の範囲第1項記載の分極性電極体の製造方法。
(3) The method for producing a polarizable electrode body according to claim 1, wherein the binding medium is at least one selected from the group consisting of polyethylene, polypropylene, acrylic resin, nylon, polyester, and cupro resin.
(4)分極性分極体を構成する活性炭繊維が、フェノー
ル系樹脂繊維を炭化賦活して得られ、比表面積がBET
法で1500m^2/g、細孔容積が0.5cc/g以
上あることを特徴とする特許請求の範囲第1項記載の分
極性電極体の製造方法。
(4) The activated carbon fibers constituting the polarizable polarized body are obtained by carbonizing and activating phenolic resin fibers, and have a specific surface area of BET.
2. The method for producing a polarizable electrode body according to claim 1, wherein the polarizable electrode body has a pore volume of 1500 m^2/g and a pore volume of 0.5 cc/g or more.
JP60054913A 1985-03-19 1985-03-19 Manufacture of polarizing electrode body Pending JPS61214418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60054913A JPS61214418A (en) 1985-03-19 1985-03-19 Manufacture of polarizing electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60054913A JPS61214418A (en) 1985-03-19 1985-03-19 Manufacture of polarizing electrode body

Publications (1)

Publication Number Publication Date
JPS61214418A true JPS61214418A (en) 1986-09-24

Family

ID=12983840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60054913A Pending JPS61214418A (en) 1985-03-19 1985-03-19 Manufacture of polarizing electrode body

Country Status (1)

Country Link
JP (1) JPS61214418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641759B1 (en) 1999-10-19 2003-11-04 Nec Tokin Corporation Polymer secondary cell electrode production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599714A (en) * 1979-01-25 1980-07-30 Matsushita Electric Ind Co Ltd Double layer capacitor
JPS57199897A (en) * 1981-05-27 1982-12-07 Kojin Kk Heat resistant carbon fiber paper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599714A (en) * 1979-01-25 1980-07-30 Matsushita Electric Ind Co Ltd Double layer capacitor
JPS57199897A (en) * 1981-05-27 1982-12-07 Kojin Kk Heat resistant carbon fiber paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641759B1 (en) 1999-10-19 2003-11-04 Nec Tokin Corporation Polymer secondary cell electrode production method

Similar Documents

Publication Publication Date Title
US4737889A (en) Polarizable electrode body and method for its making
EP0298690B1 (en) Air cathodes and materials therefor
TW201037885A (en) Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
TW200840119A (en) Electrochemical cell for use in smart cards
JP2009099935A (en) Electrode for electric double-layer capacitor and method of manufacturing the same
CN107958788A (en) One kind contacts embedding lithium type lithium ion super capacitor
JPS61214418A (en) Manufacture of polarizing electrode body
JP2002270470A (en) Electric double-layered capacitor
JPS63110622A (en) Polarizing electrode
JPS5948917A (en) Electric double layer capacitor
JPH0770448B2 (en) Method of manufacturing polarizable electrodes
JPH08119615A (en) Activated-carbon sheet and electric-double-layer capacitor
JPS6164113A (en) Electric doulbe layer capacitor
JPS6136920A (en) Electric double layer capacitor
JPS6126207A (en) Electric double layer capacitor
JP3018343B2 (en) Electric double layer capacitor
JPS61214419A (en) Electric double layer capacitor
JPS6184819A (en) Electric double-layer capacitor
JPH0697004A (en) Polarizable electrode and its manufacture
JP2696554B2 (en) Electric double layer capacitor
JPS6110228A (en) Electric double layer capacitor
JPS61102025A (en) Electric double-layer capacitor
JPS61102024A (en) Electric double-layer capacitor
JPS6134918A (en) Electric double layer capacitor
JPS6126208A (en) Electric double layer capacitor