JPS61214372A - Polynuclear complex battery - Google Patents

Polynuclear complex battery

Info

Publication number
JPS61214372A
JPS61214372A JP60053807A JP5380785A JPS61214372A JP S61214372 A JPS61214372 A JP S61214372A JP 60053807 A JP60053807 A JP 60053807A JP 5380785 A JP5380785 A JP 5380785A JP S61214372 A JPS61214372 A JP S61214372A
Authority
JP
Japan
Prior art keywords
electrodes
polynuclear complex
battery
electrode
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60053807A
Other languages
Japanese (ja)
Inventor
Masao Kaneko
正夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP60053807A priority Critical patent/JPS61214372A/en
Publication of JPS61214372A publication Critical patent/JPS61214372A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a polynuclear complex battery having three kinds or redox states by using a compound which is a polynuclear complex and in an intermediate redox state as active material. CONSTITUTION:A mixed valency or mixed metal polynuclear complex indicated in the formula I is used as active material. PB which is the most representative compound in the polynuclear complex makes a unit lattice, that is, Fe<2+> and Fe<3+> connect each other through a cyano ligand. A large number of unit lattices are connected to form a high molecular complex. When a polynuclear complex film is used, active material in both electrodes is fixed in each electrode and no separator is required, and problems concerning internal resistance of the separator is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ゛ 本発明は三種の可逆的なレドックス状態を取り得る
、多核型の金属シアノ錯体を用いることを特徴とする電
池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a battery characterized by using a polynuclear metal cyano complex capable of assuming three types of reversible redox states.

〔発明の背景〕[Background of the invention]

異なる金属イオンまたは異なる原子価を持つ金属イオン
を、シアン配位子を架橋配位子として結合させて生ずる
錯体は、金属イオンがシアン配位子を介して三次元的に
つながった高分子量のいわゆる多核型構造をとる。その
代表例としてはプルシアンブルー(以降PBと略する)
が挙げられるが、これは鉄(II)と鉄([)の混合原
子価多核錯体であり、その組成は(3)式で表わされる
Complexes formed by combining different metal ions or metal ions with different valences with a cyanide ligand as a bridging ligand are high molecular weight complexes in which the metal ions are three-dimensionally connected via the cyanide ligands. It has a multinucleated structure. A typical example is Prussian Blue (hereinafter abbreviated as PB).
This is a mixed valence polynuclear complex of iron (II) and iron ([), and its composition is represented by formula (3).

(Fe3°)4CFe (II)(CN)6) ’−・
cH2D    (3)このような多核型錯体は可逆的
に三種のレドックス状態をとりうる。たとえばPBを例
にとると、FB自身は(3)式に示したようにF e2
 +   F e3 +−の混合原子価状態であるが、
これを酸化するとFe3+−Fe3“のいわゆるベルリ
ングリーン(以下BGと略する)と呼ばれる酸化状態を
とり、またFBを還元するとFe2“−Fe2+のいわ
ゆるプルシアンホワイト(PWと略する)と呼ばれる還
元状態をとる。しかもこれら三種のレドックス状態(F
B、BGおよびFW)を可逆的にとりうる。
(Fe3°)4CFe (II) (CN)6) '--
cH2D (3) Such a polynuclear complex can reversibly assume three different redox states. For example, taking PB as an example, FB itself is F e2 as shown in equation (3).
+ Fe3 +− mixed valence state,
When this is oxidized, it takes an oxidation state called Berlin green (hereinafter abbreviated as BG) of Fe3+-Fe3", and when FB is reduced, it takes a reduced state called so-called Prussian white (abbreviated as PW) of Fe2"-Fe2+. Take. Moreover, these three redox states (F
B, BG and FW) can be taken reversibly.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、これら三種のレドックス状態をとりう
る多核型錯体を用いた電池を提供することである。
An object of the present invention is to provide a battery using a polynuclear complex that can take these three types of redox states.

〔発明の構成〕[Structure of the invention]

本発明者は、このように三種の安定なレドックス状態を
とりうる多核型錯体に注目し、鋭意研究の結果本発明を
完成するに到った。すなわち、このような多核型錯体で
中間のセドックス状態の化合物を原料とすることにより
、これを電解して陽極側に酸化型化合物(PBの例では
BGに相当する)を、陰極側に還元型の化合物(PBの
例ではPWに相当する)を生ぜしめれば、両極間に起電
力が発生するので、電池として用いることが出来る。こ
の電池においては、放電することにより、両極における
化合物はともに同じ原料に戻るので、これを電解するこ
とにより再び電池として使用できる。つまり、繰り返し
充放電が可能な蓄電池(二次電池)としても用いること
ができる。従来型の電池においては、通常陽極と陰極の
活物質は全く別種の化合物を用いるが、本発明の電池に
おいては、両極の活物質の原料として全く同一の化合物
を用いることになるので、電池の構成および製造におけ
る単純化というメリットは極めて大きい。
The present inventor focused on polynuclear complexes that can assume three types of stable redox states, and completed the present invention as a result of intensive research. In other words, by using a compound in the intermediate cedox state in such a polynuclear complex as a raw material, it is electrolyzed to produce an oxidized compound (corresponding to BG in the PB example) on the anode side and a reduced compound on the cathode side. If a compound (corresponding to PW in the example of PB) is produced, an electromotive force is generated between the two electrodes, so it can be used as a battery. In this battery, by discharging, the compounds at both electrodes return to the same raw material, so that it can be used again as a battery by electrolyzing it. In other words, it can also be used as a storage battery (secondary battery) that can be repeatedly charged and discharged. In conventional batteries, the active materials of the anode and cathode usually use completely different compounds, but in the battery of the present invention, the same compound is used as the raw material for the active materials of both electrodes. The advantages of simplicity in construction and manufacturing are significant.

本発明で用いる多核型錯体のもう一つの特徴は、高分子
量の錯体であるために容易に膜あるいはコロイド粒子の
形態に出来ることである。このため活物質を極めて容易
に電極上に固定したり、あるいはコロイドとして濃度の
高い条件で用いることができる。活物質を電極上に固定
できるというこ、とは、溶液を用いるよりはるかに高い
濃度で用いることができる、あるいは陽極活物質と陰極
活物質の接触を極めて容易に防ぐことができる、などの
重要な利点を生じる。
Another feature of the polynuclear complex used in the present invention is that it can be easily formed into a film or colloidal particle form because it is a high molecular weight complex. Therefore, the active material can be very easily immobilized on the electrode or used as a colloid under conditions of high concentration. Being able to immobilize the active material on the electrode is important, such as being able to use it at a much higher concentration than using a solution, and making it extremely easy to prevent contact between the anode active material and the cathode active material. results in significant benefits.

不法で用いられる活物質原料としての混合原子価または
混合金属多核錯体は、組成式(1)で表わされる。
A mixed valence or mixed metal polynuclear complex used illegally as an active material raw material is represented by the compositional formula (1).

(M I”)、  M II” (CN)s〕b  ”
C112O(1)ただしここでMI、MIIは同じであ
ることを妨げない、周期律表のVIA、■A、■、IB
、IIB。
(M I”), M II” (CN)s]b”
C112O (1) However, MI and MII are the same here, VIA, ■A, ■, IB of the periodic table
, IIB.

IIIBおよびIVB族から選ばれる金属イオン、l。metal ions selected from groups IIIB and IVB, l.

mは金属イオンの価数、a、bは1〜4の整数、Cは0
を含む任意の整数を表わし、またa、b。
m is the valence of the metal ion, a, b are integers of 1 to 4, C is 0
represents any integer including a, b.

β1mは式(2)の関係を満足する。β1m satisfies the relationship of equation (2).

Axa= (6−m)xb     (2)式〔2〕の
条件は、錯体中の負電荷と陽電荷の数が等しくなければ
ならない理由に基づく。
Axa= (6-m)xb (2) The condition of formula [2] is based on the reason that the number of negative charges and positive charges in the complex must be equal.

Ml”、MII’″“としては、たとえばFe 2 +
 、Fe” 、  Ru”、Ru”、Os”、Os”。
Ml", MII'"", for example, Fe 2 +
, Fe”, Ru”, Ru”, Os”, Os”.

M n”、Mn”、Cr”、Cr”、Cu”。Mn”, Mn”, Cr”, Cr”, Cu”.

Ag”、Sn”、Sn”、Mo”、Mo”。Ag”, Sn”, Sn”, Mo”, Mo”.

AA”、Pb”、Pb’+ などが挙げられる。Examples include AA'', Pb'', Pb'+, etc.

混合原子価錯体としてはたとえば前記のPBが挙げられ
、混合金属錯体としてはたとえば組成式(4)で表わさ
れる、゛いわゆるルテニウムパープル(RPと略記する
)が挙げられる (Fe”)4(Ru (II)(CN ) s〕、a−
(4)本発明における多核錯体において、最も代表的な
化合物であるPBを例にとり本発明をさらに詳しく説明
する。
Examples of mixed valence complexes include the above-mentioned PB, and examples of mixed metal complexes include ``so-called ruthenium purple (abbreviated as RP)'', which is represented by the compositional formula (4) (Fe'') 4 (Ru ( II) (CN) s], a-
(4) The present invention will be explained in more detail by taking PB, which is the most representative compound in the polynuclear complex of the present invention, as an example.

PBは添付図面に示したような単位格子を形づくる。す
なわち、Fe”“とFe3+がシアノ配位子を介して交
互につながった構造を持つ。このような単位格子が数多
くつながって高分子量の錯体構造をとる。ちなみに、は
)゛中性の水中で後述するようにして調製したPBは、
電子顕微鏡により観察すると調製直後にははパ球状のコ
ロイド粒子を形作り、その平均粒径は230人であるこ
とがわかった。これは図の単位格子が6000個つなが
っていることに相当し、その分子量は約500万にも達
する。このようなコロイド粒子は静置あるいは電解質の
添加により凝集して数千人から数μの大きな粒子となり
、ついには沈降する。
PB forms a unit cell as shown in the accompanying drawings. That is, it has a structure in which Fe'' and Fe3+ are alternately connected via cyano ligands. Many such unit cells are connected to form a high molecular weight complex structure. By the way, PB prepared in neutral water as described below is
When observed under an electron microscope, it was found that immediately after preparation, spherical colloidal particles were formed, and the average particle size was 230 particles. This corresponds to 6,000 connected unit cells in the figure, and its molecular weight reaches approximately 5 million. Such colloidal particles aggregate when left standing or when an electrolyte is added to form large particles ranging from several thousand to several micrometers in size, and eventually settle.

FBのコロイド溶液を調製するには、フェリシアン化カ
リウムと第一鉄塩の水溶液を混合するか、あるいはフェ
ロシアン化カリウムと第二鉄塩の水溶液を混合すればよ
い。混合後直ちにFBのコロイド溶液が生成する。ある
いはフェロシアン化カリウムと第一鉄塩の混合水溶液を
、空気や他の酸化剤で酸化するか、あるいはフェリシア
ン化カリウムと第二鉄塩の混合水溶液を還元することに
より、PBのコロイド水溶液が得られる。このようなコ
ロイド水溶液は、コロイドが凝集しないような条件では
透明青色の水溶液であるが、濃度が濃いとコロイドの凝
集が容易に起るので、深青色の不透明液となる。前述の
場合、酸化剤や還元剤を用いる代りに、電気化学的な酸
化または還元によりFBを生成せしめることも可能で、
このとき ′PBは膜として電極面に付着する。他の錯
体の溶液や皮膜も大体同様にして調製される。たとえば
RPは、ヘキサシアノルテニウム(n)塩を第二鉄塩水
溶液と混合することにより、紫色のコロイド溶液として
得られる。
A colloidal solution of FB can be prepared by mixing an aqueous solution of potassium ferricyanide and a ferrous salt, or by mixing an aqueous solution of potassium ferrocyanide and a ferric salt. A colloidal solution of FB is produced immediately after mixing. Alternatively, a colloidal aqueous solution of PB can be obtained by oxidizing a mixed aqueous solution of potassium ferrocyanide and a ferrous salt with air or another oxidizing agent, or by reducing a mixed aqueous solution of potassium ferricyanide and a ferric salt. Such a colloid aqueous solution is a transparent blue aqueous solution under conditions where the colloid does not aggregate, but when the concentration is high, colloid aggregation easily occurs, resulting in a deep blue opaque liquid. In the above case, instead of using an oxidizing agent or reducing agent, it is also possible to generate FB by electrochemical oxidation or reduction,
At this time, 'PB adheres to the electrode surface as a film. Solutions and films of other complexes are prepared in much the same manner. For example, RP is obtained as a purple colloidal solution by mixing a hexacyanoruthenium (n) salt with an aqueous ferric salt solution.

電池を構成する電極は何でもよく、たとえば白金板、白
金線、金、グラファイトなどの炭素板あるいは炭素繊維
、電導性ガラスなどが用いられ“る。
The electrodes constituting the battery may be of any material, such as platinum plates, platinum wires, gold, carbon plates such as graphite, carbon fibers, and conductive glass.

多核錯体膜を電極に被覆するためには、たとえば電解還
元法による場合は、まず酸化型の多核錯体水溶液を調製
する。FBの例ではフェリシアン化カリウムと第二鉄塩
水溶液を等モルずつ混合するとBG水溶液ができる。こ
れにカリウム、ルビジウム、セシウムあるいはアンモニ
ウムなどのカチオンを含む電解質(たとえば塩化カリウ
ム、硫酸ルビジウム、塩化アンモニウムなど)を共存さ
せ、電極にO〜−10V (v s、NHE)の範囲の
電圧を引加すると還元が起るとともに多核錯体(たとえ
ばFB)が電極上に析出して皮膜を形成する。
In order to coat an electrode with a polynuclear complex film, for example, when using an electrolytic reduction method, an oxidized polynuclear complex aqueous solution is first prepared. In the example of FB, a BG aqueous solution is prepared by mixing equimolar amounts of potassium ferricyanide and a ferric salt aqueous solution. An electrolyte containing cations such as potassium, rubidium, cesium, or ammonium (for example, potassium chloride, rubidium sulfate, ammonium chloride, etc.) is coexisting with this, and a voltage in the range of O to -10V (v s, NHE) is applied to the electrode. Then, reduction occurs and a polynuclear complex (for example, FB) is deposited on the electrode to form a film.

このようにして多核錯体(たとえばFB)の膜を被覆し
た電極を2本使えば次のようにして電池を構成できる。
By using two electrodes coated with a film of a polynuclear complex (for example, FB) in this way, a battery can be constructed as follows.

たとえば、PB被覆電極を、カリウム、ルビジウム、セ
シウムあるいはアンモニウムなどのカチオンを含む電解
質を溶解させた水溶液に浸漬し、両極間に直流電源で1
〜IOVの電位差をかけると、陰極側ではFBの還元が
起ってPWとなり、陽極側ではPBの酸化が起ってBG
となる。このようにして得られたPW、BG両電極間は
PW/FB、BG/PBの両反応カップルのレドックス
電位の差に基づく起電力が発生するので、電池として用
いることができる。放電後には、PW、BGともに元の
PBに戻るので、これを充電することにより再び電池と
して用いることができ、このような充・放電は繰り返し
行なうことができる。すなわち本発明の電池は二次電池
として用いることができる。
For example, a PB-coated electrode is immersed in an aqueous solution containing an electrolyte containing cations such as potassium, rubidium, cesium, or ammonium, and a DC power supply is applied between the two electrodes.
When a potential difference of ~IOV is applied, reduction of FB occurs on the cathode side, resulting in PW, and oxidation of PB occurs on the anode side, resulting in BG.
becomes. Since an electromotive force is generated between the PW and BG electrodes obtained in this way based on the difference in redox potential of both reaction couples of PW/FB and BG/PB, it can be used as a battery. After discharging, both PW and BG return to the original PB, so by charging it, it can be used as a battery again, and such charging and discharging can be repeated. That is, the battery of the present invention can be used as a secondary battery.

多核錯体を高濃度コロイド溶液として用いるときは、例
えば次のようにして電池を構成できる。
When a polynuclear complex is used as a highly concentrated colloidal solution, a battery can be constructed, for example, as follows.

すなわち、板状炭素電極に炭素繊維布をまきつけ、さら
に上から細い白金線を巻いてその端は板状炭素電極に付
したリード線に接続する。この電極を用いて、電解質を
含む0.5〜2mol/βのBG水溶液中で0〜−10
Vで電解還元を行ない、炭素繊維の間にPBコロイド粒
子を析出させる。このように高濃度のPBコロイド溶液
を炭素繊維中に含む電極を2枚調製し、これを電解質水
溶液に入れ、両電極が接触しないように1〜数manの
間隔をあけるか、あるいは任意のプラスチックで作製し
た簡単な格子を両電極間にはさむ。セルの大きさおよび
水溶液は、両電極を挿入するための最小のスペース及び
量があればよい。然る後に、両電極間に1〜IOVの電
位差をかけると、陰極側ではPWが、陽極側ではBGが
生成する。これは前述と同様に電池として作動し、また
二次電池としても機能する。
That is, a carbon fiber cloth is wrapped around a plate-shaped carbon electrode, and a thin platinum wire is further wound from above, and the end thereof is connected to a lead wire attached to the plate-shaped carbon electrode. Using this electrode, 0 to -10
Electrolytic reduction is performed with V to deposit PB colloid particles between the carbon fibers. In this way, two electrodes containing a highly concentrated PB colloid solution in carbon fibers are prepared, placed in an electrolyte aqueous solution, and a gap of one to several mans is left between the two electrodes so that they do not come into contact, or A simple lattice fabricated from above is sandwiched between both electrodes. The size of the cell and the aqueous solution need only be the minimum space and amount for inserting both electrodes. After that, when a potential difference of 1 to IOV is applied between both electrodes, PW is generated on the cathode side and BG is generated on the anode side. This operates as a battery as described above, and also functions as a secondary battery.

〔発明の効果〕〔Effect of the invention〕

本発明の電池において、多核型錯体の膜を使用したばあ
いには、両極の活物質はいずれも電極に固定化されてい
るので、通常の電池で必須とされるセパレータは必要で
はない。従って電池の構成が簡単になる上、セパレータ
による内部抵抗の問題もなくなる。両方の活物質が直接
接触さえしなければよい。また、固体膜として用いる他
の特徴は、溶液系と異なり活物質の濃度を高くとれるこ
とにあり、たとえばFB膜を溶液濃度で表わすと約5当
量/lもの高い活物質濃度となる。本発明の電池は充・
放電を繰り返し再現よく行うことができる。
In the battery of the present invention, when a polynuclear complex membrane is used, the active materials of both electrodes are immobilized on the electrodes, so there is no need for a separator that is essential in a normal battery. Therefore, the structure of the battery becomes simple, and the problem of internal resistance caused by the separator is also eliminated. It is only necessary that both active materials do not come into direct contact. Another feature of using it as a solid membrane is that unlike a solution system, the concentration of the active material can be high; for example, if the FB membrane is expressed in solution concentration, it has an active material concentration as high as about 5 equivalents/l. The battery of the present invention can be recharged and
Discharge can be repeated and reproducibly performed.

〔実施例〕〔Example〕

以下実施例を以てさらに詳しく本発明を説明するが、本
発明の範囲は実施例のみに限定されるものではない。
The present invention will be explained in more detail below with reference to Examples, but the scope of the present invention is not limited only to the Examples.

実施例1 電極のディスク面に炭素六員環の平面が並行に揃った、
いわゆるベイサル・プレーン・グラフアイ  ト  (
Ba5al     P  1ane    Grap
hite   、   B  P  G  と 略す)
電極(面積0゜17cnf)を2本用意する。フェリシ
アン化カリウムと塩化第二鉄をそれぞれlOmmol/
 1ずツ0.01 N HCI水溶液中で混合すること
に゛より、BG溶液を作る。BPG電極を作用極ミ白金
を対極、Ag−AgC1電極を参照極とし、BPG電極
に−0,5V (vs、 Ag −Ag[:1 )を1
805印加すると、BGの還元が起り、PB膜が電極に
被覆される。このようなPB電極を2本作製し、0.5
mol/ j!のに2SO,水溶液(K、S04 でp
H4に調整)1−に浸漬する。単一乾電池2本を直列に
つないで、3■を両電極間に5分間印加すると、PBは
陰極ではPWに、陽極ではBGになる。このようにして
得られた電池は、開放起電力(Voc) 1.56 V
で、要路電流(Jsc)は短絡時の340μA/ctl
から、5分後には約30μA/Cl11となった。この
ような充・放電は繰り返し再現よく行なうことができた
Example 1 The planes of the six-membered carbon rings were aligned parallel to the disk surface of the electrode.
So-called Basal Plain Graphite (
Ba5al P 1ane Grap
Hite, abbreviated as BPG)
Prepare two electrodes (area 0°17cnf). Potassium ferricyanide and ferric chloride each 1Ommol/
A BG solution is made by mixing 1 part in 0.01 N HCI aqueous solution. The BPG electrode is used as the working electrode, platinum is used as the counter electrode, and the Ag-AgC1 electrode is used as the reference electrode.
When 805 is applied, reduction of BG occurs and the PB film is coated on the electrode. Two such PB electrodes were made, and the
mol/j! 2SO, aqueous solution (K, p in SO4
Adjust to H4) Soak in 1-. When two single dry cell batteries are connected in series and a voltage of 3.5 cm is applied between both electrodes for 5 minutes, PB becomes PW at the cathode and BG at the anode. The battery thus obtained has an open electromotive force (Voc) of 1.56 V
The main circuit current (Jsc) is 340μA/ctl at the time of short circuit.
After 5 minutes, it became about 30 μA/Cl11. Such charging and discharging could be performed repeatedly and with good reproducibility.

実施例2 実施例1において、lCdの白金板電極を1組用い、K
2S0.の代りに2mol/j!のKCI (HCIで
pH3に調整)を用いたほかは、実施例1と全く同様に
電池を作製し、Voc約1.5VSJsc  390μ
A/crl(短絡時)を得た。このような充・放電は繰
り返し再現よく行なうことができた。
Example 2 In Example 1, one set of lCd platinum plate electrodes was used, and K
2S0. 2 mol/j instead of! A battery was prepared in the same manner as in Example 1, except that KCI (adjusted to pH 3 with HCI) was used, and the battery had a Voc of approximately 1.5 VSJsc 390μ.
A/crl (when shorted) was obtained. Such charging and discharging could be performed repeatedly and with good reproducibility.

実施例3 実施例1において、PB被覆電極を1組作製した後、両
電極の被覆面を向い合せて間隔が約0.5mn+になる
ように固定する。この電極間に、1mol/βのKNO
3水溶液(HNO,でpH5に調整)を入れ、周囲をビ
ニルテープで巻いて水溶液が落ちないようにする。乾電
池を2本用いて、両極間に電位差3■を2分間印加する
と、陰極ではPWが、陽極ではBGが生成する。このよ
うにして得られた電池は、Voc約1.5■、Jsc 
は短絡時に約290μA / cnlが流れた。このよ
うな充・放電は繰り返し再現よく行なうことができた。
Example 3 In Example 1, one set of PB-covered electrodes was prepared and then fixed so that the coated surfaces of both electrodes faced each other and the distance was about 0.5 mm+. Between these electrodes, 1 mol/β of KNO
3 Add an aqueous solution (adjusted to pH 5 with HNO) and wrap the surrounding area with vinyl tape to prevent the aqueous solution from falling. When two dry batteries are used and a potential difference of 3 cm is applied between the two electrodes for two minutes, PW is generated at the cathode and BG is generated at the anode. The battery thus obtained had a Voc of about 1.5■, a Jsc
About 290 μA/cnl flowed during short circuit. Such charging and discharging could be performed repeatedly and with good reproducibility.

実施例4 シアン化ルテニウム(K4(Ru” (CN)s〕”−
)と塩化第二鉄をそれぞれ2mol/βずつ含む水溶液
を混合すると、RPのコロイド溶液が生成する。
Example 4 Ruthenium cyanide (K4(Ru”(CN)s)”-
) and ferric chloride in an amount of 2 mol/β, a colloidal solution of RP is produced.

KCIを0.5+nol/j7となるように添加、溶解
し、厚さ3 mm、縦、横がそれぞれ15印のセルに0
.5mj!入れる。中央に隔壁としてカチオン交換膜を
装着し、この両側にそれぞれl x l cmの白金網
電極を挿入する。両電極間に電位差2■を10分間印加
すると、電池として作動し、Voc約0.6■、Jsc
は短絡時に250μA/cIIlが流れた。
Add KCI to 0.5+nol/j7, dissolve it, and place it in a cell with a thickness of 3 mm and 15 marks each on the vertical and horizontal sides.
.. 5mj! put in. A cation exchange membrane is installed as a partition in the center, and platinum mesh electrodes of 1 x 1 cm are inserted on both sides of the membrane. When a potential difference of 2■ is applied between both electrodes for 10 minutes, it operates as a battery, with Voc of about 0.6■, Jsc
250μA/cIIl flowed during short circuit.

実施例5 シアン化コバルト([I) (K3(CO” (CN )6) 3−)  と硫酸第
一鉄をそれぞれ1mol/j’ずつ含む水溶液を混合し
て多核錯体、Fe (U ) 3 Co (I[I) 
(CN)s〕a のコロイド溶液を調製した後、実施例
4と同様にセルを構成し、充電したところ、電池として
Voc約0.5 V、 Jsc約210μA/c++f
が得られた。
Example 5 A polynuclear complex, Fe (U) 3 Co, was prepared by mixing aqueous solutions containing 1 mol/j' each of cobalt cyanide ([I) (K3(CO'' (CN)6) 3-) and ferrous sulfate. (I[I)
After preparing a colloidal solution of (CN)s]a, a cell was constructed and charged in the same manner as in Example 4, and the battery had a Voc of about 0.5 V and a Jsc of about 210 μA/c++f.
was gotten.

実施例6 シアン化クロム(III) (Kr[Cr鳳(CN)、:13−)と塩化りoム(I
II)をそれぞれ1mol/jiずつ含む水溶液を混合
して多核錯体、Cr(III)  [Cr (III)
(CN)−)のコロイド溶液を調製した後、実施例4と
同様にセルを構成し、充電したところ、電池としてVo
c約0.7■、Jsc約2O0μA/ciが得られた。
Example 6 Chromium (III) cyanide (Kr [Cr-(CN), :13-) and chromium chloride (I)
A polynuclear complex, Cr(III) [Cr(III)
After preparing a colloidal solution of (CN)-), a cell was constructed and charged in the same manner as in Example 4.
c of about 0.7■ and Jsc of about 200 μA/ci were obtained.

実施例7 1、5 X 1.5 cmのグラッシーカーボン板に銅
のリード線を付して電極とし、これに炭素繊維布を巻い
てその上をさらに細い白金線で巻き、この白金線をリー
ド線に接続した。仕上りの厚さは0.4 cmとし、同
じ電極を1組用意した。BGのl Q mmol/βコ
ロイド水溶液に浸漬し、−0,7V (vs、 Ag−
AgC+)  を10分印加すると、BGの電解還元が
起り、電極の炭素繊維の間に、PBが濃厚コロイド溶液
として取り込まれた構造のPB電極ができる。厚さ1c
m、縦、横がそれぞれ2cmのセルの真中にカチオン交
換膜を装着し、これをはさんで2枚のPB電極を挿入し
、次で0.5mol/ 1のに2So、水溶液でセルを
満たす。両電極間に電位差3■を5分かけると、陰極で
はPWが、陽極ではBGが生成し、電池となる。Voc
 として0.46 V、Jsc として短絡時に5mA
、8分後に0.8mAが得られ、1時間以上にわたって
0.8 m Aの短絡電流が流れた。
Example 7 A copper lead wire was attached to a 1.5 x 1.5 cm glassy carbon plate to serve as an electrode, a carbon fiber cloth was wrapped around this, a thin platinum wire was further wrapped on top of the carbon fiber cloth, and this platinum wire was used as a lead. connected to the line. The finished thickness was 0.4 cm, and one set of the same electrodes was prepared. Immersed in l Q mmol/β colloid aqueous solution of BG, -0.7V (vs, Ag-
When AgC+) is applied for 10 minutes, electrolytic reduction of BG occurs, forming a PB electrode with a structure in which PB is incorporated as a concentrated colloidal solution between the carbon fibers of the electrode. Thickness 1c
Attach a cation exchange membrane to the center of a cell that is 2 cm long and 2 cm wide, insert two PB electrodes across it, and then fill the cell with a 0.5 mol/1 2So aqueous solution. . When a potential difference of 3 cm is applied between the two electrodes for 5 minutes, PW is generated at the cathode and BG is generated at the anode, forming a battery. Voc
0.46 V as Jsc, 5mA when shorted as Jsc
, 0.8 mA was obtained after 8 minutes, and a short circuit current of 0.8 mA flowed for over 1 hour.

実施例8 実施例7において、炭素繊維布の代りに炭素繊維の東を
用いたほかは、実施例7と同様に電池を構成し、Voc
として0.45V、、Jsc として短絡時に8mA、
10分後に1mAの電流を得た。
Example 8 In Example 7, a battery was constructed in the same manner as in Example 7, except that carbon fiber cloth was used instead of carbon fiber cloth, and Voc
0.45V as Jsc, 8mA when shorted as Jsc,
A current of 1 mA was obtained after 10 minutes.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、プルシアンブルーの単位格子を示している
The accompanying drawing shows a Prussian blue unit cell.

Claims (1)

【特許請求の範囲】 組成式(1)であらわされる混合原子価または混合金属
多核錯体を原料とし、これを電解することにより陽極側
に酸化型化合物を、陰極側に還元型化合物を生ぜしめた
後、両極間に発生する起電力を利用することを特徴とす
る多核錯体電池。 (M I ^l^+)_aMII^m^+(CN)_6〕_
b・cH_2O(1) ただし、M I 、MIIは同じであることを妨げない、周
期律表のVIA、VIIA、VIII、 I B、IIB、IIIBおよ
びIVB族から選ばれる金属イオン、l、mは金属イオン
の価数、a、bは1〜4の整数、cは0を含む任意の整
数、また、a、b、l、mは(2)の関係式を満足する
。 l×a=(6−m)×b(2)
[Claims] A mixed valence or mixed metal polynuclear complex represented by the compositional formula (1) is used as a raw material, and by electrolyzing this, an oxidized compound is produced on the anode side and a reduced compound is produced on the cathode side. A multinuclear complex battery characterized by utilizing the electromotive force generated between two electrodes. (M I ^l^+)_aMII^m^+(CN)_6〕_
b・cH_2O (1) However, M I and MII are the same, metal ions selected from groups VIA, VIIA, VIII, I B, IIB, IIIB and IVB of the periodic table, l and m are The valences of the metal ions, a and b, are integers of 1 to 4, c is any integer including 0, and a, b, l, and m satisfy the relational expression (2). l×a=(6-m)×b(2)
JP60053807A 1985-03-18 1985-03-18 Polynuclear complex battery Pending JPS61214372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60053807A JPS61214372A (en) 1985-03-18 1985-03-18 Polynuclear complex battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053807A JPS61214372A (en) 1985-03-18 1985-03-18 Polynuclear complex battery

Publications (1)

Publication Number Publication Date
JPS61214372A true JPS61214372A (en) 1986-09-24

Family

ID=12953066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053807A Pending JPS61214372A (en) 1985-03-18 1985-03-18 Polynuclear complex battery

Country Status (1)

Country Link
JP (1) JPS61214372A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667032A1 (en) * 1992-09-01 1995-08-16 Motorola, Inc. Rechargeable electrical energy storage device having organometallic electrodes
JP2008204668A (en) * 2007-02-16 2008-09-04 Univ Nagoya Molecular cluster secondary battery
US20110195297A1 (en) * 2010-02-09 2011-08-11 Murata Manufacturing Co., Ltd. Secondary battery
EP2724398A2 (en) * 2011-06-22 2014-04-30 The Board of Trustees of The Leland Stanford Junior University High rate, long cycle life battery electrode materials with an open framework structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603862A (en) * 1983-06-22 1985-01-10 Seiko Instr & Electronics Ltd Secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603862A (en) * 1983-06-22 1985-01-10 Seiko Instr & Electronics Ltd Secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667032A1 (en) * 1992-09-01 1995-08-16 Motorola, Inc. Rechargeable electrical energy storage device having organometallic electrodes
EP0667032A4 (en) * 1992-09-01 1995-11-08 Motorola Inc Rechargeable electrical energy storage device having organometallic electrodes.
JP2008204668A (en) * 2007-02-16 2008-09-04 Univ Nagoya Molecular cluster secondary battery
US20110195297A1 (en) * 2010-02-09 2011-08-11 Murata Manufacturing Co., Ltd. Secondary battery
US9034518B2 (en) * 2010-02-09 2015-05-19 Murata Manufacturing Co., Ltd. Secondary battery having an electrode active material that includes an organic compound
EP2724398A2 (en) * 2011-06-22 2014-04-30 The Board of Trustees of The Leland Stanford Junior University High rate, long cycle life battery electrode materials with an open framework structure
EP2724398A4 (en) * 2011-06-22 2014-12-24 Univ Leland Stanford Junior High rate, long cycle life battery electrode materials with an open framework structure

Similar Documents

Publication Publication Date Title
Kaneko et al. A secondary battery composed of multilayer Prussian Blue and its reaction characteristics
Liu et al. Aqueous flow batteries: research and development
Chen et al. Solution redox couples for electrochemical energy storage: I. Iron (III)‐iron (II) complexes with O‐phenanthroline and related ligands
King et al. On the nature of electroactive sites in clay-modified electrodes
CN105122518B (en) Cosolvent electrolyte for electrochemical appliance
Wen et al. Studies on iron (Fe3+∕ Fe2+)-complex/bromine (Br2∕ Br−) redox flow cell in sodium acetate solution
EP0131392A1 (en) Secondary cell
Kalaignan et al. Triangular potential sweep voltammetric study of porous iron electrodes in alkali solutions
Fleischmann et al. Kinetics of electrodeposition of γ-manganese dioxide
Yeo et al. Electrocatalysis of Anodic Oxygen‐Transfer Reactions: Effect of Groups III A and VA Metal Oxides in Electrodeposited β‐Lead Dioxide Electrodes in Acidic Media
Shaojun et al. Researches on chemically modified electrodes: Part XV. Preparation and electrochromism of the vanadium hexacyanoferrate film modified electrode
Gahn et al. Single cell performance studies on the Fe/Cr Redox Energy Storage System using mixed reactant solutions at elevated temperature
CN107148696A (en) vanadium active material liquid and vanadium redox battery
Kalwellis-Mohn et al. A secondary cell based on thin layers of zeolite-like nickel hexacyanometallates
Vittal et al. Surfactant promoted enhancement in electrochemical and electrochromic properties of films of Prussian Blue and its analogs
EP0086555A1 (en) Electrochemical cell
Honda et al. Polymerization of transition metal complexes in solid polymer electrolytes
JPH1021898A (en) Lithium battery
WO2024056104A1 (en) Vanadium-chromium electrolyte, preparation method therefor, and flow battery comprising same
JPS61214372A (en) Polynuclear complex battery
Lu et al. Lead-modified graphite felt electrode with improved VO2+/VO2+ electrochemical activity for vanadium redox flow battery
Aguiló-Aguayo et al. Monitoring the state-of-charge in all-iron aqueous redox flow batteries
US4631240A (en) Electrochemical cell
Mortimer et al. Electrochromic 1, 1′‐dialkyl‐4, 4′‐bipyridilium‐incorporated Nafion electrodes
GB2047421A (en) Electrochromic display device