JPS61214263A - Optical reproducing magnetic head - Google Patents

Optical reproducing magnetic head

Info

Publication number
JPS61214263A
JPS61214263A JP5444085A JP5444085A JPS61214263A JP S61214263 A JPS61214263 A JP S61214263A JP 5444085 A JP5444085 A JP 5444085A JP 5444085 A JP5444085 A JP 5444085A JP S61214263 A JPS61214263 A JP S61214263A
Authority
JP
Japan
Prior art keywords
magnetization
magnetic pole
magnetic
medium
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5444085A
Other languages
Japanese (ja)
Inventor
Norio Oota
憲雄 太田
Shigenori Okamine
岡峯 成範
Ken Sugita
杉田 愃
Yosuke Seo
瀬尾 洋右
Takashi Tamura
田村 喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5444085A priority Critical patent/JPS61214263A/en
Priority to US06/832,884 priority patent/US4707755A/en
Priority to DE8686301921T priority patent/DE3680010D1/en
Priority to EP86301921A priority patent/EP0195628B1/en
Publication of JPS61214263A publication Critical patent/JPS61214263A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • G11B11/10547Heads for reproducing using optical beam of radiation interacting with the magnetisation of an intermediate transfer element, e.g. magnetic film, included in the head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10534Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To improve the magnetooptic conversion efficiency and the reproducing efficiency by dividing a main magnetic pole formed with the first high-permeability thin film into two and arranging the second high-permeability film which has the axis of easy magnetization in parallel with the film surface so that this second film is brought closely into contact with the first film. CONSTITUTION:In case of write an auxiliary magnetic pole 7 is excited by a coil 8 to magnetize a main magnetic pole 1, and magnetization is induced in a vertical magnetized medium 7 just under the main magnetic pole 1 to write information. In case of reproducing, a leaked magnetic field from a magnetic domain written on the medium 5 induces the magnetization of the main magnetic pole 1, and the magnetization of a magnetooptic medium 10 is arranged in the same direction as the main magnetic pole. When a linearly polarized beam is made incident at an angle theta from above, the plane of polarization of the reflected light is rotated in proportion to MScostheta where MS is the magnetization of the magnetooptic medium. Consequently, the sign of the angle of rotation is detected to reproduce not only the magnetization direction of the medium 10 and that of the main magnetic pole 1 but also the magnetization state of the medium 5 just under the main magnetic pole. As the result, the recording density is improved even in the area where the recording density cannot be improved conventionally.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、磁気的に書込み、光学的に再生する磁気記録
用磁気ヘッドに係り、特に、書込みと再生を一つのヘッ
ドで行うに好適な一体化単磁極型磁気ヘッドに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a magnetic recording head for magnetically writing and optically reproducing. This invention relates to a single magnetic pole type magnetic head.

〔発明の背景〕[Background of the invention]

従来の光再生型単磁極ヘッドにおいては、特開昭57−
169946号に記載のように、主磁極の高透磁率薄膜
1を2つに分割し、さらにこれに密着して、膜面に垂直
な方向に磁化容易軸をもつ第2の磁性薄膜2を配してい
た。そして、この第2の磁性薄膜に垂直に偏光した光ビ
ーム9を照射し、極カー効果、垂直入射ファラデー効果
等により、主磁極の磁化状態を弁別していた。すなわち
、磁気媒体から主磁極に誘導される磁化を光の強度差に
変換することにより、高密度記録の再生を行っていた。
In the conventional optical reproduction type single magnetic pole head,
As described in No. 169946, the high magnetic permeability thin film 1 of the main pole is divided into two, and a second magnetic thin film 2 having an axis of easy magnetization in the direction perpendicular to the film surface is disposed in close contact with the two. Was. Then, this second magnetic thin film is irradiated with a vertically polarized light beam 9, and the magnetization state of the main pole is discriminated based on the polar Kerr effect, the perpendicular incidence Faraday effect, and the like. That is, reproduction of high-density recording was performed by converting the magnetization induced from the magnetic medium into the main pole into a difference in light intensity.

しかしながら、この方法では第1図に示すように、第2
の磁性薄膜2が垂直磁化膜であるために、磁路内の磁束
4の大部分は、第2の磁性薄膜の表面から磁路外にとび
出してしまう。従って、この構成では、主磁極の磁路が
大きな開放端をもつこととなってしまい、磁気信号に応
じて、主磁極の磁化状態を反転させようとしても、きわ
めて大きなエネルギーを必要とすることになる。
However, in this method, as shown in FIG.
Since the magnetic thin film 2 is a perpendicularly magnetized film, most of the magnetic flux 4 in the magnetic path comes out of the magnetic path from the surface of the second magnetic thin film. Therefore, in this configuration, the magnetic path of the main pole has a large open end, and an extremely large amount of energy is required to reverse the magnetization state of the main pole in response to a magnetic signal. Become.

すなわち、媒体からの磁気信号に忠実に、主磁極の磁化
状態を追随させていくことが困難となる。
That is, it becomes difficult to make the magnetization state of the main pole faithfully follow the magnetic signal from the medium.

以上のように、上記例では、高感度の光再生ヘッドとす
るための磁路構成に対する配慮がなされていなかった。
As described above, in the above example, no consideration was given to the magnetic path configuration to provide a highly sensitive optical reproducing head.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、光再生型の単磁極ヘッドにおいて、媒
体からの磁気信号に忠実に磁化誘導がひきおこされる磁
路構成とし、信号対雑音比の良好な、書込み・再生一体
型の磁気ヘッドを提供することにある。
An object of the present invention is to provide an optical reproduction type single-pole head with a magnetic path configuration in which magnetization induction is caused faithfully to the magnetic signal from the medium, and to provide an integrated write/reproduction magnetic head with a good signal-to-noise ratio. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明では、第1の高透磁率
薄膜でできた主磁極を2分割し、これに密着して、膜面
に平行方向に磁化容易軸を有し、しかも、縦カー効果あ
るいはファラデー効果の大きい第2の高透磁率膜を配す
る。これにより、分割した主磁極間の磁路は第2の磁性
膜によって磁気的に結合されて閉じることとなり、忠実
な信号再生を行うことができる。
In order to achieve the above object, in the present invention, the main magnetic pole made of the first high magnetic permeability thin film is divided into two parts, which are closely attached to each other, have an axis of easy magnetization in a direction parallel to the film surface, and have an axis of easy magnetization parallel to the film surface. A second high magnetic permeability film having a large Kerr effect or Faraday effect is disposed. Thereby, the magnetic path between the divided main magnetic poles is magnetically coupled and closed by the second magnetic film, and faithful signal reproduction can be performed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によシ、詳細に説明する。 Hereinafter, the present invention will be explained in detail using examples.

(実施例1) 第2図に示すように、膜厚0.05〜0.15μm1幅
5μmのpeNi、 Co7.r等の高透磁率膜ででき
た主磁極1をC0Cr、TbFe、coo等の垂直磁化
磁気記録媒体5に近接して、垂直方向に立てる。
(Example 1) As shown in FIG. 2, peNi, Co7. A main magnetic pole 1 made of a high magnetic permeability film such as R is erected vertically in close proximity to a perpendicularly magnetized magnetic recording medium 5 such as COCr, TbFe, or coo.

またこの主磁極lは図に示すように、上下2つに分割し
ておく。さらに、この主磁極に密着して磁性薄膜10を
配する。この薄膜は膜a内方向に平行に磁化容易軸を持
ち、しかも縦カー効果、ファラデー効果等の磁気光学変
換効率の高い磁性薄膜である。たとえば、YsF’es
Otz (YIG) f初めとした磁性ガーネット、G
dCoを初めとした希土類遷移金属非晶質合金、FeC
0BPなどの金属非晶質膜等を用いる。さらに、この主
磁極に対向し、媒体の逆側にM n −Z nフェライ
ト、Ni −Znフェライト、Co−Zr合金等の軟磁
性体からなる副磁極7と書込み用コイル(励磁コイル)
8を配する。
Moreover, this main magnetic pole l is divided into two parts, upper and lower, as shown in the figure. Furthermore, a magnetic thin film 10 is disposed in close contact with this main pole. This thin film has an axis of easy magnetization parallel to the inner direction of the film a, and is a magnetic thin film with high magneto-optic conversion efficiency such as the longitudinal Kerr effect and Faraday effect. For example, YsF'es
Otz (YIG) f-based magnetic garnet, G
Rare earth transition metal amorphous alloys including dCo, FeC
A metal amorphous film such as OBP is used. Further, facing this main pole and on the opposite side of the medium, there is a sub pole 7 made of a soft magnetic material such as Mn-Zn ferrite, Ni-Zn ferrite, Co-Zr alloy, etc., and a writing coil (excitation coil).
Place 8.

書込みと再生方法を述べる。まず、書込みは、コイル8
により副磁極7を励磁し、主磁極1を磁化して、その直
下にある垂直磁化媒体7に磁化を誘導することによって
行う。再生は次のようにして行う。まず媒体5に書込ま
れた磁区からのろうえい磁界が主磁極1の磁化を誘導し
、一方向に揃える。さらにこの磁化によシ、主磁極と密
着した磁気光学媒体10の磁化が主磁極と同一方向に整
列させられる。直線偏光した光ビームを斜め上方から角
度θで入射させると、光は磁気光学媒体の表面で反射(
縦カー効果の場合)シ、反射光11となって光検知器に
導かれる。このとき反射光の偏光角は、磁気光学媒体の
磁化t−Msとして、MaCO3θに比例して回転する
。磁化の向き(図では上あるいは下)により、この回転
角は符号を変える(左あるいけ右まわり回転)。従って
回転角の符号を検知することにより、磁気光学媒体10
の磁化方向、主磁極lの磁化方向、さらには媒体5の主
磁極直下の磁化状態を再生することができる。本実施例
によれば、磁気光学媒体の磁化方向?膜面に平行とした
ことによシ主磁極からの磁束が、はぼ完全に磁気光学媒
体内に導入されることとな)、光照射部分での磁路が閉
じて、磁気光学的な再生効率はきわめて大きくなり、し
かも媒体の磁化状態に忠実に追随した再生とすることが
できた。
We will explain how to write and play. First, write to coil 8
This is done by exciting the sub magnetic pole 7, magnetizing the main magnetic pole 1, and inducing magnetization in the perpendicularly magnetized medium 7 directly below it. Playback is performed as follows. First, a weak magnetic field from a magnetic domain written on the medium 5 induces the magnetization of the main pole 1 and aligns it in one direction. Further, due to this magnetization, the magnetization of the magneto-optic medium 10 that is in close contact with the main magnetic pole is aligned in the same direction as the main magnetic pole. When a linearly polarized light beam is incident obliquely from above at an angle θ, the light is reflected by the surface of the magneto-optic medium (
In the case of the vertical Kerr effect), the reflected light 11 is guided to the photodetector. At this time, the polarization angle of the reflected light rotates in proportion to MaCO3θ as the magnetization t-Ms of the magneto-optic medium. Depending on the direction of magnetization (up or down in the figure), this rotation angle changes sign (left or right rotation). Therefore, by detecting the sign of the rotation angle, the magneto-optic medium 10
It is possible to reproduce the magnetization direction of the main magnetic pole l, the magnetization direction of the main magnetic pole l, and even the magnetization state of the medium 5 immediately below the main magnetic pole. According to this embodiment, the magnetization direction of the magneto-optic medium? By making it parallel to the film surface, the magnetic flux from the main pole is almost completely introduced into the magneto-optic medium), and the magnetic path in the light irradiated area is closed, allowing magneto-optical reproduction. The efficiency was extremely high, and it was possible to perform reproduction that faithfully followed the magnetization state of the medium.

(実施例2) 第3図に示すよって、膜面内に磁化容易方向を有する磁
気光学薄膜1(1,2分割した主磁極10の中間に端部
を接して配置する。Y3 Fe5O1□のような透明磁
性体を用いる場合、反射膜12も設けておく。さらには
、反射光11をディスク上方に向けるための再反射膜1
3も配する。この実施例の場合、主磁極1内の磁束は実
施例1の場合よシもさらに効率良く磁気光学薄膜10に
導入されることとなる。
(Example 2) As shown in FIG. 3, a magneto-optic thin film 1 having an easy magnetization direction in the film plane (disposed with its end in contact with the middle of the main magnetic pole 10 divided into 1 and 2 parts, such as Y3 Fe5O1 □) When a transparent magnetic material such as
3 will also be placed. In this embodiment, the magnetic flux within the main magnetic pole 1 is introduced into the magneto-optic thin film 10 more efficiently than in the first embodiment.

C実施例3) 第4図に示すように、副磁極7を主磁極と同じ側に設け
、さらに垂直磁化媒体の下部に、高透磁率膜14(磁化
方向は面内)を配する。この水平磁化膜(パーマロイ等
+14は媒体の直接下部に設けなくとも、媒体の下方に
あれば機能する。主磁極周辺の構造は実施例3と同様と
する。この場合、面内磁化方向の磁気光学薄膜lOを介
して磁路は完全な閉ループ構造となシ、媒体からの磁気
情報再生効率を最大のものとすることができる。
C Embodiment 3) As shown in FIG. 4, the sub magnetic pole 7 is provided on the same side as the main magnetic pole, and a high magnetic permeability film 14 (magnetization direction is in-plane) is placed below the perpendicular magnetization medium. This horizontal magnetization film (permalloy, etc. +14) does not need to be provided directly under the medium, but will function as long as it is below the medium.The structure around the main magnetic pole is the same as in Example 3.In this case, the magnetic field in the in-plane magnetization direction is The magnetic path has a completely closed loop structure through the optical thin film 1O, and the efficiency of reproducing magnetic information from the medium can be maximized.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、磁気光学効果を有する薄膜の磁化方向
を膜面に平行としたことによシ、主磁極からの磁束が、
はぼ完全に磁気光学薄膜に透導されることとなり、磁気
光学変換効率ならびに再生効率は従来例に比べ約1桁向
上した。従って、本発明により、たとえば磁気ディスク
の線方向周期を主磁極の膜厚0.1μm程度にまで小さ
くできるとともに、トラック方向周期を光ビーム径(1
〜5μm)まで小さくすることができる。この結果従来
不可能であった領域まで記録密度を大幅に向上させるこ
とができた。
According to the present invention, by making the magnetization direction of the thin film having a magneto-optic effect parallel to the film surface, the magnetic flux from the main magnetic pole is
The light was almost completely transmitted through the magneto-optic thin film, and the magneto-optic conversion efficiency and reproduction efficiency were improved by about one order of magnitude compared to the conventional example. Therefore, according to the present invention, the linear period of the magnetic disk can be reduced to, for example, the film thickness of the main pole of about 0.1 μm, and the track direction period can be reduced to the optical beam diameter (1 μm).
~5 μm). As a result, it was possible to significantly improve recording density to an area that was previously impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光再生磁気ヘッドの正面図、第2図は実
施flIj lの光再生磁気ヘッドの正面図、第3図は
実施例2の光再生磁気ヘット°の正面図、第4図は実施
例3の光再生磁気ヘッドの構成図である。 1・・・主磁極、2・・・垂直磁化磁気光学薄膜、3・
・・磁化、4・・・ろうえい磁界、5・・・記録媒体、
6・・・基板、7・・・副磁極、8・・・書込みコイ西
、9・・・入射光ビーム、10・・・面内磁化磁気光学
薄膜、ll・・・反射光ビーム、12・・・反射膜、1
3・・・反射膜、14・・・高透磁率薄膜。
FIG. 1 is a front view of a conventional optical reproducing magnetic head, FIG. 2 is a front view of an optical reproducing magnetic head according to the embodiment, FIG. 3 is a front view of an optical reproducing magnetic head of Example 2, and FIG. 4 is a front view of a conventional optical reproducing magnetic head. 2 is a configuration diagram of an optical reproducing magnetic head of Example 3. FIG. 1... Main magnetic pole, 2... Perpendicular magnetization magneto-optic thin film, 3...
・・Magnetization, 4・・Electric magnetic field, 5・・Recording medium,
6... Substrate, 7... Sub magnetic pole, 8... Writing coil west, 9... Incident light beam, 10... In-plane magnetization magneto-optic thin film, ll... Reflected light beam, 12. ...Reflective film, 1
3... Reflective film, 14... High magnetic permeability thin film.

Claims (1)

【特許請求の範囲】[Claims] 1、主磁極と副磁極と書込み専用コイルとからなる単磁
極型磁気記録ヘッドにおいて、主磁極を2分割し、それ
に平行密着して膜面内方向に容易磁化軸を有し、かつ縦
カー効果あるいはファラデー効果等の磁気光学効果を有
する軟磁性薄膜を配し、上記コイルを用いて磁気的に情
報の書込みを行うとともに、上記磁気光学磁性薄膜の膜
面に対し斜め方向から光を照射し、ファラデー効果ある
いは縦カー効果により、当該磁性薄膜の磁化状態を弁別
し、情報の再生を行う磁気書込み・光再生複合方式で単
磁極型の光再生磁気ヘッド。
1. In a single-pole magnetic recording head consisting of a main magnetic pole, a sub-magnetic pole, and a write-only coil, the main magnetic pole is divided into two parts, which are parallel to each other in close contact, and have an easy magnetization axis in the in-plane direction of the film, and have a vertical Kerr effect. Alternatively, a soft magnetic thin film having a magneto-optical effect such as the Faraday effect is arranged, and information is written magnetically using the coil, and light is irradiated from an oblique direction onto the film surface of the magneto-optic magnetic thin film. A single-pole type optical reproducing magnetic head with a combined magnetic writing/optical reproducing method that uses the Faraday effect or the longitudinal Kerr effect to discriminate the magnetization state of the magnetic thin film and reproduce information.
JP5444085A 1985-03-20 1985-03-20 Optical reproducing magnetic head Pending JPS61214263A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5444085A JPS61214263A (en) 1985-03-20 1985-03-20 Optical reproducing magnetic head
US06/832,884 US4707755A (en) 1985-03-20 1986-02-26 Optical read-out magnetic head
DE8686301921T DE3680010D1 (en) 1985-03-20 1986-03-17 MAGNETIC HEAD.
EP86301921A EP0195628B1 (en) 1985-03-20 1986-03-17 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5444085A JPS61214263A (en) 1985-03-20 1985-03-20 Optical reproducing magnetic head

Publications (1)

Publication Number Publication Date
JPS61214263A true JPS61214263A (en) 1986-09-24

Family

ID=12970763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5444085A Pending JPS61214263A (en) 1985-03-20 1985-03-20 Optical reproducing magnetic head

Country Status (1)

Country Link
JP (1) JPS61214263A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169946A (en) * 1981-04-14 1982-10-19 Nec Corp Magnetic recorder and reproducer
JPS57183646A (en) * 1981-05-07 1982-11-12 Nec Corp Magnetic recorder and reproducer
JPS6139956A (en) * 1984-07-31 1986-02-26 Nippon Hoso Kyokai <Nhk> Magnetooptic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169946A (en) * 1981-04-14 1982-10-19 Nec Corp Magnetic recorder and reproducer
JPS57183646A (en) * 1981-05-07 1982-11-12 Nec Corp Magnetic recorder and reproducer
JPS6139956A (en) * 1984-07-31 1986-02-26 Nippon Hoso Kyokai <Nhk> Magnetooptic head

Similar Documents

Publication Publication Date Title
CA1310113C (en) Magneto-optical recording system
US4126494A (en) Magnetic transfer record film
JPS6122452A (en) Photomagnetic recording medium
US4413297A (en) Magnetic recording and playback apparatus of perpendicular recording type
CA1177577A (en) Magnetooptical recording medium and recording-and- reproducing device using the same
JPS5769541A (en) Recording medium and recording and reproducing system using sand medium
US4707755A (en) Optical read-out magnetic head
JPS61214263A (en) Optical reproducing magnetic head
JPS61246946A (en) Photomagnetic recording medium
EP0525705B1 (en) Magneto-optical recording apparatus
JPS61214258A (en) Write and reproducing integrated magnetic head
JPS5841451A (en) Vertical magnetic recording medium
JPS6275955A (en) Magneto-optical reproducing head
JPS60119649A (en) Photo-magnetic recording medium
JPS6243848A (en) Photomagnetic recording medium
JPS59168954A (en) Optical magnetic recording medium
JPS61214264A (en) Photomagnetic head
JPS57195344A (en) Magnetic recording medium
JP2559156B2 (en) Magneto-optical recording / reproducing device
JPS5819753A (en) Vertical magnetic recording medium and reproducing method of vertical magnetizing signal using said recording medium
JPS61217902A (en) Reproducing method for magnetic recording information and reproducing head
JPS58222455A (en) Photoelectromagnetic recording medium
JPH0213361B2 (en)
JPS60223042A (en) Micro magnetic head
JPS62219202A (en) Magnetic memory device