JPS6121382B2 - - Google Patents

Info

Publication number
JPS6121382B2
JPS6121382B2 JP56204350A JP20435081A JPS6121382B2 JP S6121382 B2 JPS6121382 B2 JP S6121382B2 JP 56204350 A JP56204350 A JP 56204350A JP 20435081 A JP20435081 A JP 20435081A JP S6121382 B2 JPS6121382 B2 JP S6121382B2
Authority
JP
Japan
Prior art keywords
activated carbon
methylene blue
positive electrode
voltage
manganese dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56204350A
Other languages
Japanese (ja)
Other versions
JPS58106765A (en
Inventor
Takao Yokoyama
Nobuharu Koshiba
Fumio Ooo
Korenobu Morita
Akira Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56204350A priority Critical patent/JPS58106765A/en
Publication of JPS58106765A publication Critical patent/JPS58106765A/en
Publication of JPS6121382B2 publication Critical patent/JPS6121382B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明は、ボタン形空気電池に関するもので、保
存特性を向上することを目的とする。 最近の補聴器の普及と共に、安価でかつ高容量
な電池が要望されるようになつてきた。従来より
補聴器の電源として主に水銀電池が用いられてき
たが、この電池は容量が少ないため、電池の取り
換えが2週間で1回程度必要があり、かつ、水銀
自身が公害性物質ということで、これに代る電池
が要望されるようになつてきた。 そこで、正極活物質として空気中の酸素を用い
負極に亜鉛を用いる空気―亜鉛電池が注目される
ようになつてきた。この電池の正極は、触媒とし
ての活性炭と、導電材、二酸化マンガンを主成分
とし、撥水性結着剤を用いて集電体に塗着したも
のが用いられている。この電池の反応は理論的に
は以下のように表される。 正極 1/2O2+H2O+2e→2OH- E0=0.401V 負極 Zn+2OH- →ZnO+H2O E0=1.245V 両極反応 1/2O2+Zn →ZnO E0=1.646V ところが、実際の電池電圧は、正極に添加する
二酸化マンガンの量に移存し、おおよそ次の第1
表のようになる。なお第1表は正極主成分の二酸
化マンガン量を変化させた時の電池の開路電圧を
示す。
The invention relates to a button-type air battery, and aims to improve storage characteristics. With the recent spread of hearing aids, there has been a demand for inexpensive and high capacity batteries. Traditionally, mercury batteries have been mainly used as a power source for hearing aids, but because these batteries have a small capacity, they need to be replaced about once every two weeks, and mercury itself is a polluting substance. , there is a growing demand for batteries that can replace these batteries. Therefore, air-zinc batteries, which use oxygen in the air as the positive electrode active material and zinc as the negative electrode, have been attracting attention. The positive electrode of this battery is mainly composed of activated carbon as a catalyst, a conductive material, and manganese dioxide, and is coated on a current collector using a water-repellent binder. The reaction of this battery is theoretically expressed as follows. Positive electrode 1/2O 2 +H 2 O+2e→2OH - E 0 =0.401V Negative electrode Zn+2OH - →ZnO+H 2 O E 0 =1.245V Bipolar reaction 1/2O 2 +Zn →ZnO E 0 =1.646V However, the actual battery voltage is The amount of manganese dioxide added to the
It will look like a table. Table 1 shows the open circuit voltage of the battery when the amount of manganese dioxide as the main component of the positive electrode was changed.

【表】 即ち、その電圧は二酸化マンガンの添加率が40
重量%以上になると大きく変化しない。しかも、
この電池の規格電圧は1.35V以上とされているの
で、少なくとも二酸化マンガンは20〜40重量%以
上を必要とする。 ところが、この正極を用いた電池を保存する
と、徐々に電圧が低下する欠点を有する。例え
ば、60℃で20日保存すると、MnO240重量%添加
のものでは開放電圧が1.364Vから1.340Vに下が
る。ちなみにMnO2無添加の場合は1.329Vと大き
く変化しない。 この保存による電圧降下の原因について種々検
討した結果、活性炭の添加量によるところが大き
く、その添加量が40重量%を越えないと放電特性
に影響することがわかつた。例えば620Ωで放電
した場合の初期の閉路電圧は活性炭無添加では
1.09V、20重量%添加で1.23V、40重量%で1.27V
であり、それ以上の添加は大きく影響しない。一
方、活性炭を多量に添加した場は、二酸化マンガ
ンは活性炭の活性度により酸化されその電位は引
き下げられる。 この様に、活性炭とMnO2の添加効果は逆方向
となる。 本発明者らは、かかる問題に対して更に検討し
た結果、活性炭の活性度を示す1つの評価法であ
るメチレンブルー脱色力の適切な値の活性炭を用
いることによつて、保存による開路電圧の低下の
ほとんどない空気電池を得ることに成功した。 ここで、メチレンブルー脱色力JISK1470に規
定されており、試料の活性炭にメチレンブルー溶
液Aを加え、振とう後ろ過し、ろ液の色度をメチ
レンブルー溶液Bと比較して、溶液Bの色と一致
するのに必要な溶液Aの添加量から求められる。 なお、溶液Aはメチレンブルー0.120gをHz7の
りん酸―カリウム―りん酸ニナトリウム緩衝溶液
に溶かして100mlにしたもの、溶液Bは溶液A10
mlに水を加えて500mlとし、その5mlに緩衝溶液
を加えて500mlとしたものが用いられる。 メチレンブルー脱色力の大きいものほど活性度
は高い。本発明では、活性炭、二酸化マンガン及
び導電材を主成分とし、撥水性結着剤を含む正極
の活性炭として、メチレンブルー脱色力100〜250
mlのものを用いることを特徴とする。 メチレンブルー脱色力がこれより小さいと、活
性度が低いため閉路電圧が低下し、例えばメチレ
ンブルー脱色力50mlのものでは、620Ω負荷で
1.20Vとなる。又メチレンブルー脱色力が大きく
なると、活性度が高く、保存時にMnO2が活性炭
により酸化され、開路電圧が著しく低下する。 第2表は種々のメチレンブルー脱色力を有した
活性炭を、二酸化マンガンおよび導電材である黒
鉛と配合して構成した正極を備えた電池の620Ω
負荷での初期平坦電圧(中間電圧)と、60℃で40
日保存後のの平坦電圧(中間電圧)を示す。一方
この電池を補聴器などの電源に用いる場合には、
閉路電圧として約1.25Vを維持することが必要で
あり、保存後においてもこの1.25Vを確保しうる
ことが要求される。
[Table] In other words, the voltage is 40% when the addition rate of manganese dioxide is 40
There is no significant change when the amount exceeds % by weight. Moreover,
Since the standard voltage of this battery is 1.35V or higher, at least 20 to 40% by weight of manganese dioxide is required. However, when a battery using this positive electrode is stored, it has the disadvantage that the voltage gradually decreases. For example, when stored at 60°C for 20 days, the open-circuit voltage decreases from 1.364V to 1.340V for the product containing 40% MnO 2 by weight. By the way, in the case of no MnO 2 addition, it does not change much at 1.329V. As a result of various studies on the cause of this voltage drop due to storage, it was found that it largely depends on the amount of activated carbon added, and that if the amount added does not exceed 40% by weight, it will affect the discharge characteristics. For example, the initial closed circuit voltage when discharging at 620Ω is
1.09V, 1.23V with 20wt% addition, 1.27V with 40wt% addition
, and adding more than that will not have a significant effect. On the other hand, when a large amount of activated carbon is added, manganese dioxide is oxidized depending on the activity of the activated carbon, and its potential is lowered. In this way, the effects of activated carbon and MnO 2 addition are in opposite directions. As a result of further investigation into this problem, the present inventors found that by using activated carbon with an appropriate value of methylene blue decolorizing power, which is one evaluation method for indicating the activity of activated carbon, the open circuit voltage decreases due to storage. succeeded in obtaining an air battery with almost no Here, methylene blue decolorization power is specified in JISK1470, and methylene blue solution A is added to the activated carbon sample, shaken and filtered, and the color of the filtrate is compared with methylene blue solution B to find that it matches the color of solution B. It is determined from the amount of solution A required for this. Solution A is 0.120 g of methylene blue dissolved in phosphate-potassium-disodium phosphate buffer solution at Hz7 to make 100 ml, and solution B is solution A10.
ml, add water to make 500 ml, and add a buffer solution to 5 ml to make 500 ml. The greater the methylene blue decolorizing power, the higher the activity. In the present invention, the activated carbon for the positive electrode, which is mainly composed of activated carbon, manganese dioxide, and a conductive material and contains a water-repellent binder, has a methylene blue decolorizing power of 100 to 250.
ml is used. If the decolorizing power of methylene blue is smaller than this, the closed circuit voltage will decrease due to the low activity.For example, if the decolorizing power of methylene blue is 50ml, a load of 620Ω
It becomes 1.20V. Furthermore, when the decolorizing power of methylene blue increases, the activity is high, and MnO 2 is oxidized by activated carbon during storage, resulting in a significant decrease in open circuit voltage. Table 2 shows 620 Ω batteries with positive electrodes made by blending activated carbon with various methylene blue decolorizing powers with manganese dioxide and graphite as a conductive material.
Initial flat voltage (intermediate voltage) at load and 40 at 60°C
It shows the flat voltage (intermediate voltage) after storage for days. On the other hand, when using this battery as a power source for hearing aids, etc.
It is necessary to maintain a closed circuit voltage of approximately 1.25V, and it is required that this 1.25V can be maintained even after storage.

【表】【table】

【表】 この第2表から明らかなように初期平坦電圧は
表中の二重枠で囲まれた配合組成のものが好適で
あるが、保存により活性炭の活性度の相違から好
適な範囲は、配合組成と用いる活性炭のメチレン
ブルーの脱色力の制限されたものとなる。 以下、本発明を実施例により説明する。 第1図はA44タイプ(直径11.6φ、高さ5.4mm)
の空気電池を示す。1は正極ケース、2は空気取
入れ孔、3は拡散紙、4はフツ素樹脂よりなる撥
水膜、5は正極である。正極は二酸化マンガン40
重量部、活性炭40重量部及び導電材としての黒鉛
20重量部の混合物100重量部に対して、撥水材と
してポリ四フツ化エチレンを20重量部添加し、集
電体に塗着乾燥し、ポリ四フツ化エチレンの融点
である320〜340℃で熱処理したものである。この
活性炭として各種のメチレンブルー脱色力のもの
を用いた。 6はセパレータ、7は含液材、8はナイロン製
ガスケツト、9は封口板、10は亜鉛負極であ
る。電解液には10モル/のKOH水溶液にZnOを
飽和させたものを用いた。 第2図は、正極に用いた活性炭のメチレンブル
ー脱色力と電池の開路電圧との関係を示すもの
で、Aは電池組立後45℃で16時間熟成した直後の
特性、Bはさらに60℃で20日間保存後の特性を示
す。 図から明らかなように、メチレンブルー脱色力
250ml以下のものについては大きな差は認められ
ない。しかし260ml以上になると急に低下し、60
℃で20日間保存したものは、その低下は大きく、
双方共に1.35Vですら維持しなくなる。従つてメ
チレンブルー脱色力250ml以上ものは規格を満足
しなくなる。 第3図は放電率180Ω及び620Ωでの各々の平坦
維持電圧C及びDを示す。この結果、メチレンブ
ルー脱色力が100ml以上では高率負荷(180Ω)、
一般負荷(620Ω)共に大きな影響は受けない
が、それ以下になると急に低下することがわか
る。 以上から活性炭のメチレンブルー脱色力100〜
250mlのものを用いれば保存での二酸化マンガン
の能力を失わせることなく、かつ放電時の平坦電
圧の安定性を保つことができる。 以上のように本発明によれば、電圧が安定で保
存特性のすぐれたボタン形空気電池を得ることが
できる。
[Table] As is clear from Table 2, the preferred initial flat voltage is the composition enclosed by the double box in the table, but due to the difference in the activity of activated carbon due to storage, the preferred range is as follows: The decolorizing power of the methylene blue of the active carbon used is limited due to the blending composition. The present invention will be explained below using examples. Figure 1 shows A44 type (diameter 11.6φ, height 5.4mm)
shows an air battery. 1 is a positive electrode case, 2 is an air intake hole, 3 is a diffusion paper, 4 is a water-repellent film made of fluororesin, and 5 is a positive electrode. The positive electrode is manganese dioxide 40
Part by weight, 40 parts by weight of activated carbon and graphite as a conductive material
Add 20 parts by weight of polytetrafluoroethylene as a water repellent to 100 parts by weight of the 20 parts by weight mixture, apply it on a current collector, dry it, and heat to 320 to 340°C, which is the melting point of polytetrafluoroethylene. It was heat treated. Various methylene blue decolorizing powers were used as the activated carbon. 6 is a separator, 7 is a liquid-containing material, 8 is a nylon gasket, 9 is a sealing plate, and 10 is a zinc negative electrode. The electrolyte used was a 10 mol/KOH aqueous solution saturated with ZnO. Figure 2 shows the relationship between the methylene blue decolorizing power of the activated carbon used in the positive electrode and the open circuit voltage of the battery. Characteristics after storage for days are shown. As is clear from the figure, methylene blue decolorizing power
No significant difference was observed for items smaller than 250ml. However, when it exceeds 260ml, it suddenly decreases to 60ml.
When stored at ℃ for 20 days, the decrease was large;
Both will no longer maintain even 1.35V. Therefore, anything with methylene blue decolorizing power of 250 ml or more will not meet the specifications. FIG. 3 shows the flattening voltages C and D at discharge rates of 180Ω and 620Ω, respectively. As a result, when the methylene blue decolorizing power is 100ml or more, high rate load (180Ω),
It can be seen that although the general load (620Ω) is not affected greatly, it suddenly decreases when the load is lower than that. From the above, the methylene blue decolorizing power of activated carbon is 100~
If a 250 ml bottle is used, the ability of manganese dioxide will not be lost during storage and the stability of the flat voltage during discharge can be maintained. As described above, according to the present invention, a button-type air battery with stable voltage and excellent storage characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電池の実施例を示す要部を欠
截した側面図、第2図は正極に用いた活性炭のの
メチレンブルー脱色力と開路電圧の関係を示す
図、第3図は同じくメチレンブルー脱色力と閉路
電圧の関係を示す。 5……正極、6……セパレータ、10……負
極。
Figure 1 is a side view with essential parts cut out showing an embodiment of the battery of the present invention, Figure 2 is a diagram showing the relationship between the methylene blue decolorizing power of activated carbon used in the positive electrode and the open circuit voltage, and Figure 3 is the same. The relationship between methylene blue decolorizing power and closed circuit voltage is shown. 5... Positive electrode, 6... Separator, 10... Negative electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 活性炭、二酸化マンガン及び導電材を主成分
とし、撥水性結着剤を含む正極と、亜鉛負極及び
セパレータを備え、前記正極の活性炭がメチレン
ブルー脱色力100〜250mlであることを特徴とする
ボタン形空気電池。
1. A button-shaped button-shaped body comprising a positive electrode mainly composed of activated carbon, manganese dioxide, and a conductive material and containing a water-repellent binder, a zinc negative electrode, and a separator, and characterized in that the activated carbon of the positive electrode has a methylene blue decolorizing power of 100 to 250 ml. air battery.
JP56204350A 1981-12-16 1981-12-16 Button-type air cell Granted JPS58106765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56204350A JPS58106765A (en) 1981-12-16 1981-12-16 Button-type air cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56204350A JPS58106765A (en) 1981-12-16 1981-12-16 Button-type air cell

Publications (2)

Publication Number Publication Date
JPS58106765A JPS58106765A (en) 1983-06-25
JPS6121382B2 true JPS6121382B2 (en) 1986-05-27

Family

ID=16489042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56204350A Granted JPS58106765A (en) 1981-12-16 1981-12-16 Button-type air cell

Country Status (1)

Country Link
JP (1) JPS58106765A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210826B1 (en) 1998-03-06 2001-04-03 Rayovac Corporation Seals, and electrochemical cells made therewith
ES2540171B1 (en) * 2015-04-29 2016-04-21 Albufera Energy Storage, S.L. Electrochemical manganese aluminum cell

Also Published As

Publication number Publication date
JPS58106765A (en) 1983-06-25

Similar Documents

Publication Publication Date Title
Plichta et al. A rechargeable Li/LixCoO2 cell
US3532543A (en) Battery employing lithium - sulphur electrodes with non-aqueous electrolyte
US4450214A (en) Lithium halide additives for nonaqueous cell systems
US3306776A (en) Galvanic primary cell
JP4222488B2 (en) Alkaline battery
US2638489A (en) Primary cell
US4167609A (en) Zinc oxide additive for divalent silver oxide electrodes
US3996068A (en) Primary dry cell
JPS6121382B2 (en)
Licht Aluminum/sulfur battery discharge in the high current domain
US20040146783A1 (en) Electrochemical element or cell and a cathode for same
Rolla et al. On the problem of ageing of carbon—Air electrodes in alkaline electrolytes
JPH1197062A (en) Organic electrolyte secondary battery
JPS6381762A (en) Button type alkaline battery
JPS60189164A (en) Silver oxide battery
JPH0338702B2 (en)
JPS6441162A (en) Organic electrolyte battery with positive electrode of composite material of activated charcoal-metal sulfide
US976277A (en) Electrolyte for alkaline batteries.
JPS63175357A (en) Air-zinc cell
JPH0763016B2 (en) Organic electrolyte battery
JPS6023972A (en) Positive electrode for nonaqueous solvent battery
JPH073785B2 (en) Non-aqueous electrolyte battery
JP2552438B2 (en) Non-aqueous electrolyte battery
Ruben Zinc‐Mercuric Dioxysulfate Dry Cell
JPH0850901A (en) Battery