JPS61213743A - Automatic specimen introducing apparatus - Google Patents

Automatic specimen introducing apparatus

Info

Publication number
JPS61213743A
JPS61213743A JP60054674A JP5467485A JPS61213743A JP S61213743 A JPS61213743 A JP S61213743A JP 60054674 A JP60054674 A JP 60054674A JP 5467485 A JP5467485 A JP 5467485A JP S61213743 A JPS61213743 A JP S61213743A
Authority
JP
Japan
Prior art keywords
reaction
liquid
holding coil
way valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60054674A
Other languages
Japanese (ja)
Inventor
Michihiko Fujiwara
藤原 道彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60054674A priority Critical patent/JPS61213743A/en
Publication of JPS61213743A publication Critical patent/JPS61213743A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • G01N35/1097Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers characterised by the valves

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To introduce a liquid specimen and a reaction liquid while accurately weighing the same to sufficiently mix both of them, by opening and closing first and second valve members synchronously at every minute time interval and alternately feeding the liquid specimen and the reaction liquid to hold both of them in a hollow holding coil. CONSTITUTION:A six-way valve 8 and a three-way valve 9 are brought to a solid line state and solenoid valves 3, 6 are alternately opened and closed at every minute time interval in such a state that a weighing cylinder 10 is driven to suck a liquid specimen 2 and a reaction liquid 5 into a holding coil 7 to hold the same therein. The liquid specimen 2 and the reaction liquid 5 are alternately arranged in the holding coil 7 at every predetermined length and held in a stationary state until sufficient chemical reaction is finished and, thereafter, the six-way valve 8 and the three-way valve 9 are changed over to introduce the reaction product into an analytical column 15. When the introducing operation of the specimen is finished, containers 1, 5 are substituted with containers of a washing solution to wash the holding coil 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、試料液と反応液とを微少量づつ交互に保持コ
イルに導入、配列させ、その結果生成された反応生成物
を分析用カラムに導入させる自動試料導入装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention involves introducing and arranging a sample solution and a reaction solution alternately in minute amounts into a holding coil, and introducing the resulting reaction products into an analytical column. This invention relates to an automatic sample introduction device.

従来の技術 高速液体クロマトグラフにおいては、試料液中の特定の
分析対象物と反応液との間に何らかの化学反応を生ぜし
め、その結果生成された反応生成物を分析用カラムに導
入し、その反応生成物を分離検出する分析法が用いられ
ている(ブレカラム誘導°体化法)。このプレカラム反
応の例としては、脂肪酸を分析対象物とする場合には試
薬として9−アンスリルジアゾメタン(ADAM)を用
いる反応、アミノ配糖体抗生物質を分析対象物とする場
合には0−フタルアルデヒド(OPA)を用いる反応、
アミノ酸を分析対象物とする場合にはジニトロフルオロ
ベンゼンを用いる反応等が挙げられる。
Conventional technology In high-performance liquid chromatography, some kind of chemical reaction occurs between a specific analyte in a sample solution and a reaction solution, and the resulting reaction product is introduced into an analytical column. An analytical method is used to separate and detect the reaction products (Brecolumn derivatization method). Examples of this pre-column reaction include a reaction using 9-anthryldiazomethane (ADAM) as a reagent when a fatty acid is the analyte, and a reaction using 0-phthalate when the analyte is an aminoglycoside antibiotic. Reaction using aldehyde (OPA),
When an amino acid is used as an analyte, a reaction using dinitrofluorobenzene may be used.

前記した分析法を実行するに際し、試料液が注入された
試料液容器にマイクロシリンジを挿入し、所定量の試料
液を吸引し、これを空、の反応容器に排出し、次いで反
応液が注入された反応液容器から同様な操作により所定
量の反応液を吸引し、これを前記の反応容器に排出させ
、所定時間経過後に反応容器に生成された反応生成物を
分析用カラムに注入するという一連の操作を手動により
行なうのが一般的となっている。
When carrying out the above analysis method, a microsyringe is inserted into a sample liquid container into which a sample liquid has been injected, a predetermined amount of sample liquid is aspirated, and this is discharged into an empty reaction vessel, and then the reaction liquid is injected. A predetermined amount of reaction liquid is aspirated from the reaction liquid container by a similar operation, this is discharged into the reaction container, and after a predetermined period of time, the reaction product produced in the reaction container is injected into an analytical column. It is common practice to perform a series of operations manually.

一方、試料液と反応液とをプレカラムに導入し、その結
果生成された反応生成物を移動相と共に分析用カラムに
導入するという一連の操作を自動的に行なうものが用い
られているが、その数は非常に少ない。
On the other hand, a device is used that automatically performs a series of operations in which a sample solution and a reaction solution are introduced into a precolumn, and the resulting reaction product is introduced into an analytical column together with a mobile phase. The number is very small.

このようなプレカラム反応機構を備えた自動試料導入装
置は、例えば「Journal of Chromat
ogrαphy 、 305 (1984) P、 3
46 Jに開示されている。
An automatic sample introduction device equipped with such a pre-column reaction mechanism is described, for example, in "Journal of Chromat
ogrαphy, 305 (1984) P, 3
46 J.

これを簡略化して示す第4図を参照し、その作用を概略
説明すると、六方弁47が実線で示す流路を形成してい
る場合に、試料液注入部43からアミノ配糖体抗生物質
を含む血清を注入し、ポンプ42を駆動させて容器41
内の試料送液用液体40と共に反応用カラム48に導入
する。次に、ポンプ46を駆動させ、容器45内の反応
液として0−7タルアルデヒド(OPA)溶液を反応用
カラム48に導入する。所定時間経過後に六方弁47を
切換えて点線で示す流路を形成し、反応用カラム48に
生成されたアミノ配糖体抗生物質のOPA誘導体を、ポ
ンプ51の駆動により容器50内の移動相と共に分析用
カラム52に導入する。
The operation will be briefly explained with reference to FIG. 4, which shows this in a simplified manner. When the hexagonal valve 47 forms the flow path shown by the solid line, the aminoglycoside antibiotic is injected from the sample liquid injection part 43. The container 41 is filled with serum containing serum and the pump 42 is driven.
It is introduced into the reaction column 48 together with the sample liquid 40 inside. Next, the pump 46 is driven, and the 0-7 taraldehyde (OPA) solution in the container 45 is introduced into the reaction column 48 as a reaction liquid. After a predetermined period of time, the hexagonal valve 47 is switched to form a flow path shown by the dotted line, and the OPA derivative of the aminoglycoside antibiotic produced in the reaction column 48 is pumped together with the mobile phase in the container 50 by driving the pump 51. The sample is introduced into an analytical column 52.

発明が解決しようとする問題点 前述した手動操作による場合は、マイクロシリンジに目
盛られた目盛線を目視しながら試料液又は反応液を計量
吸引するものであるから、その計量は不正確となシ、こ
のため分析結果が不正確となり、また試料液容器にマイ
クロシリンジを挿入すれば、その周囲に試料液が付着し
、この状態で反応液容器にマイクロシリンジを挿入する
と、マイクロシリンジの周囲に付着した試料液が反応液
に混入し、また反応液の付層したマイクロシリンジを、
試料液容器に挿入すると、反応液が試料液に混入し、相
互汚染が発生する。さらに、反応開始時から反応生成物
を含む溶液を分析用カラムに導入する迄の時間を一定に
して分析する必要があるため、煩雑な操作となる。この
操作は、特に分析力ジム系を通過する移動相の組成を時
々刻々変化させて分析を行なうグラジェント分析法にお
いて、−回の分析の終了後から所定時間経過した後に、
被検液をカラムに導入しなければならないという要件が
加わり、この導入時間に合致させるようにプレカラム反
応を開始しなければならず、益々煩雑な操作となる。
Problems to be Solved by the Invention In the manual operation described above, the sample solution or reaction solution is measured and aspirated while visually checking the scale lines on the microsyringe, so there is no possibility that the measurement will be inaccurate. Therefore, the analysis results will be inaccurate, and if the microsyringe is inserted into the sample liquid container, the sample liquid will adhere to the surrounding area, and if the microsyringe is inserted into the reaction liquid container in this state, the sample liquid will adhere to the surrounding area of the microsyringe. The sample solution mixed with the reaction solution, and the microsyringe coated with the reaction solution,
When inserted into a sample liquid container, the reaction liquid mixes with the sample liquid, causing cross contamination. Furthermore, it is necessary to carry out analysis at a constant time from the start of the reaction until the solution containing the reaction product is introduced into the analytical column, resulting in a complicated operation. This operation is performed after a predetermined period of time has elapsed from the end of the second analysis, especially in the gradient analysis method in which analysis is performed by constantly changing the composition of the mobile phase passing through the analytical power system.
In addition to the requirement that the test liquid must be introduced into the column, the pre-column reaction must be started to match this introduction time, making the operation even more complicated.

また、分析用カラムの他に反応用カラムを備え九自動試
料導入装置においては、以下の問題点がある。
In addition, the following problems occur in the automatic sample introduction device that is equipped with a reaction column in addition to an analysis column.

第1の問題点として、反応用カラムには、まず分析対象
物を含む試料液、並びに反応用カラムに試料液を送り込
むための移動液が導入される。この状態で、まず分析対
象物は反応用カラム充填剤に吸着されなければならない
。次いで、反応用カラムには反応液が導入される。ここ
で化学反応が生じるが、反応生成物は、その反応が完全
に生じる迄、反応液の流れている間、反応用カラム充填
剤に吸着されなければならない。次の段階で、反応用カ
ラムには分析用の移動相が導入されるが、このとき、反
応生成物はすみやかに反応用カラム充填剤から脱着しな
ければならない。前記した反応カラム内での吸着、吸着
、脱着の過程は、反応カラムに充填される充填剤そして
そのカラム内に導入される反応液の性質により支配され
るが、このため充填剤、反応液の種類を選択することが
困難なものとなっている。このような理由により、反応
用カラムを備えた自動試料導入装置は、これ迄の′技術
では、−膜化して多くの分析対象物と反を 芯液と%組合せ用いることができない。
The first problem is that a sample liquid containing an analyte and a transfer liquid for transporting the sample liquid to the reaction column are first introduced into the reaction column. In this state, the analyte must first be adsorbed onto the reaction column packing material. Next, a reaction solution is introduced into the reaction column. A chemical reaction occurs here, and the reaction products must be adsorbed on the reaction column packing material while the reaction liquid is flowing until the reaction occurs completely. In the next step, an analytical mobile phase is introduced into the reaction column, and at this time the reaction products must be quickly desorbed from the reaction column packing material. The processes of adsorption, adsorption, and desorption in the reaction column described above are controlled by the properties of the packing material packed in the reaction column and the reaction liquid introduced into the column. It is difficult to select the type. For these reasons, an automatic sample introduction device equipped with a reaction column cannot use conventional techniques to form a membrane and use a large number of analytes in combination with the core solution.

第2の問題点として、反応用カラムに導入される試料液
の中には、種々の化合物が含まれている。
The second problem is that the sample liquid introduced into the reaction column contains various compounds.

これらの化合物の中には、反応用カラムの充填剤と強く
吸着する物質もあるため、これを脱着させ、洗浄するに
は多量の洗浄液を必要とするということである。
Some of these compounds strongly adsorb to the packing material of the reaction column, so a large amount of washing liquid is required to desorb and wash them.

以上の理由から、プレカラム反応機構を備えた自動試料
導入装置の普及化が阻まれ、むしろ手動操作が用いられ
ていた。
For the above reasons, the widespread use of automatic sample introduction devices equipped with a pre-column reaction mechanism has been hindered, and manual operation has instead been used.

そこで、本発明は、前記した従来技術の有する欠点を解
決すべく、試料液と反応液との計量導入が正確に行なわ
れ、それら両液の混合が十分に行なわれると共に、洗浄
作業が容易となる自動試料導入装置を提供することを目
的とする。
Therefore, in order to solve the above-mentioned drawbacks of the prior art, the present invention enables accurate metering and introduction of a sample liquid and a reaction liquid, sufficiently mixes the two liquids, and facilitates cleaning operations. The purpose is to provide an automatic sample introduction device.

問題点を解決するための手段 本発明は、試料液と、反応液とを化学反応させ、移動相
と共に分析用カラムに導入させるものにおいて、微小時
間間隔毎の開閉により試料液の送液を行なう第1の弁部
材と、第1の弁部材の開閉と同期する閉開によυ反応液
の送液を行なう第2の弁部材と、第1と第2の弁部材を
介して導入された試料液と反応液とを所定長さ毎に交互
に配列させて保持する中空の保持コイルと、第1と縞2
の弁部材を介して所定量の試料液と反応液とを保持コイ
ルに導入させる吸引手段とを備える自動試料導入装置で
ある。
Means for Solving the Problems The present invention causes a chemical reaction between a sample liquid and a reaction liquid, and introduces the resulting mixture into an analytical column together with a mobile phase, in which the sample liquid is transferred by opening and closing at minute intervals. A first valve member, a second valve member that feeds the υ reaction liquid by closing and opening synchronized with the opening and closing of the first valve member, and a first valve member introduced through the first and second valve members. A hollow holding coil that holds sample liquid and reaction liquid alternately arranged at predetermined lengths, and a first stripe and a second stripe.
This automatic sample introduction device includes a suction means for introducing a predetermined amount of sample liquid and reaction liquid into a holding coil through a valve member.

作用 吸引手段の吸引動作と相俟って第1と第20弁部材を同
期して交互に開閉させ、保持コイルに試料液と反応液と
を所定長さ毎に交互に配列、保持させ、化学反応により
生成された反応生成物を移動相と共に分析用カラムに導
入する。
In conjunction with the suction operation of the action suction means, the first and 20th valve members are synchronously and alternately opened and closed, and the holding coil alternately arranges and holds the sample liquid and the reaction liquid at predetermined lengths. A reaction product produced by the reaction is introduced into an analytical column together with a mobile phase.

実施例 以下に、本発明の一実施例を説明する。Example An embodiment of the present invention will be described below.

第1図は本実施例装置の構成図を示すものであって、1
は試料液2が注入された試料液容器、3は第1の弁部材
としての電磁弁であり、4は反応液5が注入された反応
液容器、6は第2の弁部材としての電磁弁である。電磁
弁3と6とは後述の計量シリンジの作動開始と同時に不
図示の付勢装置により交互に付勢され、電磁弁3が例え
ば1秒間隔で開閉されると、これに同期して電磁弁6は
1秒間隔で閉開され、試料液2と反応液5とを1秒間隔
で交互に排出を行なう。7は金属又はテフロン等により
構成され、かつ充填剤が充填されていない中空の保持コ
イルでアシ、導管!、を介して導管11又は!、を経て
電磁弁3と6とに接続されている。そして、後述する計
量シリンジの吸引動作と電磁弁3および6の交互に行な
われる開閉動作とにより、保持コイル7内に試料液2と
反応液5とが交互に導入、保持される。8は流路切換手
段としての大方弁でアシ、実線で示す流路を持つ第1の
切換えモードと、点線で示す流路を持つ第2の切換えモ
ードとを有している。9は三方弁であシ、実線で示す流
路と点線で示す流路とをその切換えKよ多形成する。1
0は吸引手段としての計量シリンジ、11はその把手で
オシ、不図示の駆動装置により駆動され、試料液2と反
応液5とを正確に計量して吸引する。なお、吸引手段と
して、保持コイル7の容積を大きくし、マイクロシリン
ジの如き計量手段を用いるもの、また保持コイル7の容
積を例えば50plK固定し、吸引手段として周知のベ
リスフリックポンプ等を使用し、保持コイル7の容積以
上の液体を吸引し、保持コイルi; 71!計量手段としての機能を持たせる方法がある。
FIG. 1 shows a configuration diagram of the device of this embodiment, and shows 1
3 is a solenoid valve as a first valve member, 4 is a reaction liquid container in which a reaction liquid 5 is injected, and 6 is a solenoid valve as a second valve member. It is. The solenoid valves 3 and 6 are alternately energized by an unillustrated energizing device at the same time as the metering syringe starts to operate, which will be described later. When the solenoid valve 3 is opened and closed at intervals of, for example, 1 second, the solenoid valves are energized in synchronization with this. 6 is closed and opened at 1 second intervals, and the sample liquid 2 and reaction liquid 5 are alternately discharged at 1 second intervals. 7 is a hollow holding coil made of metal or Teflon, etc., and not filled with a filler, and is used as a reed or conduit! , through conduit 11 or! , to the solenoid valves 3 and 6. Then, the sample liquid 2 and the reaction liquid 5 are alternately introduced and held in the holding coil 7 by the suction operation of the metering syringe and the alternating opening and closing operations of the electromagnetic valves 3 and 6, which will be described later. Reference numeral 8 denotes a large-way valve as a flow path switching means, which has a first switching mode having a flow path shown by a solid line and a second switching mode having a flow path shown by a dotted line. Reference numeral 9 is a three-way valve, which forms a flow path shown by a solid line and a flow path shown by a dotted line as many times as K. 1
0 is a measuring syringe as a suction means, and 11 is a handle of the metering syringe, which is driven by a drive device (not shown) to accurately measure and aspirate the sample liquid 2 and the reaction liquid 5. As the suction means, the capacity of the holding coil 7 may be increased and a measuring means such as a microsyringe may be used, or the capacity of the holding coil 7 may be fixed at 50 plK, for example, and a well-known Verisflick pump or the like may be used as the suction means. A liquid larger than the volume of the holding coil 7 is sucked, and the holding coil i; 71! There is a way to make it function as a measuring means.

12は移動相13を注入した移動相容器、14はボンダ
で、これらにより移動相供給手段を形成する。15は、
分析用カラムである。
12 is a mobile phase container into which the mobile phase 13 is injected, and 14 is a bonder, which together form a mobile phase supply means. 15 is
This is an analytical column.

ここで、六方弁8による第1と第20流路系の形成につ
いて説明すると、大方弁8を第1の切換えモードに切換
えて実線で示す流路を形成させると、電磁弁3又は6と
、導管11又は!、と、導管!、と、六方弁8の流路P
1と、保持コイル7と、六方弁8の流路P、と、導管1
4と、実線で示す流路を形成する三方弁9と、導管l!
と、計量シリンジ1゜とが連通されて第10流路系が形
成される。次に、六方弁8を第2の切換えモードに切換
えて点線で示す流路を形成させると、移動相供給手段と
、導管l、と、六方弁8の流路P4と、保持コイル7と
、六方弁8の流路P6と、導管E、と、分析用カラム1
5とが連通されて第2の流路系が形成される。
Here, to explain the formation of the first and 20th flow path systems by the hexagonal valve 8, when the hexagonal valve 8 is switched to the first switching mode and the flow path shown by the solid line is formed, the solenoid valve 3 or 6, Conduit 11 or! , conduit! , and the flow path P of the hexagonal valve 8
1, the holding coil 7, the flow path P of the six-way valve 8, and the conduit 1
4, a three-way valve 9 forming a flow path shown by a solid line, and a conduit l!
and the metering syringe 1° are connected to form a tenth channel system. Next, when the six-way valve 8 is switched to the second switching mode to form the flow path shown by the dotted line, the mobile phase supply means, the conduit l, the flow path P4 of the six-way valve 8, and the holding coil 7, The flow path P6 of the six-way valve 8, the conduit E, and the analytical column 1
5 are communicated with each other to form a second flow path system.

次に、本実施例装置の作用を説明する。いま、大方弁8
が第1の切換えモードに切換えられ、そして三方弁9が
実線で示す流路に切換えられていると、前述したように
電磁弁3又は6と、保持コイル7と、計量シリンジ10
とが連通されて第1の流路系が形成される。計量シリン
ジ1oが不図示の駆動装r!tKより駆動され、把手1
1が右方向に移動されると同時に1電磁弁3と6とが不
図示の付勢装置により交互に付勢されて開閉される。
Next, the operation of the device of this embodiment will be explained. Now Ogata dialect 8
is switched to the first switching mode and the three-way valve 9 is switched to the flow path shown by the solid line, the solenoid valve 3 or 6, the holding coil 7, and the metering syringe 10 are switched to the first switching mode, as described above.
are communicated with each other to form a first channel system. The measuring syringe 1o is a driving device (not shown)! Driven by tK, handle 1
At the same time as the valve 1 is moved to the right, the solenoid valves 3 and 6 of the valve 1 are alternately biased by a biasing device (not shown) to open and close.

電磁弁3が開なるときに電磁弁6は閉とされ、試料液2
が導管l、とl、を介して、そして電磁弁3が閉なると
きに電磁弁6は開とされ、反応液5が導入 管l、と!、を介し、そしてl方弁8の流路PIを経て
保持コイル7に、電磁弁3又は6の開放時間に対応した
体積を持つ試料液2と反応液5とが交互に吸引、保持さ
れる。計量シリンジlOが所定ストローク駆動させられ
、所定量の吸引製作を終了した時点でその駆動を停止す
る。その間に、電磁弁3と6の交互の開閉作用により、
試料液2と反応液5とが保持コイル7に交互に吸引され
、それらが交互に所定長さ毎に配列、保持される。
When the solenoid valve 3 opens, the solenoid valve 6 is closed, and the sample liquid 2
is passed through the conduits l, and l, and when the solenoid valve 3 is closed, the solenoid valve 6 is opened, and the reaction liquid 5 is introduced into the inlet pipe l, and! , and through the flow path PI of the L-way valve 8, the sample liquid 2 and the reaction liquid 5 having a volume corresponding to the opening time of the solenoid valve 3 or 6 are alternately attracted and held in the holding coil 7. . The metering syringe IO is driven for a predetermined stroke, and the drive is stopped when a predetermined amount of suction has been completed. In the meantime, due to the alternate opening and closing action of solenoid valves 3 and 6,
The sample liquid 2 and the reaction liquid 5 are alternately attracted to the holding coil 7, and are alternately arranged and held every predetermined length.

ここで、保持コイル7に吸引された試料液2と反応液5
との配列状態を、保持コイル7の一部を示す第2図を参
照して詳細に説明する。いま、電磁弁3と6の開閉時間
を1秒とし、計量シリンジ10の一回の吸引時間を10
0秒゛で50μlの液体を吸引するものとすると、電磁
弁3と6とは1秒間づつ交互に開閉を繰返すから、試料
液2と反応液5とはそれぞれ50秒間にわたり25μl
づつ吸引されることになる。従って、試料液2と反応液
5とは1秒間あたシ、それぞれ25μ1150秒=0゜
5μ2/秒づつ吸引される。ここで、保持コイル7の内
径を0.8−とすると、その断面積は約0.5 wax
”となる。1秒間づつ吸引される0、5μ!の体積の試
料液2と反応液5とは、保持コイル7において長さ11
1Illの液柱を交互に形成することになる。このよう
に、試料液2と反応液5とが保持コイル7において数多
く交互に配列、保持されるため、両液は十分に混合され
、化学反応を速やかに行なわせることができる。なお、
−例として反応液と試料液とを当量づつ吸引するものと
して説明したが、本発明は反応液と試料液とを当量づつ
吸引するものに限るものではない。保持コイル7におけ
る化学反応を一層速やかに行なわせる場合には、保持コ
イル7を加熱する加熱装置を設けることが必要である。
Here, the sample liquid 2 and reaction liquid 5 sucked into the holding coil 7
The arrangement of the holding coil 7 will be explained in detail with reference to FIG. 2, which shows a part of the holding coil 7. Now, the opening and closing time of the solenoid valves 3 and 6 is 1 second, and the suction time of one time of the metering syringe 10 is 10 seconds.
Assuming that 50 μl of liquid is aspirated in 0 seconds, since electromagnetic valves 3 and 6 are alternately opened and closed for 1 second each, 25 μl of sample liquid 2 and reaction liquid 5 are each sucked over 50 seconds.
It will be gradually absorbed. Therefore, the sample liquid 2 and the reaction liquid 5 are each sucked for 1 second at a rate of 25μ1150 seconds=0°5μ2/second. Here, if the inner diameter of the holding coil 7 is 0.8-, its cross-sectional area is approximately 0.5 wax
”The sample solution 2 and reaction solution 5 with a volume of 0.5μ! are aspirated for 1 second each, and the holding coil 7 has a length of 11
1Ill liquid columns are alternately formed. In this way, a large number of sample liquids 2 and reaction liquids 5 are alternately arranged and held in the holding coil 7, so that both liquids are sufficiently mixed and a chemical reaction can be carried out quickly. In addition,
- Although the description has been given as an example in which equivalent amounts of the reaction liquid and sample liquid are aspirated, the present invention is not limited to aspirating equivalent amounts of the reaction liquid and sample liquid. In order to cause the chemical reaction in the holding coil 7 to occur more quickly, it is necessary to provide a heating device for heating the holding coil 7.

なお、計量シリンジ10の吸引動作と電磁弁3と6の開
閉作用とにより、試料液と反応液との粘性が相違しても
、例えば試料液が血清で、反応液がADAMのメタノー
ル溶液の場合においても、試料液と反応液と正確に計量
して保持コイル7に導入することができる。
Note that even if the viscosity of the sample liquid and reaction liquid differs due to the suction operation of the measuring syringe 10 and the opening/closing operation of the solenoid valves 3 and 6, for example, when the sample liquid is serum and the reaction liquid is a methanol solution of ADAM, Also, the sample liquid and reaction liquid can be accurately measured and introduced into the holding coil 7.

さて、保持コイル7に配列、保持された試料液2と反応
液5とが十分な化学反応を終了するまで、そのままの状
態で静止、保持する。一方、移動相13はポンプ14の
駆動により、導管!、と、六方弁8の流路P、と、導管
1.とを介して分析用カラム15に送液される。
Now, the sample liquid 2 and the reaction liquid 5 arranged and held in the holding coil 7 are kept stationary and held in that state until a sufficient chemical reaction is completed. On the other hand, the mobile phase 13 is transferred to the conduit by driving the pump 14! , the flow path P of the six-way valve 8, and the conduit 1. The liquid is sent to the analytical column 15 via.

所定時間経過後に、六方弁8を第2の切換えモードに切
換え、そして三方弁9を点線で示す流路に切換えると、
移動相供給手段と、導管!、と、六方弁8の流路P4と
、保持コイル7と、六方弁8の流路P、と、導管18と
、分析用カラム15とが連通されて第2の流路系を形成
する。そして、移動相13と共に、保持コイル7に生成
された反応生成の駆動により計量シリンジ10の把手1
1を左方向に駆動させ、導管21点線で示す三方弁9の
流路、導管1.を介して外部に排出される。
After a predetermined period of time has passed, the six-way valve 8 is switched to the second switching mode, and the three-way valve 9 is switched to the flow path indicated by the dotted line.
Mobile phase supply means and conduit! , the flow path P4 of the six-way valve 8, the holding coil 7, the flow path P of the six-way valve 8, the conduit 18, and the analytical column 15 are communicated to form a second flow path system. Together with the mobile phase 13, the handle 1 of the metering syringe 10 is driven by the reaction generated in the holding coil 7.
1 to the left, the flow path of the three-way valve 9 shown by the dotted line in the conduit 21, and the conduit 1. is discharged to the outside through the

以上で、分析のための一回の試料導入動作が終了する。This completes one sample introduction operation for analysis.

保持コイル7を洗浄する場合には、試料液容器1と反応
液容器5とを洗浄液の注入された容器に置き換え、セし
て六方弁8を第1の切換えモードに切換え、三方弁9を
実線で示す流路に切換え、計量シリンジ10を吸引駆動
させ、次に三方弁9を点線で示す流路に切換え、計量シ
リンジ10に吸引された洗浄後の洗浄液の排出を行ない
、これを繰返して保持コイル10を洗浄する。前述した
ように、保持コイル10には充填剤が充填されておらず
、中空状態となっているため、充填剤に分析対象物等が
保持されることがなく、大量の洗浄液と長い洗浄時間を
必要とせず、洗浄作業が極めて容易となる。
When cleaning the holding coil 7, the sample liquid container 1 and the reaction liquid container 5 are replaced with containers filled with cleaning liquid, the six-way valve 8 is switched to the first switching mode, and the three-way valve 9 is switched to the solid line. Switch to the flow path shown by and drive the metering syringe 10 for suction, then switch the three-way valve 9 to the flow path shown by the dotted line, discharge the cleaning liquid sucked into the metering syringe 10, and repeat this to hold. Clean the coil 10. As mentioned above, the holding coil 10 is not filled with a filler and is in a hollow state, so the filler does not retain the analyte, etc., and requires a large amount of cleaning liquid and a long cleaning time. It is not necessary and cleaning work is extremely easy.

次に、前述した弁部材の二つの変形例を第3図により説
明する。
Next, two modified examples of the above-mentioned valve member will be explained with reference to FIG.

弁部材の一変形例を示す第3図(A)において、試料液
2が流れる導管もと反応液5の流れる導管E、とに直交
して貫通する中実の円柱体31には、位相を90’異に
して流通孔31αと31bとが穿設されている。円柱体
31が貫通する導管l□と4の部分には、漏液防止用の
バッキング32と33とが設けられている。図示の状態
から円柱体31を矢印方向に90″回転させると、流通
孔31αは導管l、の軸方向と一致し、試料液2を流通
させ、流通孔31bは導管l、の軸方向に対し直交し、
反応液5の流通を遮断する。
In FIG. 3(A) showing a modified example of the valve member, a solid cylindrical body 31 that penetrates perpendicularly to the conduit through which the sample liquid 2 flows and the conduit E through which the reaction liquid 5 flows is provided with a phase difference. 90' different flow holes 31α and 31b are bored. Backings 32 and 33 for preventing liquid leakage are provided at the portions of the conduits l□ and 4 through which the cylindrical body 31 passes. When the cylindrical body 31 is rotated 90'' in the direction of the arrow from the illustrated state, the flow hole 31α coincides with the axial direction of the conduit l, allowing the sample liquid 2 to flow, and the flow hole 31b is aligned with the axial direction of the conduit l. orthogonal,
The flow of reaction solution 5 is shut off.

第3図(B)にはさらに別の変形例が示されており、導
管11とl、とに直交し、貫通する円柱体34には、導
管E1と!、の軸方向と一致する方向に流通孔34αと
34bが穿設されている。円柱体34の一端はカム35
と当接しておシ、円柱体34の他端とシャーシ36との
間にはコイルばね37が装荷され、円柱体34を右方向
に付勢している。円柱体34が貫通する導管11と1.
4の部分には、同様に漏液防止用のバッキング32と3
3とが設けられている。図示の状態においては、導管l
、は遮断状態に、そして導管l、は流通状態となってい
るが、カム35を180°回転させると、円柱体34は
コイルばね37の付勢により右方向に移動され、流通孔
34.6は導管j、外に移動し、流通孔34αは導管1
m内に位置し、導管!、は流通状態にそして導管l。
Still another modification is shown in FIG. 3(B), in which a cylindrical body 34 that is perpendicular to and penetrates the conduits 11 and l has a conduit E1! , communication holes 34α and 34b are bored in a direction coinciding with the axial direction of . One end of the cylindrical body 34 is a cam 35
A coil spring 37 is loaded between the other end of the cylindrical body 34 and the chassis 36, and biases the cylindrical body 34 in the right direction. The cylindrical body 34 passes through the conduit 11 and 1.
Similarly, backings 32 and 3 for preventing liquid leakage are placed in the part 4.
3 are provided. In the situation shown, conduit l
, is in a blocked state and conduit l is in a flowing state. However, when the cam 35 is rotated 180 degrees, the cylindrical body 34 is moved to the right by the bias of the coil spring 37, and the flow hole 34.6 is in a blocked state. is the conduit j and moves to the outside, and the flow hole 34α is the conduit 1
Located within m, conduit! , is in circulation and the conduit l.

は遮断状態となる。is in a cut-off state.

以上説明した弁部材の変形例は6、−回の動作で試料液
2と反応液5との流通、遮断を行なうことができる。
The modified example of the valve member described above is capable of communicating and blocking the flow between the sample liquid 2 and the reaction liquid 5 in 6-times of operation.

発明の詳細 な説明したように本発明によると、試料液と反応液とを
化学反応させ、移動相と共に分析用カラムに導入させる
ものにおいて、吸引手段の吸引動作と同時に第1と第2
の弁部材を微小時間間隔にて同期して交互に開閉させる
構成であるから、従来の手動操作の如く計量の不正確さ
に基づく不正確な分析結果および相互汚染を伴なわずに
、保持コイルに正確に計量され、所定長さ毎に試料液と
反応液とが交互に配列、保持され、これにょシ両液が十
分に混合され、反応生成物の生成が容易となシ、また試
料液と反応液との粘性に相違があっても、両液を正確に
計量して保持コイル内に導入することができる。さらに
、保持コイルが充填剤を含まない中空体であるため、従
来の自動試料導入装置の如く反応生成物の充填剤に対す
る吸着、脱着が行なわれることかなく、従って分析対象
物と試薬の組合わせに制約されることなく分析を行なう
ことが可能となり、また多量の洗浄水を必要としないた
め、その洗浄が容易となり、プレカラム反応装置を用い
る分析装置の普及化を可能にする。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, in a system in which a sample liquid and a reaction liquid are chemically reacted and introduced into an analytical column together with a mobile phase, the first and second
Since the valve members of the holding coil are opened and closed alternately in synchronization at minute time intervals, the retention coil The sample liquid and the reaction liquid are arranged and held alternately at predetermined lengths, so that the two liquids are sufficiently mixed and reaction products are easily generated. Even if there is a difference in viscosity between the reaction liquid and the reaction liquid, both liquids can be accurately measured and introduced into the holding coil. Furthermore, since the holding coil is a hollow body that does not contain a filler, reaction products are not adsorbed or desorbed to the filler as in conventional automatic sample introduction devices, and therefore the combination of the analyte and reagent is prevented. This makes it possible to perform analysis without being restricted by the above conditions, and since a large amount of washing water is not required, washing becomes easy, and it becomes possible to popularize analytical devices using pre-column reaction devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、第2図は第1図に示
す実施例の保持コイルに保持された試料液と反応液との
配列状態を説明するための説明図、第3図(A)は弁部
材の変形例の上面図、同図(B)は弁部材の別の変形例
の上面図、第4図は従来装置の構成図でおる。 1は試料液容器、2け試料液、4は反応液容器、5は反
応液、3と6は電磁弁、7は保持コイル、8は六方弁、
9は三方弁、10は計量シリンジ、11は把手、12は
移動相容器、13は移動相、14はポンプ、15は分析
用カラム、!8〜!、は導管、P、〜P6は6方弁8の
流路を示す。 第1図 第2図
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram for explaining the arrangement state of the sample liquid and reaction solution held in the holding coil of the embodiment shown in FIG. 1, and FIG. FIG. 4A is a top view of a modification of the valve member, FIG. 4B is a top view of another modification of the valve member, and FIG. 4 is a configuration diagram of a conventional device. 1 is a sample liquid container, 2 is a sample liquid, 4 is a reaction liquid container, 5 is a reaction liquid, 3 and 6 are electromagnetic valves, 7 is a holding coil, 8 is a hexagonal valve,
9 is a three-way valve, 10 is a metering syringe, 11 is a handle, 12 is a mobile phase container, 13 is a mobile phase, 14 is a pump, 15 is an analytical column,! 8~! , denotes a conduit, and P, to P6 denote a flow path of the six-way valve 8. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)、微小時間間隔毎の開閉により試料液の送液を行
なう第1の弁部材と、 前記第1の弁部材の開閉と同期する閉開に より反応液の送液を行なう第2の弁部材と、前記第1と
第2の弁部材を介して導入され た試料液と反応液とを所定長さ毎に交互に配列させて保
持する中空の保持コイルと、 前記第1と第2の弁部材を介して所定量の 試料液と反応液とを保持コイルに導入させる吸引手段と を備える自動試料導入装置。
(1) A first valve member that transports a sample liquid by opening and closing at minute time intervals, and a second valve that transports a reaction liquid by opening and closing in synchronization with the opening and closing of the first valve member. a hollow holding coil that holds the sample liquid and reaction liquid introduced through the first and second valve members, arranged alternately at predetermined lengths, and the first and second valve members; An automatic sample introduction device comprising suction means for introducing a predetermined amount of sample liquid and reaction liquid into a holding coil via a valve member.
(2)、前記保持コイルを加熱するための加熱手段を備
える前記特許請求の範囲(1)記載の自動試料導入装置
(2) The automatic sample introduction device according to claim (1), further comprising heating means for heating the holding coil.
JP60054674A 1985-03-20 1985-03-20 Automatic specimen introducing apparatus Pending JPS61213743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60054674A JPS61213743A (en) 1985-03-20 1985-03-20 Automatic specimen introducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60054674A JPS61213743A (en) 1985-03-20 1985-03-20 Automatic specimen introducing apparatus

Publications (1)

Publication Number Publication Date
JPS61213743A true JPS61213743A (en) 1986-09-22

Family

ID=12977328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60054674A Pending JPS61213743A (en) 1985-03-20 1985-03-20 Automatic specimen introducing apparatus

Country Status (1)

Country Link
JP (1) JPS61213743A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551108A (en) * 1978-10-06 1980-04-14 Hitachi Ltd Weight supporting device for servomotor
JPS55131754A (en) * 1979-04-03 1980-10-13 Yamanouchi Pharmaceut Co Ltd Method and dvice for detecting fluorescent substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551108A (en) * 1978-10-06 1980-04-14 Hitachi Ltd Weight supporting device for servomotor
JPS55131754A (en) * 1979-04-03 1980-10-13 Yamanouchi Pharmaceut Co Ltd Method and dvice for detecting fluorescent substance

Similar Documents

Publication Publication Date Title
US3282651A (en) Sample and reagent and/or wash liquid supply apparatus
EP0047130B1 (en) Flow analysis
AU629767B2 (en) Combined closed and open tube sampling apparatus and method
JP2641986B2 (en) A new and improved liquid sample aspiration and dispensing probe
JPH07185360A (en) Automatic pipette sampling device
JPH04503568A (en) Liquid sample analysis device and liquid sample analysis method using a new and improved liquid sample aspiration and dispensing probe
JP4613279B2 (en) High-throughput autosampler
US6156195A (en) Method for separating components in liquid specimen and apparatus used in said method
US4610544A (en) Flow analysis
JPH0580059A (en) Automatic analyzer
EP0253519B1 (en) Sample handling system
CN108780064B (en) Analysis device
US3954411A (en) Preparation of reagents on-line in automated sample analysis
JPH0222911B2 (en)
JPH01126544A (en) Biochemical analysis method and apparatus
JPS61213743A (en) Automatic specimen introducing apparatus
CA2290948A1 (en) Carrierless sequential injection analysis
WO2002101381A1 (en) Liquid chromatograph and analyzing system
JPH03205559A (en) Chromatographic analysis of biosample and liquid chromatograph device
JPH10332658A (en) Method for separation of liquid sample component and apparatus used for the method
JPS62502706A (en) Immunology analyzer and method
US20240094236A1 (en) Flow path washing method of auto sampler and flow path washing apparatus of auto sampler
JPH03163357A (en) Method and apparatus for analyzing catecholamine
JP7357787B2 (en) Control method for automatic analyzer
JPH02236455A (en) Luminous reagent injector of automatic immunoassay device