JPS61213690A - Monitor device for distribution of output from nuclear reactor - Google Patents

Monitor device for distribution of output from nuclear reactor

Info

Publication number
JPS61213690A
JPS61213690A JP60053452A JP5345285A JPS61213690A JP S61213690 A JPS61213690 A JP S61213690A JP 60053452 A JP60053452 A JP 60053452A JP 5345285 A JP5345285 A JP 5345285A JP S61213690 A JPS61213690 A JP S61213690A
Authority
JP
Japan
Prior art keywords
gamma
measuring device
output
fuel
ray flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60053452A
Other languages
Japanese (ja)
Inventor
三橋 偉司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP60053452A priority Critical patent/JPS61213690A/en
Publication of JPS61213690A publication Critical patent/JPS61213690A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、原子炉の出力分布を監視するための原子炉出
力分布監視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a nuclear reactor power distribution monitoring device for monitoring the power distribution of a nuclear reactor.

[発明の技術的背景とその問題点] 原子炉はその健全性を維持し必要な性能を発揮させるた
めには炉心性能の現状監視を行う必要があり、このため
一般にプロセス制御計算機が用いられている。従来のプ
ロセス制御計算機は、炉心内の熱中性子束測定値と炉心
現状データを入力し、これらに基づいて炉心内の出力分
布を算出していた。ここで熱中性子束測定値は炉内の4
体の燃料集合体によって囲まれた間隔(以下コーナーギ
ャップという)に配列された熱中性子束測定器により得
られるものであり、また、炉心現状データは冷却材の炉
心出入口温度、炉心入口エンタルピー、流量および制御
棒の位置等を測定した測定値から得られる。このように
して算出された炉心の出力分布は、原子炉の健全性を監
視するために必要とされる主要パラメータの1つとなっ
ている。
[Technical background of the invention and its problems] In order for a nuclear reactor to maintain its health and exhibit the necessary performance, it is necessary to monitor the current state of core performance, and for this purpose, process control computers are generally used. There is. Conventional process control computers input thermal neutron flux measurements within the reactor core and current state data of the reactor core, and calculate the power distribution within the reactor core based on these inputs. Here, the thermal neutron flux measurement value is 4
It is obtained by thermal neutron flux measuring instruments arranged at intervals surrounded by the fuel assemblies (hereinafter referred to as corner gaps), and the current state data of the core is obtained by measuring the coolant temperature at the core inlet and outlet, the core inlet enthalpy, and the flow rate. It is obtained from measurements of control rod positions, etc. The power distribution of the reactor core calculated in this way is one of the main parameters required to monitor the health of the reactor.

しかして、前述のプロセス制御計算機によって得られる
炉心内の出力分布は、熱中性子束測定器の測定値に全面
的に依存している。したがって、すべての熱中性子測定
器が正常な状態であれば算出される出力分布は実際の出
力分布に極めて近いものどなる。
Therefore, the power distribution within the reactor core obtained by the above-mentioned process control computer is completely dependent on the measured value of the thermal neutron flux measuring device. Therefore, if all thermal neutron measuring instruments are in normal condition, the calculated output distribution will be very close to the actual output distribution.

第2図は従来の炉心に配列された熱中性子測定器の一部
を表わしたものである。原子炉内には炉心1を構成する
多数の燃料集合体(以下バンドルという)2が全体的に
円柱形になるように配列されており、制御棒3によって
比較的急速な反応度変化の制御が行われるようになって
いる。バンドル2に囲まれたコーナーギャップ4の中央
位置に導管5が配置されている。
FIG. 2 shows a part of a conventional thermal neutron measuring instrument arranged in a reactor core. Inside the reactor, a large number of fuel assemblies (hereinafter referred to as bundles) 2 that make up the reactor core 1 are arranged in an overall cylindrical shape, and relatively rapid changes in reactivity can be controlled by control rods 3. It is about to be done. A conduit 5 is arranged at the center of the corner gap 4 surrounded by the bundle 2.

図に示したコーナーギャップ4内の導管5には熱中性子
束測定器6が炉心1の軸方向の所定の位置に固定されて
いるが、他の図示しない熱中性子測定器は導管5内を移
動できるようになっている。
A thermal neutron flux measuring device 6 is fixed in a conduit 5 in the corner gap 4 shown in the figure at a predetermined position in the axial direction of the core 1, but other thermal neutron measuring devices (not shown) move inside the conduit 5. It is now possible to do so.

後者の熱中性子束測定器は軸方向の任意の場所で熱中性
子束の測定を行なう事ができる。以下の説明では前者の
測定器を固定型測定器、また後者の測定器を移動型測定
器と呼ぶことにする。
The latter thermal neutron flux measuring device can measure thermal neutron flux at any location in the axial direction. In the following description, the former measuring instrument will be referred to as a fixed measuring instrument, and the latter measuring instrument will be referred to as a mobile measuring instrument.

ところで、原子炉内における冷却水流等が原因してコー
ナーギャップ4中の導管5が湾曲すると、この結果とし
てこれらの測定器がコーナーギヤツブ4内で径方向に偏
位する事となる。他方、熱中性子束は一般にコーナーギ
ャップ4内では平坦ではなく、中央部分で大きくバンド
ル2近傍で小さくなっている。従ってこれら測定器が偏
位すると熱中性子束に関する正しい測定値が得られなく
なる。 このような事態が生ずると、例えば本来全く等
しい測定値を与えるべき位置におけるデータが相互に異
なったデータとしてプロセス制御計算機に入力される場
合が生ずる。そうすると、原子炉の正しい出力分布が得
られない場合があり、これにより燃料の健全性や原子炉
の稼働率に好ましくない影響を与えるということが想定
される。
By the way, if the conduit 5 in the corner gap 4 is bent due to cooling water flow or the like in the nuclear reactor, these measuring instruments will be displaced in the radial direction within the corner gear 4 as a result. On the other hand, the thermal neutron flux is generally not flat within the corner gap 4, and is large in the central portion and small in the vicinity of the bundle 2. Therefore, if these measuring instruments are deflected, accurate measurements regarding thermal neutron flux cannot be obtained. When such a situation occurs, for example, data at positions that should originally give exactly the same measurement value may be input to the process control computer as mutually different data. In this case, the correct power distribution of the reactor may not be obtained, which is expected to have an unfavorable effect on the health of the fuel and the operating rate of the reactor.

[発明の目的] 本発明は、上記事情に鑑みてなされたもので、その目的
は測定°器がコーナーギャップの中央位置からはずれる
事があっても、原子炉の正しい出力分布を得ることので
きる′原子炉出力分布監視装置を提供することにある。
[Object of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to obtain the correct power distribution of a nuclear reactor even if the measuring instrument deviates from the center position of the corner gap. 'An object of the present invention is to provide a reactor power distribution monitoring device.

[発明の概要] 本発明は、上記目的を達成するために、多数の燃料集合
体を配列した炉心における4体の燃料集合体に囲まれた
間隔の中央位置の軸方向に設定されている測定設定点で
γ線束を測定するγ線束測定器と、このγ線束測定器か
ら得られたγ線束の測定値を予め内蔵された換算式を用
いて前記4体の燃料集合体に装荷された測定設定点に近
接する複数本の燃料棒の平均出力に換算する近接燃料棒
平均出力換算装置とを備え、この燃料棒の平均出力に基
いて算出した原子炉出力分布を監視するようにした原子
炉出力分布監視装置に関するものである。
[Summary of the Invention] In order to achieve the above object, the present invention provides a measurement method that is set in the axial direction at the center of the interval surrounded by four fuel assemblies in a reactor core in which a large number of fuel assemblies are arranged. A gamma-ray flux measuring device that measures gamma-ray flux at a set point and a pre-built conversion formula for the gamma-ray flux measurement values obtained from this gamma-ray flux measuring device are used to measure the gamma-ray flux loaded in the four fuel assemblies. A nuclear reactor equipped with an adjacent fuel rod average power conversion device that converts the average power of a plurality of fuel rods close to a set point, and which monitors a reactor power distribution calculated based on the average power of the fuel rods. This invention relates to an output distribution monitoring device.

[発明の実施例] 本発明の一実施例を図面を参照して説明する。[Embodiments of the invention] An embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の原子炉出力分布監視装置の系統図を
示したものである。同図に示すように原子炉10内には
固定型熱中性子束測定器13、移動型γ線束測定器14
及び炉心現状データ測定器15の3種類の測定器が配置
されている。固定型熱中性子束測定器13は、原子炉1
0の出力を常時監視するために用いられる。γ線束測定
器14はγ線によるガスの電離現象を利用した測定器を
用いており、定期的または必要により出力分布を求める
ために用いられ、またコーナーギャップ内で軸方向に数
点しか存在しない固定型測定器の校正用に用いられる。
FIG. 1 shows a system diagram of a nuclear reactor power distribution monitoring device according to the present invention. As shown in the figure, inside the reactor 10 there is a fixed thermal neutron flux measuring device 13 and a mobile gamma ray flux measuring device 14.
Three types of measuring instruments are arranged: and core current data measuring instrument 15. The fixed thermal neutron flux measuring device 13 is installed in the nuclear reactor 1.
It is used to constantly monitor the output of 0. The gamma ray flux measuring device 14 uses a measuring device that utilizes the ionization phenomenon of gas due to gamma rays, and is used periodically or as necessary to determine the output distribution, and there are only a few points in the axial direction within the corner gap. Used for calibrating fixed measuring instruments.

さら1、炉心現状データ測定器15は冷却材の全流量、
出入口温度、炉心圧力、制御棒位置などを監視するため
に用いられる。
Furthermore, the core current data measuring device 15 measures the total flow rate of the coolant;
It is used to monitor inlet and outlet temperatures, core pressure, control rod positions, etc.

ところで、熱中性子束測定器13から出力される測定値
16及び炉心現状データ測定器15から出力される炉心
現状データ11はデータサンプラー18に集められ、後
記する後段の装置19〜21でその処理が行われた後、
その結果を入出力装置22より出力する。
By the way, the measured value 16 outputted from the thermal neutron flux measuring device 13 and the core current state data 11 outputted from the core current state data measuring device 15 are collected in a data sampler 18, and processed by later-described devices 19 to 21. After it is done,
The results are output from the input/output device 22.

さて、γ線束測定装置23はγ線束測定器14に所定の
電圧を印加する等の制御を行ない、これから出力信号2
4を得る。出力信号24は図示しない増幅器等で必要な
処理がなされ、炉心11内の各コーナーギャップにおけ
るγ線束の測定値24としてデーターサンプラー18に
入力される。このγ線束測定器14を用いて得られた測
定値24は炉心現状データ測定器15によって得られた
炉心現状データ17と共にデータサンプラー18を経て
近接燃料棒平均出力換算装置19に入力される。
Now, the gamma-ray flux measuring device 23 performs control such as applying a predetermined voltage to the gamma-ray flux measuring device 14, and from this, the output signal 2
Get 4. The output signal 24 is subjected to necessary processing using an amplifier (not shown), etc., and is input to the data sampler 18 as a measured value 24 of the γ-ray flux at each corner gap in the core 11. The measured value 24 obtained using the gamma ray flux measuring device 14 is inputted to the adjacent fuel rod average power conversion device 19 via the data sampler 18 together with the core current state data 17 obtained by the core current state data measuring device 15.

近接燃料棒平均出力換算装置19では内蔵された換算式
を用いて、入力された測定値25及び炉心現状データ1
1を各測定設定点における近接燃料棒平均出力に換算す
る。換算式は下記(1)式で表される。
The adjacent fuel rod average power conversion device 19 uses the built-in conversion formula to calculate the input measurement value 25 and core current data 1.
1 to the adjacent fuel rod average power at each measurement set point. The conversion formula is expressed by the following formula (1).

P (i、j ) −A (i、j ) xT(i、j
 )・・・(1) ここで、 iはコーナーギャップ内の軸方向測定設定点番号、 jはコーナーギャップの番号、 T(i、j>は(i、j>位置での測定値、P (i、
j )は(i、j)位置での近接燃料棒平均出力、 A(+、j>は(i、j)位置での測定値を近接燃料棒
平均出力に換−する係数、 また、この実施例では近接燃料棒として各バンドルにお
ける導管12に最も近い4本ずつ計16本の燃料棒を選
定している。これはこれらの近接燃料棒がγ線束測定器
14に寄与するγ線束の割合が全体の7割以上を占め、
燃料棒がこれ以下の場合よりも原子炉出力分布をより正
確に算出する事が可能となるからである。
P (i, j) −A (i, j) xT(i, j
)...(1) Here, i is the axial measurement set point number in the corner gap, j is the corner gap number, T(i, j> is the measured value at the position (i, j>), P ( i,
j) is the average output of adjacent fuel rods at the (i, j) position, A(+, j> is the coefficient for converting the measured value at the (i, j) position into the average output of adjacent fuel rods, and this implementation In this example, a total of 16 fuel rods, 4 of which are closest to the conduit 12 in each bundle, are selected as the proximal fuel rods. Accounting for over 70% of the total,
This is because it becomes possible to calculate the reactor power distribution more accurately than when the number of fuel rods is less than this.

さて、上記(1)式は移動型測定器として熱中性子測定
器を使用する従来の原子炉出力監視装置に用いられてい
るものと同様な形式をしており、この(1)式を用いる
従来の方式では熱中性子束測定器を中央に配置した4バ
ンドル体系を組み、例えば二次元拡散法により定格出力
時に於ける熱中性子束測定器の測定値とこの測定器付近
の近接燃料棒平均出力を求め、これらの比をとる事によ
り測定値を近接燃料棒平均出力に換算する係数を予め求
めていた。
Now, the above equation (1) has a form similar to that used in conventional reactor power monitoring equipment that uses a thermal neutron measuring device as a mobile measuring device, and the In this method, a four-bundle system is constructed with a thermal neutron flux measuring device placed in the center, and for example, the two-dimensional diffusion method is used to calculate the measured value of the thermal neutron flux measuring device at rated output and the average output of adjacent fuel rods near this measuring device. By calculating the ratio of these values, the coefficient for converting the measured value to the average output of adjacent fuel rods was determined in advance.

ところで、本発明による原子炉出力分布監視装置におい
ては、現状でも行われている定格出力に対する4燃料集
合体体系二次元燃料集合体核定数計算による測定器付近
の近接燃料棒平均出力の算出の他に、定格出力時のγ線
束測定器の測定値を例えば輸送計算法を用いて予め算出
しておく必要が生ずる。そして上記のγ線束測定値の計
算値と4燃料集合体体系に関する二次元拡散により求め
たγ線束測定器付近の近接燃料棒平均出力との比をとり
、係数A (i、j )を前以て算出しておく事となる
By the way, in the reactor power distribution monitoring device according to the present invention, in addition to calculating the average power of adjacent fuel rods near the measuring device by calculating the two-dimensional fuel assembly nuclear constant of a four-fuel assembly system for the rated power, which is currently performed, In addition, it becomes necessary to calculate in advance the measured value of the gamma ray flux measuring device at the rated output using, for example, a transport calculation method. Then, the ratio of the calculated value of the gamma-ray flux measurement value described above to the average output of the adjacent fuel rods near the gamma-ray flux measuring device obtained by two-dimensional diffusion for the four fuel assembly system is taken, and the coefficient A (i, j) is calculated as before. This will need to be calculated.

しかして、この定格出力時のγ線束測定器の係数値を算
出する方法は以下の通りである。
Therefore, the method for calculating the coefficient value of the gamma ray flux measuring device at the rated output is as follows.

すなわち通常行われる無限格子系の単一燃料集合体核定
数計算から得られる各燃料棒又はチャンネルボックス等
の各領域に於ける各核種の核分裂数又は吸収反応数にそ
の核種の単位核分裂又は吸収反応当りに発生するγ線を
エネルギー依存で求める。そのγ線源を使用して単一燃
料集合体無限格子系の中央位置にγ線束測定器を置いた
体系のγ線輸送計算を行い、γ線束測定器が単一種類の
燃料集合体で囲まれた場合の測定値を算出する。
In other words, the number of fission or absorption reactions of each nuclide in each region of each fuel rod or channel box obtained from the normal calculation of the nuclear constant of a single fuel assembly in an infinite lattice system is calculated based on the unit fission or absorption reaction of that nuclide. The gamma rays generated at each point are determined depending on the energy. Using this gamma-ray source, we performed gamma-ray transport calculations for a system in which a gamma-ray flux measuring device is placed at the center of an infinite lattice system of single fuel assemblies, and the gamma-ray flux measuring device is surrounded by a single type of fuel assembly. Calculate the measured value when

一方、熱中性子束測定器を使用した原子炉出力監視装置
を用いる場合と同様に実際の測定器を囲む燃料集合体配
置に対する4燃料集合体体系二次元拡散計算を行い、各
燃料集合体の出力配分が得られる。ここで先に求めた単
一燃料集合体無限格子系の中央位置に測定器を置いた場
合の測定値をこの出力配分を重みにして平均する事によ
り、定格出力時の4燃料集合体の中央位置に存在するγ
線束測定器の測定値を前以て算出する事ができる。
On the other hand, in the same way as when using a reactor power monitoring system using a thermal neutron flux measuring device, we performed two-dimensional diffusion calculations for a four-fuel assembly system for the fuel assembly arrangement surrounding the actual measuring device, and calculated the output power of each fuel assembly. You get an allocation. By averaging the measured values when the measuring device is placed at the center position of the single fuel assembly infinite lattice system obtained earlier, using this output distribution as a weight, the center of the four fuel assemblies at the rated output γ existing at the position
The measurement value of the flux measuring device can be calculated in advance.

これは各燃料集合体の出力の大小でγ線源のレベルが上
下する事と各γ線源がそれによって生じる各領域のγ線
束に対して独立であるというγ線の特徴に因るものであ
る。
This is due to the characteristic of gamma rays that the level of the gamma ray source rises and falls depending on the output of each fuel assembly, and that each gamma ray source is independent of the gamma ray flux in each region generated by it. be.

また、多数の単一燃料集合体無限格子のγ線輸送計算の
結果を利用すれば、γ線輸送計算を行わなくても各燃料
棒又は領域のγ線源とガドリニア棒のガドリニア濃度や
位置及び燃料集合体の平均濃縮度やボイド率等のパラメ
ータから簡易計算によりγ線束検出器の測定値が算出で
きるので、通常の場合は単一燃料集合体無限格子体系の
γ線輸送計算の必要はなくなる事となる。
In addition, by using the results of gamma-ray transport calculations for an infinite lattice of a large number of single fuel assemblies, it is possible to determine the gadolinium concentration and position of the gamma-ray source and gadolinia rods in each fuel rod or region without performing gamma-ray transport calculations. Since the gamma-ray flux detector measurement values can be calculated using simple calculations from parameters such as the average enrichment and void fraction of the fuel assembly, there is usually no need to calculate gamma-ray transport for a single fuel assembly infinite lattice system. It happens.

なお、通常提案されているγ線束測定器を使用する原子
炉出力分布監視装置では、γ線束測定値を近接燃料棒平
均出力に換算する係数を求めるに当っては上記のように
単一燃料集合体無限格子系の中央位置に測定器を置いた
体系に於いて算出したγ線束測定値を実際に配置されて
いる体系における4燃料束合体二次元拡散計算による出
力配分を重みにして平均するのではなく、単純平均を取
る事により求めている。従って本発明による原子炉出力
分布監視装置の換算係数の方が精度が高く、その出力監
視精度が向上すると言える。
In addition, in the normally proposed reactor power distribution monitoring equipment that uses a gamma-ray flux measuring device, when calculating the coefficient for converting the gamma-ray flux measurement value to the average power of adjacent fuel rods, a single fuel set is used as described above. The gamma-ray flux measurements calculated in a system where the measuring device is placed at the center of the infinite grid system are averaged using the output distribution obtained by the four-fuel bundle combination two-dimensional diffusion calculation in the system where the system is actually placed as weights. Instead, it is calculated by taking a simple average. Therefore, it can be said that the conversion coefficient of the reactor power distribution monitoring device according to the present invention has higher accuracy, and the power monitoring accuracy thereof is improved.

燃料棒平均出力換算装置19で求めた測定設定点におけ
る近接燃料棒平均出力26は、燃料集合体平均出力算出
装置20に入力される。燃料集合体平均出力算出装置2
0では、測定設定点4燃料集合体平均出力27を算出し
て測定設定点燃料集合体出力算出装置21に入力する。
The adjacent fuel rod average power 26 at the measurement set point determined by the fuel rod average power conversion device 19 is input to the fuel assembly average power calculation device 20 . Fuel assembly average output calculation device 2
0, the measurement set point 4 fuel assembly average power 27 is calculated and input to the measurement set point fuel assembly output calculation device 21.

測定設定点燃料集合体出力算出装置21では、測定設定
点バンドル出力28を算出する。なお4燃料束合体二次
元拡散計算は上記出力算出装置の係数を求めるのにも行
われるもので、この点に関しては熱中性子束測定器を使
用する原子炉出力分布監視装置の場合と一切変りはない
。つまり、上記近接燃料棒平均出力26から測定設定点
バンドル出力28を求めるのに使われる燃料集合体平均
出力算出装置20及び測定設定点燃料集合体出力算出装
置21の内部で使用される係数は濃縮度、燃料タイプ、
ボイド率、燃料集合体配列及び制御棒挿入パターンに依
存することから、予め中性子検出器を囲む4つのバンド
ルの組合せと4バンドルを囲む4制御棒の挿入パターン
毎に4燃料束合体2次元拡散計算を数点の燃焼度、ボイ
ド率について行い、上記燃料集合体平均出力算出装置2
0及び測定設定点燃料集合体出力算出装置21の内部で
使用される係数を上記4燃料束合体2次元拡散計算の結
果をフッティングして求めている。
The measured set point fuel assembly output calculation device 21 calculates the measured set point bundle output 28 . Note that the four-fuel bundle combined two-dimensional diffusion calculation is also performed to obtain the coefficients of the power calculation device described above, and in this respect there is no difference from the case of a reactor power distribution monitoring device that uses a thermal neutron flux measuring device. do not have. That is, the coefficients used inside the fuel assembly average power calculation device 20 and measurement set point fuel assembly power calculation device 21 used to determine the measured set point bundle output 28 from the adjacent fuel rod average power 26 are degree, fuel type,
Since it depends on the void ratio, fuel assembly arrangement, and control rod insertion pattern, two-dimensional diffusion calculation is performed in advance for combining four bundles surrounding the neutron detector and for each insertion pattern of four control rods surrounding the four bundles. was performed for burnup and void ratio at several points, and the above fuel assembly average power calculation device 2
0 and the coefficients used inside the measurement set point fuel assembly output calculation device 21 are obtained by footing the results of the four-fuel bundle combined two-dimensional diffusion calculation.

そして、測定設定点バンドル出力28は、入出力装置2
2に入力される。入出力装置22の出力部分はCRTや
ラインプリンターを備えており、炉心出力分布を出力す
る。
The measurement set point bundle output 28 is then output to the input/output device 2
2 is input. The output section of the input/output device 22 is equipped with a CRT and a line printer, and outputs the core power distribution.

また、測定設定点バンドル出力28は必要により熱的制
限値算出装置30にも供給される。熱的制限値算出装置
30は燃料の健全性を保証するための各種熱的制限値を
計算する。
The measurement set point bundle output 28 is also provided to a thermal limit calculation device 30 as required. Thermal limit value calculation device 30 calculates various thermal limit values for ensuring the soundness of the fuel.

一方、入出力装置22の入出力部分は、原子炉出力分布
の必要なデータを得るために計算指示信号29を出力す
る。計算指示信号29は例えば1時間に1回の割合で定
期的に出力され、データサンプラー18及び近接燃料棒
平均出力換算装置19に供給され、データの転送及び炉
心出力分布計算を起動させる。勿論原子炉サイドの運転
員は、必要に応じて所望の時刻に計算指示信号29を発
生させ原子炉出力分布を求める事もできる。
On the other hand, the input/output section of the input/output device 22 outputs a calculation instruction signal 29 in order to obtain necessary data on the reactor power distribution. The calculation instruction signal 29 is output periodically, for example, once every hour, and is supplied to the data sampler 18 and the adjacent fuel rod average power conversion device 19 to start data transfer and core power distribution calculation. Of course, an operator on the reactor side can generate the calculation instruction signal 29 at a desired time to determine the reactor power distribution, if necessary.

このように本実施例の原子炉出力分布監視装置によれば
、上記したように熱中性子束測定器13とγ線束測定器
14を併用しており、このうち熱中性子束測定器13は
、原子炉内出力分布監視用に各コーナーギャップ内に数
個ずつ固設されており、常時測定を行っている。他方、
γ線束測定器14は、この実施例では移動型の測定器に
採用されており、固定型の熱中性子束測定器13によっ
て求められた出力分布の校正用に使用される。移動型の
γ線束測定器14による測定は、制御棒パターン変化等
のように出力分布が大幅に変化するときに行われ、各コ
ーナーギャップの軸方向に移動しながら多数点の測定値
を与える。
In this way, according to the reactor power distribution monitoring device of this embodiment, as described above, the thermal neutron flux measuring device 13 and the γ-ray flux measuring device 14 are used together, and of these, the thermal neutron flux measuring device 13 is used for the atomic Several units are permanently installed in each corner gap to monitor the power distribution inside the reactor, and measurements are taken constantly. On the other hand,
The γ-ray flux measuring device 14 is employed as a mobile measuring device in this embodiment, and is used for calibrating the output distribution determined by the fixed thermal neutron flux measuring device 13. Measurement by the movable gamma-ray flux measuring instrument 14 is performed when the output distribution changes significantly, such as when a control rod pattern changes, and provides measurement values at multiple points while moving in the axial direction of each corner gap.

したがって、γ線束の測定値は通常求められる訳ではな
いが、この点に関しては以下の様な手法により実行的な
γ線束の測定値を求めている。すなわち、同一測定点に
おける固定型の熱中性子束測定器13と移動型のγ線束
測定器14の両側定値は、測定対象の違い、検出効率の
違い等により一致しない。しかしながら両者を一致させ
るような係数を熱中性子束測定器13に対して測定点毎
に求めることができる。従って各測定点での各測定設定
点におけるγ線束の測定値は、そのコーナーギャップ内
での現時点における熱中性子束測定器13の測定値にこ
の係数を掛けたものと、熱中性子束測定器13の配置さ
れた位置における現時点に一番近い時点でのγ線束測定
器14の測定値との差を内挿し、γ線束測定器14の測
定値に加える事により求める事ができる。
Therefore, a measured value of gamma-ray flux is not normally obtained, but in this regard, a practical measured value of gamma-ray flux is obtained by the following method. That is, the constant values on both sides of the fixed thermal neutron flux measuring device 13 and the mobile gamma ray flux measuring device 14 at the same measurement point do not match due to differences in measurement targets, differences in detection efficiency, and the like. However, it is possible to obtain a coefficient for each measurement point using the thermal neutron flux measuring device 13 so that the two coincide with each other. Therefore, the measured value of the gamma ray flux at each measurement setting point at each measurement point is the value obtained by multiplying the current measurement value of the thermal neutron flux measuring device 13 within that corner gap by this coefficient, and This can be determined by interpolating the difference between the measured value of the gamma-ray flux measuring device 14 at the closest point in time to the current point in time at the position where the gamma-ray flux measuring device 14 is placed, and adding it to the measured value of the gamma-ray flux measuring device 14.

すなわち、本実施例の原子炉出力分布監視装置のように
、固定型測定器と移動型測定器のように種類が異なって
も移動型測定器の測定値に対する固定型測定器の補正係
数が求められるので、何らの問題も発生することはない
。勿論、この実施例では各測定設定点の基準となる移動
型測定器としてγ線束測定器を用いてγ線束の測定を行
っているので、測定器の位置がコーナーギャップの中央
からずれても測定値が正確となる。従って原子炉出力分
布監視装置の精度が著しく向上する事になる。この様に
、移動型測定器のみにγ線束測定器を用いるだけで充分
な精度を得る事ができる。
In other words, even if there are different types of measuring instruments, such as a fixed measuring instrument and a mobile measuring instrument, as in the reactor power distribution monitoring system of this embodiment, the correction coefficient of the fixed measuring instrument can be calculated for the measured value of the mobile measuring instrument. Therefore, no problems will occur. Of course, in this example, the gamma-ray flux is measured using a gamma-ray flux measuring device as a moving measuring device that serves as a reference for each measurement set point, so even if the measuring device is shifted from the center of the corner gap, the measurement will still be possible. The value is accurate. Therefore, the accuracy of the reactor power distribution monitoring device will be significantly improved. In this way, sufficient accuracy can be obtained by using the γ-ray flux measuring device only as a mobile measuring device.

なお、本発明では上記の通りγ線束測定器を用いている
のでγ線束測定値から測定設定点近接燃料棒平均出力へ
の変換を必要とする。しかしながらこれは従来から行わ
れている4燃料集合体二次元拡散計算による測定設定点
近接燃料棒平均出力や各燃料集合体の出力配分と単一燃
料集合体計算時のγ線源とガドリニア棒のガドリニア濃
度及び位置や平均ボイド率及び燃焼度から関係づけられ
る定格出力時のγ線束測定値を用いて簡単に得る事がで
きるものであり、従来の装置に比べて遜色がないもので
ある。
In addition, since the present invention uses a gamma ray flux measuring device as described above, it is necessary to convert the measured gamma ray flux value into the average output of the fuel rods near the measurement set point. However, this is based on the conventional two-dimensional diffusion calculation for four fuel assemblies, which is based on the average output of fuel rods near the set point, the power distribution of each fuel assembly, and the difference between the gamma ray source and gadolinia rod when calculating a single fuel assembly. It can be easily obtained using gamma ray flux measurements at rated output, which are related to gadolinia concentration and position, average void fraction, and burnup, and is comparable to conventional equipment.

[発明の効果] 以上説明したように、本発明の原子炉出力分布監視装置
によれば、コーナーギャップ中の導管内における測定器
の位置がコーナーギャップの中央位置からずれても、γ
線束測定器の使用により正しい測定値が得られ、熱中性
子束測定器を用いた場合に比べ高精度の原子炉出力分布
を安定して得る事ができる。更にγ線束測定値の近接燃
料棒平均出力換算係数の計算法がより高精度となり、原
子炉出力分布監視装置の精度は従来のものよりも更に向
上するというすぐれた効果を奏する。
[Effects of the Invention] As explained above, according to the reactor power distribution monitoring device of the present invention, even if the position of the measuring device in the conduit in the corner gap deviates from the center position of the corner gap, γ
By using a flux measuring device, accurate measurement values can be obtained, and a more accurate reactor power distribution can be stably obtained than when using a thermal neutron flux measuring device. Furthermore, the calculation method of the adjacent fuel rod average power conversion coefficient of the gamma ray flux measurement value becomes more accurate, and the accuracy of the reactor power distribution monitoring device is further improved compared to the conventional one, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック構成図、第2図は
従来の炉心に配列された熱中性子測定器の斜視図である
。 10・・・原子炉、11・・・炉心 12・・・コーナギャップ 13・・・固定型熱中性束測定器 14・・・移動型γ線束測定器 15・・・炉心現状データ測定器 18・・・データサンプラー 19・・・近接燃料棒平均出力換算装置20・・・燃料
集合体平均出力算出装置21・・・測定設定点燃料集合
体出力算出装置22・・・入出力装置 23・・・γ線束測定装置 (8733)代理人 弁理士 猪 股 祥 晃(ほか1
名)
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a perspective view of conventional thermal neutron measuring instruments arranged in a reactor core. DESCRIPTION OF SYMBOLS 10... Nuclear reactor, 11... Core 12... Corner gap 13... Fixed thermal neutral flux measuring device 14... Mobile gamma ray flux measuring device 15... Core current data measuring device 18. ... Data sampler 19 ... Adjacent fuel rod average power conversion device 20 ... Fuel assembly average power calculation device 21 ... Measurement set point fuel assembly power calculation device 22 ... Input/output device 23 ... γ-ray flux measuring device (8733) Agent: Yoshiaki Inomata, patent attorney (and 1 others)
given name)

Claims (1)

【特許請求の範囲】[Claims] 多数の燃料集合体を配列した炉心における4体の燃料集
合体に囲まれた間隔の中央位置の軸方向に設定されてい
る測定設定点でγ線束を測定するγ線束測定器と、この
γ線束測定器から得られたγ線束測定値を予め内蔵され
た換算式を用いて前記4体の燃料集合体に装荷された測
定設定点に近接する複数本の燃料棒の平均出力に換算す
る近接燃料棒平均出力換算装置とを備え、この燃料棒の
平均出力に基いて算出した原子炉出力分布を監視するよ
うにしたことを特徴とする原子炉出力分布監視装置。
A gamma-ray flux measuring device that measures gamma-ray flux at a measurement set point set in the axial direction at the center of the interval surrounded by four fuel assemblies in a core in which a large number of fuel assemblies are arranged, and this gamma-ray flux. Proximity fuel converts the gamma ray flux measurement value obtained from the measuring device into the average output of multiple fuel rods near the measurement set point loaded in the four fuel assemblies using a pre-built conversion formula. 1. A reactor power distribution monitoring device, comprising: a rod average power conversion device, and configured to monitor a reactor power distribution calculated based on the average power of the fuel rods.
JP60053452A 1985-03-19 1985-03-19 Monitor device for distribution of output from nuclear reactor Pending JPS61213690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60053452A JPS61213690A (en) 1985-03-19 1985-03-19 Monitor device for distribution of output from nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053452A JPS61213690A (en) 1985-03-19 1985-03-19 Monitor device for distribution of output from nuclear reactor

Publications (1)

Publication Number Publication Date
JPS61213690A true JPS61213690A (en) 1986-09-22

Family

ID=12943245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053452A Pending JPS61213690A (en) 1985-03-19 1985-03-19 Monitor device for distribution of output from nuclear reactor

Country Status (1)

Country Link
JP (1) JPS61213690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169599A (en) * 1987-01-07 1988-07-13 株式会社東芝 Output distribution monitor for nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169599A (en) * 1987-01-07 1988-07-13 株式会社東芝 Output distribution monitor for nuclear reactor

Similar Documents

Publication Publication Date Title
US6477219B2 (en) Nuclear reactor power distribution monitoring system and method including nuclear reactor instrumentation system
JP4999222B2 (en) Method for monitoring at least one operating parameter of a reactor core
US8238509B2 (en) Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers
KR101488549B1 (en) Doppler reactivity coefficient measuring method
US6400786B1 (en) Process and device for monitoring at least one operating parameter of the core of a nuclear reactor
JPH0282196A (en) Method and device for determining positon of rod
JP3274904B2 (en) Reactor power measurement device
Nylund et al. HYDRODYNAMIC AND HEAT TRANSFER MEASUREMENTS ON A FULL-SCALE SIMULATED 36-ROD MARVIKEN FUEL ELEMENT WITH UNIFORM HEAT FLUX DISTRIBUTION.
JPS61213690A (en) Monitor device for distribution of output from nuclear reactor
JPH0548438B2 (en)
Buell et al. A neutron scatterometer for void-fraction measurement in heated rod-bundle channels under CANDU LOCA conditions
Loving Neutron, temperature and gamma sensors for pressurized water reactors
JP2975654B2 (en) Core monitoring device
JP2521683B2 (en) Reactor power distribution monitor
Mihalczo et al. Reactivity surveillance experiments with the engineering mock-up core of the fast flux test facility reactor
Z Mesquita et al. An innovative method for online power monitoring in nuclear reactors
JPH04115193A (en) Measuring apparatus for average burnup of nuclear fuel assembly
Strindehag Self-powered neutron and gamma detectors for in-core measurements
JP2001042083A (en) Automatic calibration device of incore neutron flux measuring device
JP2005172474A (en) Nuclear reactor core thermal output monitoring device
Gopal et al. Nuclear reactor primary coolant loop flowmeter with phase shift tracking compensation
JPS6232392A (en) On-line output distribution monitor device for nuclear reactor
JPH0285796A (en) Output distribution monitor for pressurized water reactor
Dowdy et al. A new instrument for the confirmation of declared power histories of central station nuclear power plants
Morton III et al. Tory II-C reactor cold critical assembly program