JP3274904B2 - Reactor power measurement device - Google Patents

Reactor power measurement device

Info

Publication number
JP3274904B2
JP3274904B2 JP07444993A JP7444993A JP3274904B2 JP 3274904 B2 JP3274904 B2 JP 3274904B2 JP 07444993 A JP07444993 A JP 07444993A JP 7444993 A JP7444993 A JP 7444993A JP 3274904 B2 JP3274904 B2 JP 3274904B2
Authority
JP
Japan
Prior art keywords
core
detector
reactor
power
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07444993A
Other languages
Japanese (ja)
Other versions
JPH06289182A (en
Inventor
啓 重野
直敬 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP07444993A priority Critical patent/JP3274904B2/en
Publication of JPH06289182A publication Critical patent/JPH06289182A/en
Application granted granted Critical
Publication of JP3274904B2 publication Critical patent/JP3274904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子炉(BW
R)等の大形炉心の出力測定に適用される原子炉出力測
定装置に係り、特に出力検出器の構成簡素化および測定
精度の向上等を図った原子炉出力測定装置に関する。
The present invention relates to a boiling water reactor (BW).
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor power measurement device applied to power measurement of a large core such as R), and more particularly to a reactor power measurement device which simplifies the configuration of a power detector and improves measurement accuracy.

【0002】[0002]

【従来の技術】従来、原子炉の出力測定技術としては、
炉心内に複数の出力検出器を装荷してその出力信号値の
平均値から全炉心の出力を求める方式と、炉心外に複数
の出力検出器を設置してその平均出力から炉心出力を求
める方式との2方式が知られている。一般に前者はBW
R等の大型炉心の出力測定に採用され、後者は小型炉心
の出力測定に採用されている。
2. Description of the Related Art Conventionally, as a power measurement technology of a nuclear reactor,
A method in which multiple power detectors are loaded in the core and the output of all cores is calculated from the average value of the output signal values, and a method in which multiple power detectors are installed outside the core and the core power is calculated from the average power Are known. Generally, the former is BW
It is used for measuring the power of large cores such as R, and the latter is used for measuring the power of small cores.

【0003】図4はBWRの炉心で採用される従来の出
力測定装置を例示したものである。原子炉圧力容器1の
炉心2内に複数の検出器集合体(図では1体だけ示して
ある)3が設置されている。この検出器集合体3は、炉
心を貫通する保護管4内に、核分裂電離箱からなる固定
型中性子検出器(以下、LPRMという)5を設けた構
成とされている。このLPRM5は、例えば図にA,
B,C,Dで示す如く、軸方向に沿って4体、所定の間
隔で配置されており、これらの出力が信号ケーブル7を
介して出力監視装置8に入力されて原子炉出力測定およ
び制御が行われる。
FIG. 4 illustrates a conventional power measuring device employed in a BWR core. A plurality of detector assemblies (only one is shown in the figure) 3 are installed in a core 2 of the reactor pressure vessel 1. The detector assembly 3 has a configuration in which a fixed neutron detector (hereinafter, referred to as LPRM) 5 composed of a nuclear fission chamber is provided in a protective tube 4 penetrating the core. This LPRM 5 is, for example, A,
As shown by B, C and D, four units are arranged at predetermined intervals along the axial direction, and their outputs are input to an output monitoring device 8 via a signal cable 7 to measure and control the reactor power. Is performed.

【0004】ところで、LPRM5として使用されてい
る核分裂電離箱は、被覆管内に核分裂性物質(通常はウ
ラン235が使用される)を収容した構成とされ、この
核分裂性物質が中性子を吸収し、核分裂したときのガス
電離作用を利用して出力信号が得られる。したがって、
炉内での使用により核分裂性物質の量が減少し、検出器
の感度は徐々に変化する。
The fission ionization chamber used as the LPRM 5 has a configuration in which a fissile substance (usually uranium 235 is used) is housed in a cladding tube, and the fissile substance absorbs neutrons and causes fission. An output signal is obtained by utilizing the gas ionization effect at the time. Therefore,
Use in a furnace reduces the amount of fissile material and the sensitivity of the detector changes gradually.

【0005】この感度変化に対応するため、従来ではL
PRM5の感度を校正する手段が設けられている。この
校正手段として最も多用されているのは、保護管4内に
LPRM5と隣接する配置で中空な案内管6を設け、こ
の案内管6にLPRM5の感度校正用の移動型中性子検
出器(以下、TIPという)9を挿入したものである。
このTIP9はLPRM5と同様に核分裂電離箱からな
るもので、駆動装置10およびTIP監視装置11によ
って中空案内管6の軸方向に走行され、その位置信号と
出力信号とが出力監視装置8に入力されてLPRM5の
出力校正が行われる。この操作を定期的に全ての検出器
集合体3について実施することにより、炉心2内に設置
された全てのLPRM5の出力をTIP9に対して規格
化することができる。
In order to cope with this change in sensitivity, conventionally, L
Means for calibrating the sensitivity of the PRM 5 is provided. The most frequently used calibration means is that a hollow guide tube 6 is provided in the protective tube 4 adjacent to the LPRM 5, and a movable neutron detector (hereinafter, referred to as a “calibration device”) for calibrating the sensitivity of the LPRM 5 is provided in the guide tube 6. 9 (referred to as TIP).
The TIP 9 is composed of a fission ionization chamber like the LPRM 5, is driven in the axial direction of the hollow guide tube 6 by the driving device 10 and the TIP monitoring device 11, and its position signal and output signal are input to the output monitoring device 8. Thus, the output calibration of the LPRM 5 is performed. By performing this operation periodically for all the detector assemblies 3, the outputs of all the LPRMs 5 installed in the core 2 can be normalized to the TIP 9.

【0006】[0006]

【発明が解決しようとする課題】ところで110万KW
級のBWRでは、LPRMが通常172体装荷され、そ
の検出信号を処理するための電子装置や信号ケーブルが
LPRMと同数設置されている。また、これらに付属す
る部品、例えば信号ケーブル保護用の電線管やケーブル
接続のためのコネクタ、電子装置を収納する監視盤等も
多量となる。
Problems to be Solved by the Invention 1.1 million KW
In a BWR of the class, 172 LPRMs are usually loaded, and the same number of electronic devices and signal cables as LPRMs for processing the detection signals are installed. In addition, a large number of parts attached to these components, such as a conduit for protecting signal cables, a connector for connecting cables, and a monitoring panel for storing electronic devices, are required.

【0007】このように、検出器数が多くなると、それ
に略比例して装置規模が大きくなり、プラント建設コス
トや保守コストが上昇する。したがって、経済的観点か
らはLPRMの数を減少することが望ましいが、検出器
数を減少しただけでは検出器のない位置で部分的に出力
が上昇した場合に出力上昇が正確に把握できなくなるの
で、単に検出器数を減少することはできない。
As described above, as the number of detectors increases, the scale of the apparatus increases substantially in proportion thereto, and the plant construction cost and maintenance cost increase. Therefore, it is desirable to reduce the number of LPRMs from an economic point of view, but if the number of detectors is reduced, the output rise cannot be accurately grasped when the output partially increases at a position where there is no detector. Cannot simply reduce the number of detectors.

【0008】一方、上述したTIPは、LPRMの校正
という目的から、感度を一定に保つ必要があるが、LP
RMと同様に核分裂電離箱からなる構成とされているの
で、炉内で長時間使用すると感度が変化する。そのた
め、校正に用いる場合以外は原子炉圧力容器1から引出
し、その感度劣化を防止する措置がとられる。
On the other hand, in the above-described TIP, it is necessary to keep the sensitivity constant for the purpose of LPRM calibration.
Since it is constituted by a fission ionization chamber like the RM, the sensitivity changes when used in a furnace for a long time. For this reason, measures are taken to prevent the sensitivity from being pulled out of the reactor pressure vessel 1 except when used for calibration.

【0009】しかしながら、TIPを高温・高圧の原子
炉から引出すための装置は極めて複雑であり、また校正
対象であるLPRMとの間の位置精度を保つために高い
機械的精度も要求される。このため、TIPおよびその
駆動装置は高価なものとなり、保守作業も複雑なものと
なっている。また、校正作業にはTIPの挿脱および広
範囲の走行操作が必要であるため、校正回数には一定の
制約があり、このことは出力測定精度の向上を制限する
一要因となっている。
[0009] However, an apparatus for extracting a TIP from a high-temperature and high-pressure reactor is extremely complicated, and high mechanical accuracy is required to maintain the positional accuracy with respect to the LPRM to be calibrated. Therefore, the TIP and its driving device are expensive, and the maintenance work is complicated. In addition, since the calibration work requires insertion and removal of the TIP and a wide range of traveling operations, there is a certain restriction on the number of calibrations, and this is one factor that limits the improvement in output measurement accuracy.

【0010】なお、このような走行式の校正用検出器を
不要とする技術も開発されている(特開平3−6569
6号等)。この技術では、例えば図5に示すように、L
PRM5の配置(A,B,C,D)に対応する略等間隔
の配置(a,b,c,d)で、保護管4内に固定式の校
正用検出器11が複数設けられている。この各校正用検
出器11はγ線温度計で構成され、γ線強度に基づく温
度値によりLPRMの校正値を得るようにしている。
A technique has been developed to eliminate the need for such a traveling-type calibration detector (Japanese Patent Laid-Open No. 3-6569).
No. 6, etc.). In this technique, for example, as shown in FIG.
A plurality of fixed calibration detectors 11 are provided in the protective tube 4 in a substantially equidistant arrangement (a, b, c, d) corresponding to the arrangement (A, B, C, D) of the PRM 5. . Each of the calibration detectors 11 is composed of a γ-ray thermometer, and obtains a calibration value of LPRM based on a temperature value based on γ-ray intensity.

【0011】このような技術によれば、校正用検出器1
1が固定式であることから、前記の移動式検出器に係る
構成の複雑化、操作の困難性等が解消される。しかし、
この技術においても、炉心軸方向の出力分布の測定はL
PRM5によっており、必ずしも測定精度の向上は望め
ず、また校正用検出器11の配置がLPRM5の配置に
対応する略等間隔とされ、測定精度が最大で20%程度
悪化していた。
According to such a technique, the calibration detector 1
Since the fixed type 1 is used, the configuration of the movable detector described above is complicated, and the difficulty of operation is eliminated. But,
Also in this technique, the measurement of the power distribution in the core axis direction is L
Due to the use of the PRM 5, improvement in the measurement accuracy could not always be expected, and the arrangement of the calibration detectors 11 was set to be substantially equally spaced corresponding to the arrangement of the LPRM 5, so that the measurement accuracy was reduced by about 20% at the maximum.

【0012】本発明はこのような事情に鑑みてなされた
もので、走行装置を不要とし、信頼性が高く、低コスト
で、なおかつ精度の高い炉心軸方向出力分布の測定が行
える原子炉出力測定装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and eliminates the need for a traveling device, has a high reliability, is low in cost, and can accurately measure the power distribution in the axial direction of the reactor core. It is intended to provide a device.

【0013】[0013]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る原子炉出力測定装置は、原子炉の炉心
部に軸方向に沿って貫通する保護管と、この保護管の内
部にその軸方向に所定間隔で設置された複数の固定型中
性子検出器と、前記保護管の内部にその径方向位置を前
記固定型中性子検出器と異ならせて前記固定型中性子検
出器よりも多数設置されるとともに、前記炉心部の軸方
向中心位置での間隔が粗に、また同方向端部位置での間
隔が同方向中心位置よりも密に設定された、前記固定型
中性子検出器の校正が可能なγ線温度計と、を有するこ
とを特徴とする。
In order to achieve the above-mentioned object, a reactor power measuring apparatus according to the present invention comprises: a protective tube penetrating a reactor core along an axial direction; A plurality of fixed neutron detectors installed at predetermined intervals in the axial direction thereof, and the number of radial positions inside the protection tube is made different from that of the fixed neutron detector, so that the number is larger than that of the fixed neutron detector. The fixed neutron detector is installed, and the interval at the axial center position of the core portion is set coarsely, and the interval at the end portion in the same direction is set more densely than the central position in the same direction. And a γ-ray thermometer capable of performing the following.

【0014】[0014]

【作用】本発明によれば、原子炉出力を検出する出力検
出器を固定型中性子検出器のみならず、γ線温度計によ
っても構成したことにより、出力検出データの豊富化が
図れるとともに、そのγ線検出器は炉心全長に亘って複
数、所定の間隔で固定したので、γ線温度計の各位置で
の出力に基づいて炉心軸方向の出力分布が求められ、出
力検出データ収集範囲の拡大も図れる。したがって、従
来に比して精度の高い炉心軸方向出力分布の測定が行え
るようになる。また、走行装置が不要であるから、構成
の簡素化および操作の容易化ひいては信頼性向上も図
れ、さらに低コスト化も図れるようになる。
According to the present invention, not only a fixed neutron detector but also a γ-ray thermometer is used as the power detector for detecting the reactor power, thereby enriching the power detection data. Since multiple γ-ray detectors are fixed at predetermined intervals over the entire length of the core, the power distribution in the axial direction of the core is determined based on the output at each position of the γ-ray thermometer, and the range of power detection data collection is expanded. Can also be planned. Therefore, it is possible to measure the power distribution in the axial direction of the core with higher accuracy than before. In addition, since the traveling device is not required, the configuration can be simplified and the operation can be simplified, the reliability can be improved, and the cost can be reduced.

【0015】特に、γ線温度計の配置を、炉心の軸方向
中心位置での間隔を粗に、また同方向端部側での間隔を
同方向中心位置よりも密に設定したことにより、出力分
布の大きい炉心軸方向端部において、出力分布測定精度
を向上させることができる。
In particular, the arrangement of the γ-ray thermometers is set such that the intervals at the axial center of the core are set coarsely and the intervals at the end portions in the same direction are set closer than those in the same direction. In the core axial direction end portion having a large distribution, the power distribution measurement accuracy can be improved.

【0016】なお、γ線温度計は出力検出器と同時に固
定型中性子検出器の校正用として兼用でき、このγ線温
度計は感度変化が殆ど生じないものであるから、その中
性子検出器の相対校正についての高信頼性が得られる。
原子炉の全熱出力に対する検出器出力の絶対校正は従来
通り、原子炉の熱バランスにより行えばよい。
The γ-ray thermometer can be used simultaneously with the output detector for the calibration of a fixed neutron detector. Since the γ-ray thermometer hardly causes a change in sensitivity, the γ-ray thermometer has a relatively high sensitivity. High reliability for calibration is obtained.
Absolute calibration of the detector output with respect to the total heat output of the reactor may be performed by the heat balance of the reactor as in the past.

【0017】[0017]

【実施例】以下、本発明の一実施例を図1〜図3を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS.

【0018】図1は原子炉出力測定装置の概略的配置構
成を示し、図2は詳細な配置構成を示す。また図3は、
本実施例によって得られた出力分布の例を示す。
FIG. 1 shows a schematic arrangement of a reactor power measuring apparatus, and FIG. 2 shows a detailed arrangement. Also, FIG.
An example of an output distribution obtained by the present embodiment is shown.

【0019】図1に示すように、本実施例の原子炉出力
測定装置では、原子炉圧力容器21の炉心22内に複数
の検出器集合体(図では1体だけ示してある)23が設
置されている。この検出器集合体23は、炉心を貫通す
る保護管24内に、第1の出力検出器として、核分裂電
離箱からなる固定型中性子検出器(LPRM)25を設
けるとともに、このLPRM25の校正手段と第2の出
力検出器とを兼用するγ線温度計26とを設けた構成と
されている。
As shown in FIG. 1, in the reactor power measuring apparatus of this embodiment, a plurality of detector assemblies (only one is shown in the figure) 23 are installed in a reactor core 22 of a reactor pressure vessel 21. Have been. In the detector assembly 23, a fixed neutron detector (LPRM) 25 composed of a fission chamber is provided as a first power detector in a protective tube 24 penetrating the core. A γ-ray thermometer 26 also serving as the second output detector is provided.

【0020】LPRM25は、図1および図2にA,
B,C,Dで示す如く、保護管24の軸方向に沿って4
体、所定の間隔で配置されており、これらの出力が信号
ケーブル27を介して局所出力監視装置28に入力され
るようになっている。
The LPRM 25 is shown in FIGS.
As shown by B, C, and D, 4
The body is arranged at a predetermined interval, and these outputs are input to a local output monitoring device 28 via a signal cable 27.

【0021】また、γ線温度計26は保護管の内部にL
PRM25と径方向位置を異ならせて、かつLPRM2
5よりも多数、炉心22の軸方向全体に亘って所定の間
隔で固定設置されている。このγ線温度計26は、炉心
22内のγ線によって発生する発熱量に基づいて、原子
炉出力を測定するもので、感度劣化が少なく、また内部
に校正用ヒータを有することで自己校正できるものであ
る。したがってTIPで必要とされる検出器感度校正は
必要とされない。
The gamma ray thermometer 26 is provided with L
LPRM2 with radial position different from PRM25
More than five are fixedly installed at predetermined intervals over the entire axial direction of the core 22. The γ-ray thermometer 26 measures the reactor power based on the calorific value generated by γ-rays in the reactor core 22. The γ-ray thermometer has little sensitivity deterioration and can be self-calibrated by having a calibration heater inside. Things. Therefore, the detector sensitivity calibration required for TIP is not required.

【0022】そして本実施例では、図1および図2にa
…iで示すように、γ線温度計26が例えば1本の被覆
管29内の9カ所に所定の間隔で配置されて一つのγ線
温度計集合体26Aとして構成されている。そして、γ
線温度計26の配置は、炉心22の軸方向中心位置での
間隔を粗に、また同方向端部(上端部および下端部)側
での間隔を同方向中心位置よりも密に設定してある。す
なわち、図2に炉心底部からの距離を示すように、上端
部側の間隔(iとhとの間隔)は364mm,下端部側
の間隔(aとbとの間隔)は309mmで、それぞれ炉
心中央部側の間隔(b〜h間の各間隔(約454〜47
4mm))よりも小さく設定されている。
In this embodiment, FIGS. 1 and 2 show a
As shown by i, the γ-ray thermometers 26 are arranged at predetermined intervals, for example, at nine locations in one cladding tube 29 to constitute one γ-ray thermometer assembly 26A. And γ
The arrangement of the linear thermometer 26 is such that the interval at the axial center position of the reactor core 22 is set coarsely, and the interval at the end (upper end and lower end) side in the same direction is set closer than the center position in the same direction. is there. That is, as shown in FIG. 2, the distance from the bottom of the core is 364 mm at the upper end (the distance between i and h) and 309 mm at the lower end (the distance between a and b). Center-side interval (each interval between b to h (about 454 to 47
4 mm)).

【0023】γ線温度計26の出力は、軸方向出力分布
測定装置30に入力され、さらに局所出力監視装置28
に入力されるようになっている。
The output of the γ-ray thermometer 26 is input to an axial power distribution measuring device 30, and a local power monitoring device 28
To be entered.

【0024】このように構成された本実施例の作用につ
いて、原子炉出力100%の定格出力時の各装置の機能
を従来の装置と比較して説明すると以下の通りである。
With respect to the operation of this embodiment having the above-described configuration, the function of each device at the time of rated output at a reactor power of 100% will be described below in comparison with the conventional device.

【0025】すなわち、原子炉の平均出力の測定につい
ては従来と同様にLPRM25の平均値を用い、早い応
答が要求される安全保護系として利用するが、炉心軸方
向出力分布測定についてはγ線温度計26により行な
う。この場合、図3に炉心軸方向出力分布の例を示すよ
うに、炉心22の上下端で大きく低下する形状となる
が、本実施例では、γ線温度計26が炉心22の軸方向
中心位置での間隔を粗に、また上端部および下端部側で
の間隔を同方向中心位置よりも密となるように設定して
9個設置したので、従来例(等間隔で4個または8個の
設置)に比べて、炉心3次元シミュレーション計算によ
る2乗平均誤差が約20%改善され、十分な精度で測定
できる。このことは、実験により確認した。図3は、本
実施例により得られた原子炉出力の軸方向出力分布の例
を示す。
That is, the average value of the reactor is measured using the average value of the LPRM 25 in the same manner as in the prior art, and is used as a safety protection system that requires a fast response. The total is 26. In this case, as shown in an example of the core axial power distribution in FIG. 3, the shape of the core 22 is greatly reduced at the upper and lower ends thereof. In this embodiment, the γ-ray thermometer 26 is located at the axial center position of the core 22. In the conventional example (four or eight at equal intervals), the distances at the upper end and the lower end were set to be coarser than the center position in the same direction. Compared with the installation), the root-mean-square error by the core three-dimensional simulation calculation is improved by about 20%, and the measurement can be performed with sufficient accuracy. This was confirmed by experiments. FIG. 3 shows an example of the axial power distribution of the reactor power obtained according to the present embodiment.

【0026】以上の本実施例によれば、システム構成、
保守および構成作業が簡素化され、省力化、被曝低減化
を実現できるとともに、高精度の炉心軸方向出力分布の
測定が可能となる。
According to the above embodiment, the system configuration,
Maintenance and configuration work are simplified, labor saving and reduction of exposure can be realized, and highly accurate measurement of core axial power distribution can be performed.

【0027】また、図4に示した従来の装置では、4カ
所のLPRMの出力を校正する場合、TIPの炉内への
挿入および引抜き作業が伴い、校正作業が頻繁には実施
できないが、本実施例によれば、炉内固定式のγ線温度
計26を用いることにより、LPRM25の校正が随時
可能であり、また、移動装置が不要であるとともに、信
号伝送用ケーブルが削減され、システム構成が単純化さ
れ、システム全体の保全も容易なものとなる。
In the conventional apparatus shown in FIG. 4, when calibrating the output of four LPRMs, it is necessary to insert and withdraw the TIP into the furnace, and the calibration work cannot be performed frequently. According to the embodiment, the use of the fixed-in-furnace γ-ray thermometer 26 enables the calibration of the LPRM 25 at any time, eliminates the need for a moving device, reduces the number of signal transmission cables, and reduces the system configuration. Is simplified, and the maintenance of the entire system becomes easy.

【0028】なお、本発明は以上の実施例に限定され
ず、種々変形または応用が可能である。例えば炉心軸方
向出力分布測定精度を向上させるために、γ線温度計2
5の軸方向の個数を増加してもよい。
The present invention is not limited to the above embodiment, but can be variously modified or applied. For example, in order to improve the accuracy of core axial power distribution measurement, a γ-ray thermometer 2
5 may be increased in the number in the axial direction.

【0029】また、従来装置におけるTIP案内管を利
用することも可能である。但し、その場合にはTIP案
内管の外径寸法により設置できる個数が制限されるの
で、γ線温度計26の軸方向の個数を増加するには、L
PRM25とγ線温度計26とを収容する保護管24の
内径を有効に利用すればよい。これにより、10個以上
のγ線温度計26の設置も十分可能である。また、炉心
3次元シミュレーション計算精度が向上すれば、4個の
LPRM位置と炉心上下端とに配置した計6個のγ線温
度計でも同等の機能が実現できる。
It is also possible to use the TIP guide tube in the conventional device. However, in this case, the number of the TIP guide tubes that can be installed is limited by the outer diameter of the TIP guide tube.
The inner diameter of the protection tube 24 that houses the PRM 25 and the γ-ray thermometer 26 may be effectively used. Thereby, the installation of ten or more γ-ray thermometers 26 is sufficiently possible. Further, if the accuracy of the core three-dimensional simulation calculation is improved, the same function can be realized with a total of six γ-ray thermometers arranged at four LPRM positions and the upper and lower ends of the core.

【0030】[0030]

【発明の効果】以上のように、本発明によれば、原子炉
出力を検出する出力検出器を固定型中性子検出器のみな
らず、γ線温度計によっても構成したことにより、出力
検出データの豊富化が図れるとともに、そのγ線検出器
は炉心全長に亘って複数、所定の間隔で固定したので、
γ線温度計の各位置での出力に基づいて炉心軸方向の出
力分布が求められ、出力検出データ収集範囲の拡大も図
れる。したがって、従来に比して精度の高い炉心軸方向
出力分布の測定が行える。また、走行装置が不要である
から、構成の簡素化および操作の容易化ひいては信頼性
向上も図れ、さらに低コスト化も図れる。
As described above, according to the present invention, not only a fixed neutron detector but also a γ-ray thermometer is used as an output detector for detecting a reactor output, so that output detection data can be obtained. Along with enrichment, the gamma-ray detectors were fixed at a predetermined interval over the entire length of the core,
The power distribution in the core axis direction is obtained based on the power at each position of the γ-ray thermometer, and the power detection data collection range can be expanded. Therefore, it is possible to measure the power distribution in the axial direction of the core with higher accuracy than before. Further, since the traveling device is not required, the configuration can be simplified, the operation can be simplified, the reliability can be improved, and the cost can be reduced.

【0031】また、γ線温度計の配置を、炉心の軸方向
中心位置での間隔を粗に、同方向端部側での間隔を同方
向中心位置よりも密に設定したことにより、出力分布の
大きい炉心軸方向端部において、出力分布測定精度を向
上させることができる。
Further, the arrangement of the γ-ray thermometers is set such that the interval at the axial center of the core is set to be coarse and the interval at the end portion in the same direction is set to be denser than the center in the same direction, so that the power distribution is improved. The power distribution measurement accuracy can be improved at the core axial end portion having a large power distribution.

【0032】さらに、γ線温度計は出力検出器と同時に
固定型中性子検出器の校正用として兼用でき、このγ線
温度計は感度変化が殆ど生じないものであるから、その
中性子検出器の相対校正についての高信頼性が得られ
る。
Further, the γ-ray thermometer can be used simultaneously with the output detector for the calibration of the fixed neutron detector, and since the γ-ray thermometer hardly causes a change in sensitivity, the γ-ray thermometer has a relatively low sensitivity. High reliability for calibration is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】図1のγ線温度計の軸方向配置例を示す図。FIG. 2 is a diagram showing an example of an axial arrangement of the γ-ray thermometer of FIG.

【図3】本実施例による炉心軸方向出力分布の例を示す
図。
FIG. 3 is a diagram showing an example of a core axial power distribution according to the embodiment.

【図4】従来例を示す図。FIG. 4 is a diagram showing a conventional example.

【図5】他の従来例を示す図。FIG. 5 is a diagram showing another conventional example.

【符号の説明】[Explanation of symbols]

22 炉心 24 保護管 25 LPRM(固定型中性子検出器(第1の出力検出
器)) 26 γ線温度計(第2の出力検出器)
22 core 24 protection tube 25 LPRM (fixed neutron detector (first output detector)) 26 γ-ray thermometer (second output detector)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G21C 17/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G21C 17/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原子炉の炉心部に軸方向に沿って貫通す
る保護管と、この保護管の内部にその軸方向に所定間隔
で設置された複数の固定型中性子検出器と、前記保護管
の内部にその径方向位置を前記固定型中性子検出器と異
ならせて前記固定型中性子検出器よりも多数設置される
とともに、前記炉心部の軸方向中心位置での間隔が粗
に、また同方向端部位置での間隔が同方向中心位置より
も密に設定された、前記固定型中性子検出器の校正が可
能なγ線温度計と、を有することを特徴とする原子炉出
力測定装置。
1. A protective tube penetrating in a core portion of a nuclear reactor along an axial direction, a plurality of fixed neutron detectors installed inside the protective tube at predetermined intervals in the axial direction, and the protective tube The radial position of the core is different from that of the fixed neutron detector and the number of the neutron detectors is larger than that of the fixed neutron detector, and the interval at the axial center position of the core is coarse and in the same direction. A reactor power measurement device, comprising: a γ-ray thermometer capable of calibrating the fixed-type neutron detector, wherein a gap at an end position is set more densely than a center position in the same direction.
JP07444993A 1993-03-31 1993-03-31 Reactor power measurement device Expired - Fee Related JP3274904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07444993A JP3274904B2 (en) 1993-03-31 1993-03-31 Reactor power measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07444993A JP3274904B2 (en) 1993-03-31 1993-03-31 Reactor power measurement device

Publications (2)

Publication Number Publication Date
JPH06289182A JPH06289182A (en) 1994-10-18
JP3274904B2 true JP3274904B2 (en) 2002-04-15

Family

ID=13547564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07444993A Expired - Fee Related JP3274904B2 (en) 1993-03-31 1993-03-31 Reactor power measurement device

Country Status (1)

Country Link
JP (1) JP3274904B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552693B1 (en) 1998-12-29 2003-04-22 Sarantel Limited Antenna
US6690336B1 (en) 1998-06-16 2004-02-10 Symmetricom, Inc. Antenna

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264887A (en) 1998-03-17 1999-09-28 Toshiba Corp Reactor nuclear instrumentation system, reactor power distribution monitoring system provided with this system and reactor power monitoring method
US6310929B1 (en) 1998-08-25 2001-10-30 Kabushiki Kaisha Toshiba In-core fixed nuclear instrumentation system and power distribution monitoring system
JP2003066185A (en) * 2001-08-29 2003-03-05 Toshiba Corp Method for replacing radiation detector
JP2004309401A (en) * 2003-04-09 2004-11-04 Toshiba Corp Nuclear reactor core monitoring system
US8175210B2 (en) 2007-11-26 2012-05-08 Ge-Hitachi Nuclear Energy Americas Llc Gamma thermometer axial apparatus and method for monitoring reactor core in nuclear power plant
CN106024080B (en) * 2016-06-24 2017-07-28 西安交通大学 It is a kind of to obtain the method that reactor core netron-flux density is finely distributed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690336B1 (en) 1998-06-16 2004-02-10 Symmetricom, Inc. Antenna
US6552693B1 (en) 1998-12-29 2003-04-22 Sarantel Limited Antenna

Also Published As

Publication number Publication date
JPH06289182A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
US8946645B2 (en) Radiation-monitoring diagnostic hodoscope system for nuclear-power reactors
US8238509B2 (en) Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers
JPH11264887A (en) Reactor nuclear instrumentation system, reactor power distribution monitoring system provided with this system and reactor power monitoring method
US6400786B1 (en) Process and device for monitoring at least one operating parameter of the core of a nuclear reactor
JPH0631791B2 (en) Fixed in-reactor calibrator for thermal neutron flux detectors in boiling water reactors.
JP3274904B2 (en) Reactor power measurement device
EP1842205B1 (en) Neutron detector assembly with variable length rhodium emitters
US4200491A (en) Apparatus and method for detecting power distribution in a nuclear reactor fuel element
King et al. Power spectral density measurements with/sup 252/Cf for a light water moderated research reactor
JPH0587978A (en) Device for measuring reactor output
JP2000258586A (en) Reactor power measuring device
JP4607858B2 (en) Method for measuring the relative amount of burnup of fuel elements of a pebble bed type high temperature reactor (HTR) and apparatus suitable for the method
JPH0548438B2 (en)
Versluis CE in-core instrumentation-functions and performance
JP2005172474A (en) Nuclear reactor core thermal output monitoring device
Strindehag Self-powered neutron and gamma detectors for in-core measurements
Loving Neutron, temperature and gamma sensors for pressurized water reactors
JP2001042083A (en) Automatic calibration device of incore neutron flux measuring device
JPH04283696A (en) Measuring method of burnup of spent fuel assembly
Adams et al. Response of LOFT SPNDs to reactor coolant density variations during a LOCA simulation
Banda A void detection system for BWRs
JPH1184065A (en) Reactor output measuring device
JPH01269088A (en) Monitoring device for on-line output distribution of reactor
Bluhm et al. CABRI hodoscope
JPS60256093A (en) Movable incore-probe device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees