JPS61213664A - Oxygen concentration detector - Google Patents

Oxygen concentration detector

Info

Publication number
JPS61213664A
JPS61213664A JP60056344A JP5634485A JPS61213664A JP S61213664 A JPS61213664 A JP S61213664A JP 60056344 A JP60056344 A JP 60056344A JP 5634485 A JP5634485 A JP 5634485A JP S61213664 A JPS61213664 A JP S61213664A
Authority
JP
Japan
Prior art keywords
oxygen
oxygen concentration
current
voltage
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60056344A
Other languages
Japanese (ja)
Inventor
Kenshirou Hashimoto
橋本 健志郎
Yasushi Okada
岡田 泰仕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP60056344A priority Critical patent/JPS61213664A/en
Priority to US06/841,512 priority patent/US4702816A/en
Priority to GB8606739A priority patent/GB2174812B/en
Priority to DE19863609227 priority patent/DE3609227A1/en
Publication of JPS61213664A publication Critical patent/JPS61213664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To prevent blackening by providing an oxygen pump element and battery element for measuring an oxygen concn. ratio, detecting oxygen concn. and supplying current to the oxygen pump at the current value meeting the oxygen concn. or below by a limiter means. CONSTITUTION:The oxygen pump element 1 and the battery element 2 for measuring the oxygen concn. ratio are provided in parallel via a spacing 3. The current is inputted to the element 1 and the oxygen in the spacing 3 is fed through the element 1 to the outside by which the oxygen concn. in the spacing 3 is made constant. The air-fuel ratio is detected by the battery element 2 from the difference in the oxygen concn. between the outside and the spacing 3. The voltage detecting the oxygen concn. from the battery element 2 is inputted via an amplifier 25 to an air-fuel ratio control circuit 20 which regulates the opening and closing of secondary air by a solenoid valve 35. The voltage for detecting the oxygen density is fed to the limiter means 26. A constant current circuit 11 is controlled by the limiter means 26 and the current meeting the detected oxygen concn. is supplied to the element 1. Since the supply current is controlled by providing the limiter means, the blackening of the oxygen pump element is prevented and the deterioration of the element is prevented.

Description

【発明の詳細な説明】 技術分野 本発明は自動車排気ガス等の気体中の酸素濃度を検出す
る酸素濃度検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an oxygen concentration detection device for detecting oxygen concentration in gas such as automobile exhaust gas.

背景技術 内燃エンジンの排気ガス浄化、燃費改善等を目的として
、排気ガス中の酸素濃度を検出し、この検出結果に応じ
てエンジンへの供給混合気の空燃比を目標空燃比にフィ
ードバック制御する空燃比制御装置がある。
BACKGROUND ART In order to purify the exhaust gas of internal combustion engines and improve fuel efficiency, an air-fuel system detects the oxygen concentration in the exhaust gas and feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the engine to a target air-fuel ratio according to the detection result. There is a fuel ratio control device.

このような空燃比制御装置に用いられる酸素濃度検出装
置として被測定気体中の酸素濃度に比例した出力を発生
するものがある(特開昭58−153155号)。かか
る酸素濃度検出装置においては、一対の平板状の酸素イ
オン伝導性固体電解質材を有する酸素濃度検出器が設け
られている。その固体電解質材は被測定気体中に配設さ
れるようになされ、固体電解質材の各表裏面には電極が
各々形成されかつ固体電解質材が所定の間隙部を介して
対向するように平行に配置されている。固体電解質材の
一方が酸素ポンプ素子として、他方が酸素濃度比測定用
電池素子として作用するようになりている。被測定気体
中において間隙部側電極が負極になるように酸素ポンプ
素子の電極間に電流を供給すると、酸素ポンプ素子の負
極面側にて間隙部内気体中の酸素ガスがイオン化して酸
素ポンプ素子内を正極面側に移動し正極面から酸素ガス
として放出される。このとき、間隙部内の酸素ガスの減
少により間隙部内の気体と電池素子外側の気体との間に
酸素濃度差が生ずるので酸素ポンプ素子への供給電流が
一定であれば電池素子の電極間にその酸素濃度差、すな
わち被測定気体中の酸素濃度に比例した電圧が発生する
のである。
As an oxygen concentration detection device used in such an air-fuel ratio control device, there is one that generates an output proportional to the oxygen concentration in the gas to be measured (Japanese Patent Laid-Open No. 153155/1983). Such an oxygen concentration detection device is provided with an oxygen concentration detector having a pair of flat oxygen ion conductive solid electrolyte materials. The solid electrolyte material is disposed in the gas to be measured, and electrodes are formed on each front and back surface of the solid electrolyte material, and the solid electrolyte materials are arranged in parallel so as to face each other with a predetermined gap in between. It is located. One of the solid electrolyte materials acts as an oxygen pump element, and the other acts as a battery element for oxygen concentration ratio measurement. When a current is supplied between the electrodes of the oxygen pump element so that the electrode on the gap side becomes the negative electrode in the gas to be measured, the oxygen gas in the gas in the gap is ionized on the negative electrode side of the oxygen pump element, and the oxygen pump element The oxygen gas moves to the positive electrode surface and is released as oxygen gas from the positive electrode surface. At this time, the decrease in oxygen gas in the gap causes a difference in oxygen concentration between the gas in the gap and the gas outside the battery element, so if the current supplied to the oxygen pump element is constant, there will be a difference between the electrodes of the battery element. A voltage proportional to the oxygen concentration difference, that is, the oxygen concentration in the gas being measured, is generated.

かかる酸素濃度検出装置においては、酸素ポンプ素子に
過剰の電流を供給すると、固体電解質材から酸素を奪う
ブラックニング現象が発生する。
In such an oxygen concentration detection device, when an excessive current is supplied to the oxygen pump element, a blackening phenomenon occurs in which oxygen is taken away from the solid electrolyte material.

例えば、固体電解質材としてZrO,(二酸化ジルコニ
ウム)が用いられた場合、酸素ポンプ素子への過剰電流
供給によりZro、から酸素O8が奪われてジルコニウ
ムZrが析出される。このブラックニング現象は酸素ポ
ンプ素子の劣化を急速に進め酸素濃度検出器としての性
能を悪化させる原因となるO かかる酸素濃度検出装置を用いた空燃比制御装置におい
ては、酸素ポンプ素子への供給電流値はれる混合気の空
燃比が目標空燃比になるときの酸素濃度検出装置の出力
電圧が予め定められた基準電圧に等しくなるように設定
される。よって酸素濃度検出装置の出力電圧と基準電圧
とを比較することによシ供給混合気の空燃比が目標空燃
比よシリッチ及びリーンのいずれであるか判別される。
For example, when ZrO (zirconium dioxide) is used as the solid electrolyte material, oxygen O8 is taken away from Zro by excessive current supply to the oxygen pump element, and zirconium Zr is precipitated. This blackening phenomenon causes rapid deterioration of the oxygen pump element and deteriorates its performance as an oxygen concentration detector. The output voltage of the oxygen concentration detection device is set to be equal to a predetermined reference voltage when the air-fuel ratio of the air-fuel mixture that increases in value reaches the target air-fuel ratio. Therefore, by comparing the output voltage of the oxygen concentration detection device with the reference voltage, it is determined whether the air-fuel ratio of the supplied air-fuel mixture is richer or leaner than the target air-fuel ratio.

空燃比を2次空気によって制御する方式の場合、リッチ
と判別されたならば、2次空気をエンジンに供給し、リ
ーンと判別されたならば2次空気の供給を停止すること
によシ空燃比が目標空燃比に制御される。しかしながら
、空燃比がリッチになるほど、すなわち酸素濃度が小さ
くなるほどブラックニング現象発生境界イ直は小さく、
また酸素ポンプ素子への供給電流値は一定であるので絞
シ弁の変動のために供給混合気の空燃比が急に目標空燃
比付近から大きくリッチとなった場合には2次空気等が
直ちに供給されてもその制御結果が排気側に現われるま
での時間遅れによシ酸素濃度検出装置の出力電圧からは
リッチと判別される状態がしばらく継続して酸素ポンプ
素子への供給電流値がそのときのブラックニング現象発
生境界値以上となってブラックニング現象を発生するこ
とがあるという問題点があった。
In the case of a system in which the air-fuel ratio is controlled by secondary air, if the engine is determined to be rich, secondary air is supplied to the engine, and if the engine is determined to be lean, the secondary air supply is stopped. The fuel ratio is controlled to the target air-fuel ratio. However, the richer the air-fuel ratio, that is, the lower the oxygen concentration, the smaller the blackening phenomenon occurrence boundary.
In addition, since the current value supplied to the oxygen pump element is constant, if the air-fuel ratio of the supplied mixture suddenly becomes rich from around the target air-fuel ratio due to fluctuations in the throttle valve, the secondary air, etc. Even if oxygen is supplied, due to the time delay until the control result appears on the exhaust side, the state in which the output voltage of the oxygen concentration detection device is determined to be rich continues for a while, and the value of the current supplied to the oxygen pump element decreases. There has been a problem in that the blackening phenomenon may occur when the value exceeds the threshold value for the occurrence of the blackning phenomenon.

発明の概要 そこで、本発明の目的はブラックニング現象を確実に防
止することができる酸素濃度検出装置を提供することで
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an oxygen concentration detection device that can reliably prevent the blackening phenomenon.

本発明の酸素濃度検出装置は検出した酸素濃度に応じた
電流値以下に酸素ポンプ素子への供給電流を制限するリ
ミッタ手段を有することを特徴としている。
The oxygen concentration detection device of the present invention is characterized by having a limiter means for limiting the current supplied to the oxygen pump element below a current value corresponding to the detected oxygen concentration.

実施例 以下、本発明の実施例を図面を参照しつつ説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による酸素濃度検出装置を用いた空燃比
制御装置を示している。本装置においては、一対の平板
状素子の酸素ポンプ素子1及び電池素子2が互いに平行
に配置されている。酸素ポンプ素子1及び電池素子2の
主体は酸素イオン伝導性固体電解質材からなり、その一
端部間には間隙部3が形成され、他端部はスペーサ4を
介して互いに結合されている。また酸素ポンプ素子1及
び電池素子2の一端部の表裏面に多孔質の耐熱金属から
なる方形状の電極板5ないし8が設けられ、他端部面に
は電極板5ないし8の引き出し線5αないし8cLが形
成されている。
FIG. 1 shows an air-fuel ratio control device using an oxygen concentration detection device according to the present invention. In this device, a pair of planar elements, an oxygen pump element 1 and a battery element 2, are arranged in parallel to each other. The main body of the oxygen pump element 1 and the battery element 2 is made of an oxygen ion conductive solid electrolyte material, and a gap 3 is formed between one end thereof, and the other end thereof is connected to each other via a spacer 4. Further, rectangular electrode plates 5 to 8 made of porous heat-resistant metal are provided on the front and back surfaces of one end of the oxygen pump element 1 and the battery element 2, and the lead wires 5α of the electrode plates 5 to 8 are provided on the other end surface. 8 cL is formed.

酸素ポンプ素子1の電極板5.6間には定電流回路11
から定電流が供給される。定電流回路11は吸い込み型
回路であり、オペアンプ12.NPNトランジスタ13
.ダイオード14及び抵抗15ないし18からなる。す
なわち、オペアンプ12の出力端は抵抗15を介してト
ランジスタ13のベースに接続されている。またトラン
ジスタ13のエミッタは抵抗16を介してアースされる
と共に抵抗17を介してオペアンプ12の反転入力端に
接続され、更にダイオード14を順方向に介してオペア
ンプ12の出力端とも接続されている。
A constant current circuit 11 is connected between the electrode plates 5 and 6 of the oxygen pump element 1.
A constant current is supplied from the The constant current circuit 11 is a sink type circuit, and the operational amplifier 12. NPN transistor 13
.. It consists of a diode 14 and resistors 15 to 18. That is, the output terminal of the operational amplifier 12 is connected to the base of the transistor 13 via the resistor 15. The emitter of the transistor 13 is grounded via a resistor 16, connected to the inverting input terminal of the operational amplifier 12 via a resistor 17, and further connected to the output terminal of the operational amplifier 12 via a diode 14 in the forward direction.

トランジスタ13のコレクタは酸素ポンプ素子1の内側
電極板6に引き出し線6αを介して接続され、外側電極
板5には電圧VBが引き出し線5αを介して供給される
ようになっている。
The collector of the transistor 13 is connected to the inner electrode plate 6 of the oxygen pump element 1 via a lead wire 6α, and the voltage VB is supplied to the outer electrode plate 5 via the lead wire 5α.

オペアンプ12の非反転入力端には抵抗18を介してプ
ログラマブル電圧発生回路19が接続されている。プロ
グラマブル電圧発生回路19は空燃比制御回路20のI
P出力端から出力されるディジタル信号に応じた電圧を
発生する。
A programmable voltage generation circuit 19 is connected to the non-inverting input terminal of the operational amplifier 12 via a resistor 18. The programmable voltage generation circuit 19 is connected to I of the air-fuel ratio control circuit 20.
Generates a voltage according to the digital signal output from the P output terminal.

一方、電池素子2の内側電極板7は引き出し線7αを介
してアースされ、外側電極板8は引き出し線8CLを介
してオペアンプ21.抵抗22ないし24からなる非反
転増幅器25に接続されている。非反転増幅器25の出
力端は空燃比制御回路20の■s入力端に接続されてい
る。また非反転増幅器25の出力端にはリミッタ回路2
6が接続されている。リミッタ回路26はオペアンプ2
7゜抵抗28ないし31.可変抵抗器32及びダイオー
ド33からなる。抵抗28.29及び可変抵抗器32は
直列に接続されて電圧VBの分圧回路34を形成し、そ
の分圧出力端である可変抵抗器32の可動端がオペアン
プ27の反転入力端に接続されている。オペアンプ27
の非反転入力端に非反転増幅器25の出力端が接続され
、非反転増幅器25の出力電圧■8と分圧回路34によ
る分圧電圧vLとの差電圧に応じた電圧がオペアンプ2
7の出力端から抵抗30.ダイオード33を頭方向に介
してオペアンプ12の反転入力端に供給されるようにな
りでいる。
On the other hand, the inner electrode plate 7 of the battery element 2 is grounded via a lead wire 7α, and the outer electrode plate 8 is connected to the operational amplifier 21. It is connected to a non-inverting amplifier 25 consisting of resistors 22-24. The output terminal of the non-inverting amplifier 25 is connected to the ■s input terminal of the air-fuel ratio control circuit 20. Also, a limiter circuit 2 is connected to the output terminal of the non-inverting amplifier 25.
6 is connected. The limiter circuit 26 is the operational amplifier 2
7° resistance 28 to 31. It consists of a variable resistor 32 and a diode 33. The resistors 28 and 29 and the variable resistor 32 are connected in series to form a voltage dividing circuit 34 for voltage VB, and the movable end of the variable resistor 32, which is the voltage dividing output terminal, is connected to the inverting input terminal of the operational amplifier 27. ing. operational amplifier 27
The output terminal of the non-inverting amplifier 25 is connected to the non-inverting input terminal of the operational amplifier 2.
7 from the output end of resistor 30. The signal is supplied to the inverting input terminal of the operational amplifier 12 via the diode 33 in the top direction.

空燃比制御回路20は上記したI、出力端、■8入力端
の他にA/F駆動端を有し、A/F駆動端には2次空気
供給調整用の電磁弁35が接続されている。電磁弁35
はエンジンの気化器絞り弁下流の吸気通路に連通ずる吸
気2次空気供給通路に設けられる。
The air-fuel ratio control circuit 20 has an A/F drive end in addition to the above-mentioned I, output end, and (8) input end, and a solenoid valve 35 for adjusting secondary air supply is connected to the A/F drive end. There is. Solenoid valve 35
is provided in the intake secondary air supply passage communicating with the intake passage downstream of the carburetor throttle valve of the engine.

かかる構成においては、空燃比制御回路20のI、出力
端からディジタル信号がプログラマブル電圧発生回路1
9に出力されると、ディジタル信号が表わす 、   
     11、      電圧が基準電圧vr1と
して抵抗18を介してオペアンプ12の非反転入力端に
供給される。酸素ポンプ素子1の電極板5.6間を流れ
るポンプ電流値IPは抵抗16の端子電圧vPによって
検出され、その端子電圧vPは抵抗17を介してオペア
ンプ12の反転入力端に供給される。端子電圧■Pが基
準電圧vr1より小のときにはオペアンプ12の出力レ
ベルは高レベルとなりトランジスタ150ベース電流を
増大させるのでポンプ電流が増大し、端子電圧■、が基
準電圧v71より大のときにはオペアンプ12の出力レ
ベルは低レベルとなり、トランジスタ15のベース電流
を減少させるのでポンプ電流/bの−Cボンノ′屯冗1
圓は示早電斐シ巳1した建電訛11となる。
In such a configuration, a digital signal is output from the output terminal I of the air-fuel ratio control circuit 20 to the programmable voltage generation circuit 1.
9, the digital signal represents
11. A voltage is supplied as a reference voltage vr1 to the non-inverting input terminal of the operational amplifier 12 via the resistor 18. The pump current value IP flowing between the electrode plates 5 , 6 of the oxygen pump element 1 is detected by the terminal voltage vP of the resistor 16 , and the terminal voltage vP is supplied via the resistor 17 to the inverting input terminal of the operational amplifier 12 . When the terminal voltage ■P is smaller than the reference voltage vr1, the output level of the operational amplifier 12 becomes high level and increases the base current of the transistor 150, so the pump current increases. When the terminal voltage ■P is higher than the reference voltage v71, the output level of the operational amplifier 12 increases. The output level becomes a low level and reduces the base current of the transistor 15, so that the pump current /b -C bonno'ton redundancy 1
En has a Kenden accent of 11, which is 1 of 1.

一方、電池素子2の電極板6.7間に発生した酸素濃度
検出電圧は非反転増幅器25によって電圧増幅されて空
燃比制御回路20のVs入力端に供比較する。出力電圧
vsは供給混合気の空燃比がリッチになるに従って高く
なるのでVs > Vr2ならばリッチであるとして電
磁弁35が開弁駆動されて2次空気がエンジンに供給さ
れ、v8≦vr2ならばリーンであるとして電磁弁35
の開弁駆動の停止により2次空気の供給が停止される。
On the other hand, the oxygen concentration detection voltage generated between the electrode plates 6 and 7 of the battery element 2 is amplified by the non-inverting amplifier 25 and is applied to the Vs input terminal of the air-fuel ratio control circuit 20 for comparison. The output voltage vs increases as the air-fuel ratio of the supplied air-fuel mixture becomes richer, so if Vs > Vr2, it is rich and the solenoid valve 35 is driven to open and secondary air is supplied to the engine, and if v8≦vr2 Solenoid valve 35 as lean
By stopping the valve opening drive, the supply of secondary air is stopped.

ここで、絞シ弁の急閉により供給混合気の空燃比がリッ
チ側に大きく変動したとする。そうすると、電池素子2
の電極板7.8間の電圧、すなわち非反転増幅器25の
出力電圧■sが上昇する。出力電圧vsが分圧電圧vL
を越えるとオペアンプ27によって得られる出力電圧V
sと分圧電圧VLとの差電圧に応じた電圧が端子電圧■
Pより高くなるのでオペアンプ27から抵抗30.ダイ
オード33゜抵抗17そして抵抗16を介して電流が流
れてオペフッ1120反転入力端の電圧を上昇させる。
Here, it is assumed that the air-fuel ratio of the supplied air-fuel mixture changes greatly toward the rich side due to the sudden closing of the throttle valve. Then, battery element 2
The voltage between the electrode plates 7 and 8, that is, the output voltage s of the non-inverting amplifier 25 increases. Output voltage vs is divided voltage vL
When the output voltage V obtained by the operational amplifier 27 exceeds
The voltage corresponding to the difference voltage between s and the divided voltage VL is the terminal voltage ■
Since it is higher than P, the resistor 30 is connected to the operational amplifier 27. A current flows through the diode 33, resistor 17, and resistor 16, raising the voltage at the inverting input of the operation switch 1120.

よって、オペアンプ12の出力電圧が低下してトランジ
スタ13のベース電流が減少するので酸素ポンプ素子1
のポンプ電流I、も減少するのである。
Therefore, the output voltage of the operational amplifier 12 decreases and the base current of the transistor 13 decreases, so that the oxygen pump element 1
The pump current I also decreases.

分圧電圧vLは基準電圧v1よシ若干高く設定されるの
で非反転増幅器25の出力電圧vsが分圧電圧vLに達
するとブラックニング現象発生領域に接近したことを表
わす。Vs > Vt、では空燃比がリッチであるほど
オペアンプ27の出力電圧が高くなりポンプ電流I、を
減少せしめてブラックニング現象の発生が防止されるの
である。
Since the divided voltage vL is set slightly higher than the reference voltage v1, when the output voltage vs of the non-inverting amplifier 25 reaches the divided voltage vL, it indicates that the blackening phenomenon has approached the region where the blackening phenomenon occurs. When Vs > Vt, the richer the air-fuel ratio is, the higher the output voltage of the operational amplifier 27 becomes, reducing the pump current I, thereby preventing the blackning phenomenon from occurring.

今、定常の空燃比制御においてポンプ電流工、と排気ガ
ス中の酸素濃度0.との関係が基準電圧V、。
Now, in steady air-fuel ratio control, the pump electrician and the oxygen concentration in the exhaust gas are 0. The relationship with is the reference voltage V.

をパラメータとして第2図の特性Aの如く定められると
、目標空燃比A/Fαに対応する酸素濃度0.(Lでは
ポンプ電流I、はIPlとなる。各酸素濃度O8に対す
るポンプ電流I、の上限値は分圧電圧vLをパラメータ
として特性Bの如く設定される。供給混合気の空燃比が
リッチ側に大きく変動し、そのとき検出した排気ガス中
の酸素濃度がO3bであれば、ポンプ電流I、がIPI
のままではブラックニング現象発生領域に含まれるが、
リミッタ回路26によってポンプ電流I、がIPtに減
少されるのである。
is determined as the characteristic A in FIG. 2 using as a parameter, the oxygen concentration corresponding to the target air-fuel ratio A/Fα becomes 0. (In L, the pump current I becomes IPl. The upper limit value of the pump current I for each oxygen concentration O8 is set as in characteristic B using the partial pressure voltage vL as a parameter. If the oxygen concentration in the exhaust gas detected at that time fluctuates greatly and the oxygen concentration in the exhaust gas is O3b, the pump current I becomes IPI.
If it remains as it is, it will be included in the area where blackening phenomenon occurs, but
The limiter circuit 26 reduces the pump current I to IPt.

発明の効果 以上の如く、本発明の酸素濃度検出装置においては、検
出された酸素濃度に応じた電流値以下に酸素ポンプ素子
への供給電流を制限するので、例えば、2次空気供給に
よる空燃比制御結果が排気ガス中の酸素濃度によって検
出されるまでの時間遅れがあってもブラックニング現象
の発生を確実に防止することができるのである。
Effects of the Invention As described above, in the oxygen concentration detection device of the present invention, the current supplied to the oxygen pump element is limited to a value below the current value corresponding to the detected oxygen concentration. Even if there is a time delay until the control result is detected based on the oxygen concentration in the exhaust gas, the blackening phenomenon can be reliably prevented from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による酸素濃度検出装置を用いた空燃比
制御装置を示す回路図、第2図はポンプ電流と酸素濃度
との関係特性を示す図である。 主要部分の符号の説明 1・・・酸素ポンプ素子   2・・・電池素子3・・
・間隙部       4・・・スペーサ5ないし8・
・・電極板    11・・・定電流回路25・・・非
反転増幅器    26・・・リミッタ回路34・・・
分圧回路
FIG. 1 is a circuit diagram showing an air-fuel ratio control device using an oxygen concentration detection device according to the present invention, and FIG. 2 is a diagram showing the relationship between pump current and oxygen concentration. Explanation of symbols of main parts 1...Oxygen pump element 2...Battery element 3...
・Gap portion 4...Spacer 5 to 8・
... Electrode plate 11 ... Constant current circuit 25 ... Non-inverting amplifier 26 ... Limiter circuit 34 ...
voltage divider circuit

Claims (2)

【特許請求の範囲】[Claims] (1)被測定気体中に配設される一対の平板状の酸素イ
オン伝導性固体電解質材を有し、その各表裏面に電極が
各々形成されかつ前記固体電解質材が所定の間隙部を介
して対向するように平行に配置され、前記固体電解質材
の一方が酸素ポンプ素子として、他方が酸素濃度比測定
用電池素子として各々作用する酸素濃度検出手段と、前
記酸素ポンプ素子の電極間に電流を供給する電流供給手
段とを含み、前記電池素子の電極間に生ずる電圧を酸素
濃度検出電圧として出力する酸素濃度検出装置であって
、前記電流供給手段は検出酸素濃度に応じた電流値以下
に前記酸素ポンプ素子への供給電流を制限するリミッタ
手段を有することを特徴とする酸素濃度検出装置。
(1) It has a pair of flat oxygen ion conductive solid electrolyte materials disposed in the gas to be measured, electrodes are formed on each of the front and back surfaces, and the solid electrolyte materials are connected to each other through a predetermined gap. An electric current is applied between the electrodes of the oxygen pump element and the oxygen concentration detection means, which are arranged in parallel so as to face each other, one of the solid electrolyte materials acts as an oxygen pump element, and the other acts as a battery element for measuring the oxygen concentration ratio. an oxygen concentration detection device that outputs the voltage generated between the electrodes of the battery element as an oxygen concentration detection voltage, the current supply means supplying a current value below a current value corresponding to the detected oxygen concentration. An oxygen concentration detection device comprising a limiter means for limiting the current supplied to the oxygen pump element.
(2)前記リミッタ手段は被測定気体中の酸素濃度が小
なるほど制限電流値を小さく設定することを特徴とする
特許請求の範囲第1項記載の酸素濃度検出装置。
(2) The oxygen concentration detecting device according to claim 1, wherein the limiter means sets the limiting current value to be smaller as the oxygen concentration in the gas to be measured becomes smaller.
JP60056344A 1985-03-19 1985-03-19 Oxygen concentration detector Pending JPS61213664A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60056344A JPS61213664A (en) 1985-03-19 1985-03-19 Oxygen concentration detector
US06/841,512 US4702816A (en) 1985-03-19 1986-03-19 Oxygen concentration detection system
GB8606739A GB2174812B (en) 1985-03-19 1986-03-19 Oxygen concentration system
DE19863609227 DE3609227A1 (en) 1985-03-19 1986-03-19 OXYGEN CONCENTRATION DETECTOR DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056344A JPS61213664A (en) 1985-03-19 1985-03-19 Oxygen concentration detector

Publications (1)

Publication Number Publication Date
JPS61213664A true JPS61213664A (en) 1986-09-22

Family

ID=13024611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056344A Pending JPS61213664A (en) 1985-03-19 1985-03-19 Oxygen concentration detector

Country Status (1)

Country Link
JP (1) JPS61213664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295855U (en) * 1988-11-09 1990-07-31

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295855U (en) * 1988-11-09 1990-07-31

Similar Documents

Publication Publication Date Title
JPS62218858A (en) Oxygen concentration detector
JPH0727391Y2 (en) Air-fuel ratio controller for internal combustion engine
JPS61294357A (en) Oxygen concentration detector
JPS62218859A (en) Oxygen concentration detector
JPS61213664A (en) Oxygen concentration detector
JPS61294355A (en) Oxygen concentration detector
US4818362A (en) Oxygen concentration sensing apparatus
JP2596537B2 (en) Oxygen concentration detector
JPS61294359A (en) Oxygen concentration detector
JPS61294360A (en) Oxygen concentration detector
JPS623142A (en) Air-fuel ratio controller for internal-combustion engine
JPH0580616B2 (en)
JPS62218854A (en) Oxygen concentration detector
JPH0612357B2 (en) Oxygen concentration detector
JPS61292051A (en) Oxygen concentration detector
JPS61294354A (en) Oxygen concentration detector
JPH0580618B2 (en)
JPS62218856A (en) Oxygen concentration detector
JPS6275255A (en) Air-fuel ratio controller for internal combustion engine
JPS6255553A (en) Oxygen concentration detector
JPH0580617B2 (en)
JPS6270640A (en) Air-fuel ratio control device for internal combustion engine
JPS6255555A (en) Air/fuel ratio controller for internal combustion engine
JPS62218857A (en) Oxygen concentration detector
JPS62182647A (en) Apparatus for controlling air/fuel ratio of internal combustion engine