JPS61213563A - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JPS61213563A
JPS61213563A JP5636785A JP5636785A JPS61213563A JP S61213563 A JPS61213563 A JP S61213563A JP 5636785 A JP5636785 A JP 5636785A JP 5636785 A JP5636785 A JP 5636785A JP S61213563 A JPS61213563 A JP S61213563A
Authority
JP
Japan
Prior art keywords
pressure regenerator
pressure
solution
regenerator
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5636785A
Other languages
Japanese (ja)
Inventor
豊福 正嘉
章広 川田
緒方 潤司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5636785A priority Critical patent/JPS61213563A/en
Publication of JPS61213563A publication Critical patent/JPS61213563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は吸収冷凍機に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an absorption refrigerator.

(従来技術) L、Br−H2O系の吸収冷凍機は二重効用型が主流と
なっておシ、その性能(成績係数)向上のために種々の
改良がなされている。
(Prior Art) L, Br--H2O absorption refrigerators are mainly of the dual-effect type, and various improvements have been made to improve their performance (coefficient of performance).

(発明が解決しようとする問題点) しかし、二重効用型吸収冷凍機の成績係数(cop)は
1.2程度であり、限界に近く、これ以上大巾な向上は
望めない状況にある。
(Problems to be Solved by the Invention) However, the coefficient of performance (COP) of the dual-effect absorption refrigerator is approximately 1.2, which is close to the limit, and no further improvement can be expected.

(問題点を解決するための手段) 本発明は、吸収器からの溶液を外部熱源により加熱する
第1高圧再生器、同第1高圧再生器で発生した冷媒蒸気
を圧縮する圧縮機、同圧縮機で圧縮された冷媒蒸気を熱
源として前記第1高圧再生器からの溶液を加熱する第2
高圧再生器、同第2高圧再生器で発生した冷媒蒸気を熱
源として前記第2高圧再生器からの溶液を加熱する低圧
再生器、前記第2高圧再生器及び低圧再生器で溶液を加
熱した後の冷媒並びに前記低圧再生器で発生した冷媒蒸
気を凝縮させる凝縮器、同凝縮器からの液冷媒を蒸発さ
せる蒸発器。
(Means for Solving the Problems) The present invention provides a first high-pressure regenerator that heats a solution from an absorber using an external heat source, a compressor that compresses refrigerant vapor generated in the first high-pressure regenerator, and a compressor that compresses refrigerant vapor generated in the first high-pressure regenerator. a second heating solution from the first high-pressure regenerator using refrigerant vapor compressed by the refrigerant as a heat source;
A high-pressure regenerator, a low-pressure regenerator that heats the solution from the second high-pressure regenerator using refrigerant vapor generated in the second high-pressure regenerator as a heat source, and after the solution is heated in the second high-pressure regenerator and the low-pressure regenerator. a condenser that condenses the refrigerant and the refrigerant vapor generated in the low-pressure regenerator, and an evaporator that evaporates the liquid refrigerant from the condenser.

同蒸発器で蒸発した冷媒を前記低圧再生器からの溶液に
吸収させる吸収器からなるもので、冷媒蒸気を圧縮する
圧縮機を設けることにより三重効用型とし、性能向上を
計ろうとするものである。
It consists of an absorber that absorbs the refrigerant evaporated in the evaporator into the solution from the low-pressure regenerator, and is designed to improve performance by creating a triple effect type by installing a compressor to compress the refrigerant vapor. .

(作用) 二重効用型吸収冷凍機では、高圧再生器で発生した冷媒
蒸気の保有するエネルギーを低圧再生器で消費すること
によりー重効用型の約2倍のCOPを得ているが、低圧
再生器で発生する冷媒蒸気の圧力温度が低く三重効用型
にするととはできなかったが、上記のように冷媒蒸気を
圧縮する圧縮機を設けることによって、冷媒蒸気の圧力
、温度を三重効用が可能となるレベルまで上昇させるこ
とができ、圧縮された冷媒蒸気を熱源とする第2高圧再
生器を組込むことで三重効用型のサイクルを成立させる
ことができる。
(Function) In the dual-effect absorption refrigerator, the energy contained in the refrigerant vapor generated in the high-pressure regenerator is consumed in the low-pressure regenerator, thereby obtaining a COP that is approximately twice that of the double-effect type. The pressure and temperature of the refrigerant vapor generated in the low-pressure regenerator was so low that it was not possible to create a triple effect type, but by providing a compressor to compress the refrigerant vapor as described above, the pressure and temperature of the refrigerant vapor can be reduced to a triple effect type. By incorporating a second high-pressure regenerator that uses compressed refrigerant vapor as a heat source, a triple-effect cycle can be established.

(実施例) 第1図は本発明の一実施例を示すもので、1は第1高圧
再生器、2は圧縮機、3は第2高圧再生器、4は低圧再
生器、5は凝縮器、6は蒸発器、7は吸収器、8は溶液
ポンプ、9は低温溶液熱交換器、10は高温溶液熱交換
器を示す。
(Embodiment) Fig. 1 shows an embodiment of the present invention, in which 1 is a first high-pressure regenerator, 2 is a compressor, 3 is a second high-pressure regenerator, 4 is a low-pressure regenerator, and 5 is a condenser. , 6 is an evaporator, 7 is an absorber, 8 is a solution pump, 9 is a low temperature solution heat exchanger, and 10 is a high temperature solution heat exchanger.

公知の二重効用型吸収冷凍機は、第1高圧再生器1で加
熱濃縮された吸収溶液を高温熱交換器10を経て低圧再
生器4に導き、第1高圧再生器1で発生した冷媒蒸気を
熱源として更に加熱濃縮するようにしているが1本実施
例では圧縮機2と第2高圧再生器3を設け、第1高圧再
生器1からの溶液を第2高圧再生器3に導き、第1高圧
再生器1で発生した冷媒蒸気を圧縮機2で圧縮し、この
冷媒蒸気を第2高圧再生器3に導いて第1高圧再生器1
からの溶液を加熱する熱源とし、第2高圧再生器3で発
生した冷媒蒸気を低圧再生器4に導いて、第2高圧再生
器3から高温溶液熱交換器10を経て低圧再生器4に導
かれた溶液を加熱する熱源とするように構成している。
In the known double-effect absorption refrigerator, the absorption solution heated and concentrated in the first high-pressure regenerator 1 is guided to the low-pressure regenerator 4 via the high-temperature heat exchanger 10, and the refrigerant vapor generated in the first high-pressure regenerator 1 is transferred to the low-pressure regenerator 4. In this embodiment, a compressor 2 and a second high-pressure regenerator 3 are provided, and the solution from the first high-pressure regenerator 1 is guided to the second high-pressure regenerator 3. 1. The refrigerant vapor generated in the high-pressure regenerator 1 is compressed by the compressor 2, and this refrigerant vapor is guided to the second high-pressure regenerator 3 to be transferred to the first high-pressure regenerator 1.
The refrigerant vapor generated in the second high-pressure regenerator 3 is guided to the low-pressure regenerator 4, and then from the second high-pressure regenerator 3 to the low-pressure regenerator 4 via the high-temperature solution heat exchanger 10. It is configured to serve as a heat source for heating the solution.

また、第2高圧再生器3及び低圧再生器4で溶液を加熱
した後の冷媒は合流して凝縮器5に導入されるようにな
っている。なお。
Further, the refrigerant after heating the solution in the second high pressure regenerator 3 and the low pressure regenerator 4 is combined and introduced into the condenser 5. In addition.

上記以外の構成は、公知の二重効用型吸収冷凍機と同様
につき詳細説明は省略する。
The configuration other than the above is similar to that of a known dual-effect absorption refrigerator, so detailed explanation will be omitted.

上記の構成において、第1高圧再生器1で溶液を外部熱
源により加熱することで発生する冷媒蒸気はLiBr−
H,O系の吸収冷凍機ではP=1.0ψ’crl a 
b (150℃)の過熱蒸気であシ、これを圧縮機2で
圧縮することにより、第1高圧再生器1の溶液温度(1
50℃)に相轟する冷媒の飽和圧力(5kg/cILa
b)以上に昇圧でき、との昇圧、昇温された冷媒を第2
高圧再生器3の加熱源として第1高圧再生器1からの溶
液を加熱し冷媒蒸気を発生させる。この冷媒蒸気(10
0℃)は低圧再生器4に導かれ、第2高圧再生器3から
高温浴液熱交換器10を経て導入される溶液を加熱し。
In the above configuration, the refrigerant vapor generated by heating the solution in the first high-pressure regenerator 1 with an external heat source is LiBr-
For H,O-based absorption refrigerators, P=1.0ψ'crl a
b (150°C), and by compressing it in the compressor 2, the solution temperature in the first high-pressure regenerator 1 (150°C) is
The saturation pressure of the refrigerant (5kg/cILa)
b) The pressure can be increased to above, and the refrigerant that has been increased in pressure and temperature is transferred to the second
As a heating source for the high pressure regenerator 3, the solution from the first high pressure regenerator 1 is heated to generate refrigerant vapor. This refrigerant vapor (10
0° C.) is led to the low pressure regenerator 4 and heats the solution introduced from the second high pressure regenerator 3 via the high temperature bath liquid heat exchanger 10.

更に冷媒を分離蒸発させる。一方、第2高圧再生器3及
び低圧再生器4で溶液を加熱して高温水となった冷媒並
びに低圧再生器4で発生した冷媒蒸気は凝縮器5に導入
され、冷却水と熱交換して凝縮される。
Furthermore, the refrigerant is separated and evaporated. On the other hand, the refrigerant that has become high-temperature water by heating the solution in the second high-pressure regenerator 3 and the low-pressure regenerator 4 and the refrigerant vapor generated in the low-pressure regenerator 4 are introduced into the condenser 5, where they exchange heat with cooling water. Condensed.

凝縮した冷媒は、蒸発器6に導かれ冷水と熱交換して蒸
発し、この蒸発冷媒は吸収器7において、低圧再生器4
から低温溶液熱交換器9を経て導入される高濃度溶液に
より吸収され、溶液ポンプ8により、溶液熱交換器9.
10を経て第1高圧再生器1に送られる。以上のサイク
ルを繰り返すことで三重効用吸収冷凍サイクルを行う。
The condensed refrigerant is led to the evaporator 6 and evaporated by exchanging heat with the cold water, and this evaporated refrigerant is passed through the absorber 7 to the low pressure regenerator 4.
is absorbed by the high concentration solution introduced from the solution heat exchanger 9 through the solution heat exchanger 9.
10 and is sent to the first high pressure regenerator 1. By repeating the above cycle, a triple effect absorption refrigeration cycle is performed.

二重効用型では高圧再生器で発生した冷媒蒸気の保有す
るエネルギーを低圧再生器で消費して冷媒を発生させる
ことにより一重効用型の約2倍のCOPを得ていた。こ
れを三重効用型にできれば現在の二重効用型の約1.5
倍のcop’が得られるが、  LiBr−H2O系の
二重効用型の低圧再生器で発生する冷媒蒸気は圧力、温
度が低いためそれが不可能であった。
In the dual-effect type, the energy contained in the refrigerant vapor generated in the high-pressure regenerator is consumed in the low-pressure regenerator to generate refrigerant, thereby obtaining about twice the COP as in the single-effect type. If this can be made into a triple effect type, it will be about 1.5 times the current double effect type.
Although twice as much cop' could be obtained, this was impossible due to the low pressure and temperature of the refrigerant vapor generated in the LiBr-H2O-based dual-effect low-pressure regenerator.

本例のように第1高圧再生器1で発生した冷媒蒸気を圧
縮機2で圧縮し、圧力、温度を三重効用が可能となるレ
ベルまで上昇させることにより、三重効用吸収冷凍サイ
クルを成立させることができる。この場合COPが上昇
するかどうかは昇圧、昇温に要した動力とそれによって
発生した蒸気量の関係によって決る。
As in this example, the refrigerant vapor generated in the first high-pressure regenerator 1 is compressed by the compressor 2, and the pressure and temperature are increased to a level that enables triple effect, thereby establishing a triple effect absorption refrigeration cycle. Can be done. In this case, whether the COP increases or not depends on the relationship between the power required to raise the pressure and temperature and the amount of steam generated thereby.

第2図は蒸気圧縮式冷凍サイクルのP−i線図で1図中
の2→3が昇圧、昇温に要する動力であり、また、1→
2がそれによって得られる蒸気の冷凍熱量であり1通常
+  14−1+/is  <、の値は4〜6であるか
ら、このような方式とすることによってCOPは必ず上
昇し、現在のLiBr−H20系二電動用型のCOP 
1.2に対して、  C0P1.6が得られる。
Figure 2 is a P-i diagram of a vapor compression refrigeration cycle. In Figure 1, 2→3 is the power required to raise the pressure and temperature, and 1→
Since 2 is the refrigerating heat amount of the steam obtained and the value of 1 is normally +14-1+/is<, is 4 to 6, by using such a method, the COP will definitely increase, and the current LiBr- H20 series bi-electric type COP
1.2, C0P1.6 is obtained.

(効果) 以上から明らかなように本発明によれば、第1高圧再生
器で発生した冷媒蒸気を圧縮する圧縮機を設け、この圧
縮された冷媒蒸気を第2高圧再生器の加熱源とすること
により三重効用サイクルを成立させることができるため
、  COPを大巾に向上させることができる。
(Effects) As is clear from the above, according to the present invention, a compressor is provided to compress the refrigerant vapor generated in the first high-pressure regenerator, and the compressed refrigerant vapor is used as a heating source for the second high-pressure regenerator. As a result, a triple effect cycle can be established, and COP can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すサイクル図。 第2図は蒸気圧縮式冷凍サイクルのP−i線図である。 1・・・第1高圧再生器、2・・・圧縮機、3・・・第
2高圧再生器、4・・・低圧再生器、5・・・凝縮器、
6・・・蒸発器、7・・・吸収器
FIG. 1 is a cycle diagram showing one embodiment of the present invention. FIG. 2 is a P-i diagram of a vapor compression refrigeration cycle. 1... First high pressure regenerator, 2... Compressor, 3... Second high pressure regenerator, 4... Low pressure regenerator, 5... Condenser,
6... Evaporator, 7... Absorber

Claims (1)

【特許請求の範囲】[Claims] 吸収器からの溶液を外部熱源により加熱する第1高圧再
生器、同第1高圧再生器で発生した冷媒蒸気を圧縮する
圧縮機、同圧縮機で圧縮された冷媒蒸気を熱源として前
記第1高圧再生器からの溶液を加熱する第2高圧再生器
、同第2高圧再生器で発生した冷媒蒸気を熱源として前
記第2高圧再生器からの溶液を加熱する低圧再生器、前
記第2高圧再生器及び低圧再生器で溶液を加熱した後の
冷媒並びに前記低圧再生器で発生した冷媒蒸気を凝縮さ
せる凝縮器、同凝縮器からの液冷媒を蒸発させる蒸発器
、同蒸発器で蒸発した冷媒を前記低圧再生器からの溶液
に吸収させる吸収器からなることを特徴とする吸収冷凍
機。
a first high-pressure regenerator that heats the solution from the absorber using an external heat source; a compressor that compresses refrigerant vapor generated in the first high-pressure regenerator; and a first high-pressure regenerator that uses the refrigerant vapor compressed by the compressor as a heat source. a second high-pressure regenerator that heats the solution from the regenerator; a low-pressure regenerator that heats the solution from the second high-pressure regenerator using refrigerant vapor generated in the second high-pressure regenerator as a heat source; and the second high-pressure regenerator. and a condenser that condenses the refrigerant after heating the solution in the low pressure regenerator and the refrigerant vapor generated in the low pressure regenerator, an evaporator that evaporates the liquid refrigerant from the condenser, and the refrigerant evaporated in the evaporator as described above. An absorption refrigerator comprising an absorber that absorbs a solution from a low-pressure regenerator.
JP5636785A 1985-03-20 1985-03-20 Absorption refrigerator Pending JPS61213563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5636785A JPS61213563A (en) 1985-03-20 1985-03-20 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5636785A JPS61213563A (en) 1985-03-20 1985-03-20 Absorption refrigerator

Publications (1)

Publication Number Publication Date
JPS61213563A true JPS61213563A (en) 1986-09-22

Family

ID=13025281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5636785A Pending JPS61213563A (en) 1985-03-20 1985-03-20 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS61213563A (en)

Similar Documents

Publication Publication Date Title
CA1279490C (en) Triple effect absorption chiller utilizing two refrigeration circuits
Kang et al. Review of advanced absorption cycles: performance improvement and temperature lift enhancement
US4827728A (en) Seven-effect absorption refrigeration
US4921515A (en) Advanced regenerative absorption refrigeration cycles
US5271235A (en) High efficiency absorption cycle of the gax type
DeVault et al. Ammonia-water triple-effect absorption cycle
Kandlikar A new absorber heat recovery cycle to improve COP of aqua-ammonia absorption refrigeration system
CN104567090A (en) Trans-critical cycle double-stage heat absorption providing composite refrigeration system
JPS61213563A (en) Absorption refrigerator
CN109631413A (en) A kind of absorption/compression mixture circulatory system adsorbing cooling air-breathing
GB422150A (en) Improvements relating to heat converters comprising absorption apparatus
CN204513843U (en) A kind of trans critical cycle provides two-stage absorption cycle that the composite refrigeration system of heat occurs
JP3290464B2 (en) Combined refrigeration equipment
US6324865B1 (en) Triple-effect absorption chillers with vapor compression units
JPS61213562A (en) Absorption refrigerator
JP2835945B2 (en) Absorption refrigerator
JPS6222059B2 (en)
JP4164929B2 (en) Absorption refrigeration apparatus and refrigeration system including the absorption refrigeration apparatus
JPS61231366A (en) Cryogenic composite cycle
JPH0297855A (en) Absorption type refrigerator
JPS6179962A (en) Absorption refrigerator
JPH04236077A (en) Liquid circulation type refrigerating or heat pump device
Sabir A novel GAX-R heat driven refrigeration/heat pump cycle
JPS60156369U (en) Dual effect absorption chiller
АППАРАТЫ PERFORMANCE ANALYSIS OF DOUBLE-EFFECT ABSORPTION AIR-CONDITIONERS USING WATER AND LITHIUM BROMIDE