JPS6179962A - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JPS6179962A
JPS6179962A JP20220084A JP20220084A JPS6179962A JP S6179962 A JPS6179962 A JP S6179962A JP 20220084 A JP20220084 A JP 20220084A JP 20220084 A JP20220084 A JP 20220084A JP S6179962 A JPS6179962 A JP S6179962A
Authority
JP
Japan
Prior art keywords
temperature
heat
regenerator
low
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20220084A
Other languages
Japanese (ja)
Inventor
章広 川田
緒方 潤司
隆 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20220084A priority Critical patent/JPS6179962A/en
Publication of JPS6179962A publication Critical patent/JPS6179962A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は従来利用できなかった低温排熱等、を利用して
運挺することができる吸収冷凍機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an absorption refrigerator that can be operated by utilizing low-temperature waste heat, etc., which has not been available in the past.

〔従来技術〕[Prior art]

第4図及び第5図に基づいて従来のものの一例を説明す
る。
An example of a conventional device will be explained based on FIGS. 4 and 5.

1は再生器、2は凝縮器、3は蒸発器、4は吸収器、5
は熱交換器、6は再生器1の加熱流体、7ば@縮型2及
び吸収器4の冷却水、8は蒸発器3により冷却される冷
水、9は冷媒を吸収した希容液、10は冷媒を魚介分離
した濃溶液。
1 is a regenerator, 2 is a condenser, 3 is an evaporator, 4 is an absorber, 5
is a heat exchanger, 6 is the heating fluid of the regenerator 1, 7 is the cooling water of the condensation mold 2 and the absorber 4, 8 is the cold water cooled by the evaporator 3, 9 is the diluted liquid that has absorbed the refrigerant, 10 is a concentrated solution obtained by separating the refrigerant from seafood.

11は再生M1で分離された高温の冷媒蒸気、12は蒸
発器3で蒸発した冷媒蒸気であり、再生器1で加熱され
蒸発分離された冷媒蒸気11ば、凝縮器2で冷却水7と
熱交換して凝縮液化後、減圧されて蒸発器3に入る。こ
こで冷水8と熱交換して冷水を冷却して気化し、冷媒蒸
気11となって吸収器4に入り濃溶液1oに吸収される
。冷媒を吸収して濃度の薄くなった希溶液9は熱交換器
5で再生器1からの濃溶液10と熱交換した後、再生器
1に入り、再び加熱されて上記のサイクルを繰返す。
Reference numeral 11 indicates high temperature refrigerant vapor separated in the regeneration M1, and reference numeral 12 indicates refrigerant vapor evaporated in the evaporator 3. After being exchanged and condensed and liquefied, it is depressurized and enters the evaporator 3. Here, the cold water is cooled and vaporized by heat exchange with the cold water 8, becomes refrigerant vapor 11, enters the absorber 4, and is absorbed by the concentrated solution 1o. The dilute solution 9, which has absorbed the refrigerant and has become diluted in concentration, exchanges heat with the concentrated solution 10 from the regenerator 1 in the heat exchanger 5, enters the regenerator 1, is heated again, and repeats the above cycle.

以上・″d−重効用吸収冷凍磯のサイクルを示しだもの
で、第5図にその圧力温度線図を示す。
The above shows the cycle of the d-heavy-effect absorption freezing rock, and its pressure-temperature diagram is shown in Figure 5.

aは再生器1人口の希溶液の状9.bは再生器1出口の
濃溶液の状態、cは吸収器4人口の濃溶液の状態、dは
吸収器4出口の希溶液の状、0.eは凝縮器2での冷媒
の状態、rは蒸発器3での冷媒の状態、XI及び、X2
ばそれぞれ希溶液9及び濃溶液10の濃度を示し、これ
らは臭化リチウム−水系の場合を例にしたものである。
a is the state of a dilute solution of one volume of the regenerator 9. b is the state of the concentrated solution at the outlet of the regenerator 1, c is the state of the concentrated solution at the outlet of the absorber 4, d is the state of the dilute solution at the outlet of the absorber 4, 0. e is the state of the refrigerant in the condenser 2, r is the state of the refrigerant in the evaporator 3, XI and X2
The concentrations of a dilute solution 9 and a concentrated solution 10 are shown, respectively, and these are taken as an example of a lithium bromide-water system.

一般に空調では、f点の温度TE=5°C(冷水8の出
口温度)、e、dの温度TC=40°C(冷却水7の出
口温度)であり、これによりabの圧力とdの濃度X1
が決まり、aの温度Thlが決まる。
Generally, in air conditioning, the temperature at point f is TE = 5°C (outlet temperature of chilled water 8), and the temperature at points e and d is TC = 40°C (outlet temperature of cooling water 7). Concentration X1
is determined, and the temperature Thl of a is determined.

この時、吸収冷凍サイクルが成立するには、bの温度(
熱源流KGの出口温度)Thがaの温度Thlより高い
ことが必要で臭化リチウム−水系でばTh575°C〜
85°Cである。
At this time, in order to establish an absorption refrigeration cycle, the temperature b (
It is necessary that the outlet temperature of the heat source flow KG) Th is higher than the temperature Thl of a, and in the case of lithium bromide-water system, Th is 575°C ~
It is 85°C.

〔発明が解決しようとする問題点) 以上に述べたように従来の臭化リチウム−水系の吸収冷
凍機ではTh575°C〜85°Cが必要であるため1
例えば75°C〜85°C以下の低温排熱等を利用して
運転を行なうことは不可能であった。
[Problems to be solved by the invention] As mentioned above, the conventional lithium bromide-water absorption refrigerator requires a Th of 575°C to 85°C.
For example, it has been impossible to operate using low-temperature exhaust heat of 75°C to 85°C or less.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、低温熱源を昇温するヒートポンプを備え、同
ヒートポンプで昇温しだ熱源を再生器の加熱源として利
用するようにしたものである。
The present invention includes a heat pump that raises the temperature of a low-temperature heat source, and uses the heat source heated by the heat pump as a heating source for a regenerator.

〔作  用〕[For production]

低温排熱等の熱源をヒートポンプで前述したような温度
まで昇温し、これを再生器の加熱源とすることにより、
従来利用できなかった1氏温排熱等による運転を可能に
することができる。
By raising the temperature of a heat source such as low-temperature waste heat to the temperature mentioned above using a heat pump and using this as the heating source for the regenerator,
It is possible to operate using 1 degree Celsius waste heat, which was previously unavailable.

〔実施例〕〔Example〕

第1図及び第2図は本発明の一実施例を示すもので1図
中の1乃至12は前記した従来のものと同様につき説明
は省略する。
1 and 2 show one embodiment of the present invention, and 1 to 12 in FIG. 1 are the same as those of the prior art described above, and their explanation will be omitted.

本実施例では、第1図に示すように低温排熱等の低温熱
源18から熱を回収する熱回収器13゜圧縮@14.再
生器1の加熱源として用いられる加熱器15.絞りI6
によシヒートポンプを構成し。
In this embodiment, as shown in FIG. 1, a heat recovery device 13° compression@14. A heater 15 used as a heating source for the regenerator 1. Aperture I6
Configure the heat pump accordingly.

同ヒートポンプにより低温熱源17がら熱を回収し、こ
れを昇温して再生器1の加熱源として利用できるように
加熱器15を再生器1内に配役L2ている。
A heater 15 is disposed within the regenerator 1 so that the heat pump recovers heat from the low-temperature heat source 17, heats it up, and uses it as a heat source for the regenerator 1.

ヒートポンプの加熱媒体17は、熱回収器13で低温熱
源18により加熱されて蒸発した後、圧縮機14で圧縮
昇温されて過熱蒸気となり、加熱器15で再生器1内の
溶液を加熱して凝縮液化する。
The heating medium 17 of the heat pump is heated and evaporated by a low-temperature heat source 18 in a heat recovery device 13, and then compressed and heated in a compressor 14 to become superheated steam. Condenses and liquefies.

これによって溶液は加熱され、冷媒蒸気11が分離発生
し、この冷媒蒸気11は前述したように循環する。
As a result, the solution is heated and refrigerant vapor 11 is separated and generated, and this refrigerant vapor 11 is circulated as described above.

前記により凝縮液化した加熱媒体17は絞り16を経て
熱回収器13に至り、上記のサイクルを繰り返す。
The heating medium 17 condensed and liquefied as described above reaches the heat recovery device 13 through the throttle 16, and the above cycle is repeated.

第2図は上記ヒートポンプサイクルの加熱媒体のP−I
線図で、圧縮機14で圧縮されてhの状態となり、加熱
器15で+8液を加熱してiの状■となり、さらに絞り
16で減圧されてjの状態となった後、熱回収器13で
低1’Fjn熱源18から熱回収してgの状1熊となる
Figure 2 shows the P-I of the heating medium in the heat pump cycle.
In the diagram, the compressor 14 compresses the liquid to the state h, the heater 15 heats the +8 liquid to form the state I, and the throttle 16 reduces the pressure to the state J, then the heat recovery device 13, the heat is recovered from the low 1'Fjn heat source 18 and becomes 1 bear in the shape of g.

このとき、 Tg)Thとなり、再生ds 1での加熱
温度は熱源18の温度より高くなる。
At this time, Tg)Th, and the heating temperature during reproduction ds1 becomes higher than the temperature of the heat source 18.

従って、従来の本のでは利用で久々かっだ低温熱源を利
用しての運転が可能となる。
Therefore, it becomes possible to operate using a low-temperature heat source, which has been unavailable for a long time in conventional books.

第3図は二重効用吸収冷凍機に適用した例で1aは高圧
再生器、5aは高温熱交換器、10aは中儂溶液を示し
、この場合、ヒートポンプの加熱器15を高圧再生器1
aの加熱源とする以外前記実施例と同様である。
Fig. 3 shows an example of application to a double-effect absorption refrigerator, where 1a is a high-pressure regenerator, 5a is a high-temperature heat exchanger, and 10a is a medium-temperature solution.
It is the same as the previous embodiment except that the heating source is used as a heating source.

〔効  果〕〔effect〕

以上から明らかなように本発明によると、従来の吸収冷
凍機では運転不可能であった低温熱源を利用しての運転
が可能となり、エネルギーの有効活用を計ることができ
る、
As is clear from the above, according to the present invention, it is possible to operate using a low-temperature heat source, which was impossible with conventional absorption chillers, and it is possible to effectively utilize energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図はそれ
に用いるヒートポンプのP  I fjX図。 第3図は他の実施例を示す構成図、第4図は従来のもの
の構成図、第5図はその圧力温度線図である。 1:再生器、Ia二高圧再生語、2:@稲器。 3:蒸発器、4:吸収器、13;熱凹収器、14:圧縮
器、15:加熱器、16:校り、17:加熱媒体。 18:低温熱源。 牙1詔 米20 矛32 氷4図 牙50
FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIG. 2 is a P I fjX diagram of a heat pump used therein. FIG. 3 is a block diagram showing another embodiment, FIG. 4 is a block diagram of a conventional one, and FIG. 5 is a pressure-temperature diagram thereof. 1: Regenerator, Ia two-high voltage regeneration word, 2: @Inaki. 3: Evaporator, 4: Absorber, 13: Heat sink collector, 14: Compressor, 15: Heater, 16: Calibrator, 17: Heating medium. 18: Low temperature heat source. Fang 1 Imperial Rice 20 Spear 32 Ice 4 Fang 50

Claims (1)

【特許請求の範囲】[Claims] 熱回収器、圧縮機、加熱器及び絞りよりなるヒートポン
プを備え、同ヒートポンプにより低温熱源を昇温し、こ
れを再生器の加熱源とすることを特徴とする吸収冷凍機
An absorption refrigerator comprising a heat pump consisting of a heat recovery device, a compressor, a heater, and a throttle, the heat pump raising the temperature of a low-temperature heat source, and using this as a heat source for a regenerator.
JP20220084A 1984-09-27 1984-09-27 Absorption refrigerator Pending JPS6179962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20220084A JPS6179962A (en) 1984-09-27 1984-09-27 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20220084A JPS6179962A (en) 1984-09-27 1984-09-27 Absorption refrigerator

Publications (1)

Publication Number Publication Date
JPS6179962A true JPS6179962A (en) 1986-04-23

Family

ID=16453619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20220084A Pending JPS6179962A (en) 1984-09-27 1984-09-27 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS6179962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181773U (en) * 1987-05-18 1988-11-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181773U (en) * 1987-05-18 1988-11-24

Similar Documents

Publication Publication Date Title
JP3824436B2 (en) Triple effect absorption refrigerator
JPS6179962A (en) Absorption refrigerator
JP2678211B2 (en) Heat storage type cold / heat generator
JPH0835736A (en) Compression and absorption type compound refrigerator
JPS58104466A (en) Heat pump device
KR200257255Y1 (en) refrigerator/heat pump system
JPS5998244U (en) Multi-dimensional refrigerator
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JPS6122225B2 (en)
JPS6122224B2 (en)
JPS5885066A (en) Heat pump device
JPS5832301B2 (en) absorption refrigerator
JPS582564A (en) Composite absorption type refrigerator
JPH11337198A (en) Energy saving refrigeration system
JPH06201216A (en) Absorption/compression hybrid refrigerating machine
JPH04160A (en) Refrigerating apparatus
JPH09229510A (en) Absorption refrigenerating machine
JPH0446342B2 (en)
JPS6136137Y2 (en)
JPS60162165A (en) Heat recovery device for absorption refrigerator
JPS6148065B2 (en)
JPH11223408A (en) Absorption refrigerating device
JPS588069U (en) absorption refrigerator
JPS58193061A (en) Two-stage absorption refrigerator
JPS6035173U (en) Dual effect absorption chiller